!8932 [lite] convert attr to tensor

From: @xu_anyue
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2020-12-22 19:29:09 +08:00 committed by Gitee
commit 3e9d95dca1
23 changed files with 809 additions and 350 deletions

View File

@ -536,7 +536,7 @@ build_lite()
-DANDROID_STL=${ANDROID_STL} -DCMAKE_BUILD_TYPE=${BUILD_TYPE} -DSUPPORT_TRAIN=${SUPPORT_TRAIN} \
-DPLATFORM_ARM64=on -DENABLE_NEON=on -DENABLE_FP16="off" \
-DENABLE_TOOLS=${ENABLE_TOOLS} -DENABLE_CONVERTER=${ENABLE_CONVERTER} -DBUILD_TESTCASES=${RUN_TESTCASES} \
-DSUPPORT_GPU=${LITE_ENABLE_GPU} -DSUPPORT_NPU=${LITE_ENABLE_NPU} \
-DSUPPORT_GPU=${LITE_ENABLE_GPU} -DSUPPORT_NPU=${LITE_ENABLE_NPU} -DENABLE_V0=on \
-DOFFLINE_COMPILE=${OPENCL_OFFLINE_COMPILE} -DBUILD_MINDDATA=${COMPILE_MINDDATA_LITE} \
-DCMAKE_INSTALL_PREFIX=${BASEPATH}/output/tmp -DMS_VERSION_MAJOR=${VERSION_MAJOR} \
-DMS_VERSION_MINOR=${VERSION_MINOR} -DMS_VERSION_REVISION=${VERSION_REVISION} -DENABLE_VERBOSE=${ENABLE_VERBOSE} \
@ -548,7 +548,7 @@ build_lite()
-DANDROID_STL=${ANDROID_STL} -DCMAKE_BUILD_TYPE=${BUILD_TYPE} \
-DPLATFORM_ARM32=on -DENABLE_NEON=on -DSUPPORT_TRAIN=${SUPPORT_TRAIN} \
-DENABLE_TOOLS=${ENABLE_TOOLS} -DENABLE_CONVERTER=${ENABLE_CONVERTER} -DBUILD_TESTCASES=${RUN_TESTCASES} \
-DSUPPORT_GPU=${ENABLE_GPU} -DSUPPORT_NPU=${ENABLE_NPU} \
-DSUPPORT_GPU=${ENABLE_GPU} -DSUPPORT_NPU=${ENABLE_NPU} -DENABLE_V0=on \
-DOFFLINE_COMPILE=${OPENCL_OFFLINE_COMPILE} -DBUILD_MINDDATA=${COMPILE_MINDDATA_LITE} \
-DCMAKE_INSTALL_PREFIX=${BASEPATH}/output/tmp -DMS_VERSION_MAJOR=${VERSION_MAJOR} \
-DMS_VERSION_MINOR=${VERSION_MINOR} -DMS_VERSION_REVISION=${VERSION_REVISION} -DENABLE_VERBOSE=${ENABLE_VERBOSE} \
@ -557,7 +557,7 @@ build_lite()
cmake -DPLATFORM_ARM64=off -DSUPPORT_TRAIN=${SUPPORT_TRAIN} \
-DENABLE_TOOLS=${ENABLE_TOOLS} -DENABLE_CONVERTER=${ENABLE_CONVERTER} -DBUILD_TESTCASES=${RUN_TESTCASES} \
-DCMAKE_BUILD_TYPE=${BUILD_TYPE} -DSUPPORT_GPU=${ENABLE_GPU} -DSUPPORT_NPU=${ENABLE_NPU} \
-DBUILD_MINDDATA=${COMPILE_MINDDATA_LITE} \
-DBUILD_MINDDATA=${COMPILE_MINDDATA_LITE} -DENABLE_V0=on \
-DOFFLINE_COMPILE=${OPENCL_OFFLINE_COMPILE} -DCMAKE_INSTALL_PREFIX=${BASEPATH}/output/tmp \
-DMS_VERSION_MAJOR=${VERSION_MAJOR} -DMS_VERSION_MINOR=${VERSION_MINOR} -DMS_VERSION_REVISION=${VERSION_REVISION} \
-DENABLE_VERBOSE=${ENABLE_VERBOSE} -DX86_64_SIMD=${X86_64_SIMD} "${BASEPATH}/mindspore/lite"

View File

@ -19,9 +19,12 @@
#include <vector>
#include <string>
#include <memory>
#include "schema/model_generated.h"
#include "include/ms_tensor.h"
namespace mindspore::schema {
struct Tensor;
} // namespace mindspore::schema
namespace mindspore::lite {
/// \brief Allocator defined a memory pool for malloc memory and free memory dynamically.
///
@ -35,7 +38,7 @@ using TensorPtrVector = std::vector<mindspore::schema::Tensor *>;
using DeviceContextVector = std::vector<DeviceContext>;
using Uint32Vector = std::vector<uint32_t>;
using String = std::string;
using NodeType = schema::NodeType;
using NodeType = int; /**< 0 : NodeType_ValueNode, 1 : NodeType_Parameter, 2 : NodeType_CNode. */
using AllocatorPtr = std::shared_ptr<Allocator>;
/// \brief Set data of MSTensor from string vector.

View File

@ -53,13 +53,10 @@ struct MS_API Model {
static Model *Import(const char *model_buf, size_t size);
/// \brief Free meta graph temporary buffer
virtual void Free();
/// \brief Free all temporay buffer.EG: nodes in the model.
void Destroy();
virtual void Free() = 0;
/// \brief Model destruct, free all memory
virtual ~Model();
virtual ~Model() = default;
};
} // namespace mindspore::lite

View File

@ -1,4 +1,7 @@
add_compile_definitions(USE_ANDROID_LOG)
if (ENABLE_V0)
add_definitions(-DENABLE_V0)
endif()
set(LITE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/..)
include_directories(${LITE_DIR}/nnacl/)
include_directories(${LITE_DIR}/nnacl/optimize)
@ -29,13 +32,12 @@ set(LITE_SRC
${CMAKE_CURRENT_SOURCE_DIR}/tensorlist.cc
${CMAKE_CURRENT_SOURCE_DIR}/executor.cc
${CMAKE_CURRENT_SOURCE_DIR}/inner_context.cc
${CMAKE_CURRENT_SOURCE_DIR}/model_common.cc
${CMAKE_CURRENT_SOURCE_DIR}/lite_model.cc
${CMAKE_CURRENT_SOURCE_DIR}/kernel_registry.cc
${CMAKE_CURRENT_SOURCE_DIR}/lite_kernel.cc
${CMAKE_CURRENT_SOURCE_DIR}/sub_graph_kernel.cc
${CMAKE_CURRENT_SOURCE_DIR}/scheduler.cc
${CMAKE_CURRENT_SOURCE_DIR}/lite_session.cc
${CMAKE_CURRENT_SOURCE_DIR}/model.cc
${CMAKE_CURRENT_SOURCE_DIR}/errorcode.cc
)

View File

@ -0,0 +1,44 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_COMMON_VERSION_MANAGER_H_
#define MINDSPORE_LITE_SRC_COMMON_VERSION_MANAGER_H_
#include <string>
#include "src/lite_model.h"
namespace mindspore {
namespace lite {
class VersionManager {
public:
static VersionManager *GetInstance() {
static VersionManager instance;
return &instance;
}
virtual ~VersionManager() = default;
void SetSchemaVersion(const int schema_version) { schema_version_ = schema_version; }
int GetSchemaVersion() const { return schema_version_; }
private:
VersionManager() = default;
private:
int schema_version_ = SCHEMA_VERSION::SCHEMA_CUR;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_SRC_COMMON_VERSION_MANAGER_H_

View File

@ -13,15 +13,115 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/model_common.h"
#include "src/lite_model.h"
#include <vector>
#include <set>
#include <unordered_map>
#include "src/ops/while.h"
#ifdef ENABLE_V0
#include "src/ops/compat/compat_register.h"
#endif
namespace mindspore::lite {
int ConvertSubGraph(const schema::SubGraph &sub_graph, Model *model) {
if (model == nullptr) {
MS_LOG(ERROR) << "model is null.";
#ifdef ENABLE_V0
int LiteModel::ConvertAttrs(Model::Node *node, const schema::v0::Primitive *prim,
std::vector<schema::Tensor *> *dst_tensor) {
if (node == nullptr || dst_tensor == nullptr) {
MS_LOG(ERROR) << "node or tensor_vec is nullptr.";
return RET_ERROR;
}
int primitive_type = prim->value_type();
auto creator = CompatRegistry::GetInstance()->GetTransferAttrFunc(SCHEMA_VERSION::SCHEMA_V0, primitive_type);
if (creator == nullptr) {
MS_LOG(DEBUG) << "the node don't need to convert attr to tensor.";
return RET_OK;
}
int status = creator(reinterpret_cast<const void *>(prim), node, dst_tensor, &this->attr_tensor_bufs_);
if (status != RET_OK && status != RET_NO_CHANGE) {
MS_LOG(ERROR) << "translate attr to tensor failed.";
return status;
}
return RET_OK;
}
int LiteModel::ConvertAttrToTensors(const void *meta_graph) {
MS_ASSERT(meta_graph != nullptr);
int schema_version = VersionManager::GetInstance()->GetSchemaVersion();
if (schema_version != SCHEMA_VERSION::SCHEMA_V0) {
MS_LOG(DEBUG) << "no need to convert attr to tensor.";
return RET_OK;
}
auto meta_graph_v0 = reinterpret_cast<const schema::v0::MetaGraph *>(meta_graph);
std::unordered_map<int, std::set<int>> subgraph_node_indexes;
for (size_t subgraph_index = 0; subgraph_index < this->sub_graphs_.size(); ++subgraph_index) {
for (size_t node_index = 0; node_index < this->sub_graphs_[subgraph_index]->node_indices_.size(); ++node_index) {
subgraph_node_indexes[subgraph_index].insert(this->sub_graphs_[subgraph_index]->node_indices_[node_index]);
}
}
int cur_all_tensors_size = this->all_tensors_.size();
for (size_t index = 0; index < this->all_nodes_.size(); ++index) {
std::vector<schema::Tensor *> dst_tensors;
auto prim = meta_graph_v0->nodes()->GetAs<schema::v0::CNode>(index)->primitive();
int status = ConvertAttrs(this->all_nodes_[index], prim, &dst_tensors);
if (status != RET_OK) {
MS_LOG(ERROR) << "fail to convert attr to tensor.";
return RET_ERROR;
}
if (dst_tensors.empty()) {
continue;
}
std::vector<int> subgraphs_with_node;
for (size_t subgraph_index = 0; subgraph_index < this->sub_graphs_.size(); ++subgraph_index) {
if (subgraph_node_indexes[subgraph_index].find(index) == subgraph_node_indexes[subgraph_index].end()) {
continue;
}
subgraphs_with_node.push_back(subgraph_index);
}
for (auto tensor : dst_tensors) {
for (auto subgraph_index : subgraphs_with_node) {
this->sub_graphs_[subgraph_index]->tensor_indices_.push_back(cur_all_tensors_size);
}
this->all_nodes_[index]->input_indices_.push_back(cur_all_tensors_size++);
this->all_tensors_.push_back(tensor);
}
}
return RET_OK;
}
#endif
void LiteModel::Free() {
if (this->buf != nullptr) {
free(this->buf);
this->buf = nullptr;
}
for (auto &tensor_buf : attr_tensor_bufs_) {
free(tensor_buf);
}
attr_tensor_bufs_.resize(0);
}
LiteModel::~LiteModel() {
Free();
auto nodes_size = this->all_nodes_.size();
for (size_t i = 0; i < nodes_size; ++i) {
auto node = this->all_nodes_[i];
MS_ASSERT(node != nullptr);
MS_ASSERT(node->primitive_ != nullptr);
delete node->primitive_;
node->primitive_ = nullptr;
delete node;
}
this->all_nodes_.clear();
auto sub_graph_size = this->sub_graphs_.size();
for (size_t i = 0; i < sub_graph_size; ++i) {
auto sub_graph = this->sub_graphs_[i];
delete sub_graph;
}
}
int LiteModel::ConvertSubGraph(const schema::SubGraph &sub_graph) {
if (sub_graph.name() == nullptr || sub_graph.inputIndices() == nullptr || sub_graph.outputIndices() == nullptr ||
sub_graph.nodeIndices() == nullptr || sub_graph.tensorIndices() == nullptr) {
MS_LOG(ERROR) << "sub_graph is invalid.";
@ -51,28 +151,31 @@ int ConvertSubGraph(const schema::SubGraph &sub_graph, Model *model) {
for (uint32_t i = 0; i < tensor_count; ++i) {
subgraph->tensor_indices_.push_back(sub_graph.tensorIndices()->Get(i));
}
model->sub_graphs_.push_back(subgraph);
this->sub_graphs_.push_back(subgraph);
return RET_OK;
}
int VersionVerify(flatbuffers::Verifier *verify) {
int LiteModel::VersionVerify(flatbuffers::Verifier *verify) const {
if (verify == nullptr) {
MS_LOG(ERROR) << "verify is null.";
return RET_ERROR;
}
if (schema::VerifyMetaGraphBuffer(*verify)) {
return SCHEMA_VERSION::SCHEMA_CUR;
} else if (schema::v0::VerifyMetaGraphBuffer(*verify)) {
}
#ifdef ENABLE_V0
if (schema::v0::VerifyMetaGraphBuffer(*verify)) {
return SCHEMA_VERSION::SCHEMA_V0;
}
#endif
return SCHEMA_VERSION::SCHEMA_INVALID;
}
int NodeVerify(const Model &model) {
auto tensor_size = model.all_tensors_.size();
uint32_t subGraph_size = model.sub_graphs_.size();
int LiteModel::NodeVerify() const {
auto tensor_size = this->all_tensors_.size();
uint32_t subGraph_size = this->sub_graphs_.size();
for (auto &node : model.all_nodes_) {
for (auto &node : this->all_nodes_) {
if (node == nullptr || node->primitive_ == nullptr) {
MS_LOG(ERROR) << "node or its primitive_ is null.";
return RET_ERROR;
@ -105,11 +208,11 @@ int NodeVerify(const Model &model) {
return RET_OK;
}
int SubGraphVerify(const Model &model) {
auto tensor_size = model.all_tensors_.size();
auto node_size = model.all_nodes_.size();
int LiteModel::SubGraphVerify() const {
auto tensor_size = this->all_tensors_.size();
auto node_size = this->all_nodes_.size();
for (auto &graph : model.sub_graphs_) {
for (auto &graph : this->sub_graphs_) {
if (graph == nullptr) {
MS_LOG(ERROR) << "graph is null.";
return RET_ERROR;
@ -138,49 +241,78 @@ int SubGraphVerify(const Model &model) {
return RET_OK;
}
bool ModelVerify(const Model &model) { return NodeVerify(model) == RET_OK && SubGraphVerify(model) == RET_OK; }
bool LiteModel::ModelVerify() const { return NodeVerify() == RET_OK && SubGraphVerify() == RET_OK; }
const void *GetMetaGraphByVerison(const char *buf, const int &schema_version) {
if (buf == nullptr) {
MS_LOG(ERROR) << "buf is null.";
return nullptr;
}
const void *LiteModel::GetMetaGraphByVerison() {
MS_ASSERT(this->buf != nullptr);
auto schema_version = VersionManager::GetInstance()->GetSchemaVersion();
if (schema_version == SCHEMA_VERSION::SCHEMA_CUR) {
return reinterpret_cast<const void *>(schema::GetMetaGraph(buf));
} else if (schema_version == SCHEMA_VERSION::SCHEMA_V0) {
return reinterpret_cast<const void *>(schema::GetMetaGraph(this->buf));
}
#ifdef ENABLE_V0
if (schema_version == SCHEMA_VERSION::SCHEMA_V0) {
return reinterpret_cast<const void *>(schema::v0::GetMetaGraph(buf));
}
#endif
return nullptr;
}
int GenerateModelByVersion(const void *meta_graph, Model *model, const int &schema_version) {
if (meta_graph == nullptr || model == nullptr) {
MS_LOG(ERROR) << "meta_graph or model is null.";
return RET_ERROR;
}
int LiteModel::GenerateModelByVersion(const void *meta_graph) {
MS_ASSERT(meta_graph != nullptr);
auto schema_version = VersionManager::GetInstance()->GetSchemaVersion();
int status = RET_ERROR;
if (schema_version == SCHEMA_VERSION::SCHEMA_CUR) {
status = GenerateModel<schema::MetaGraph, schema::CNode>(*reinterpret_cast<const schema::MetaGraph *>(meta_graph),
model, schema_version);
} else if (schema_version == SCHEMA_VERSION::SCHEMA_V0) {
status = GenerateModel<schema::v0::MetaGraph, schema::v0::CNode>(
*reinterpret_cast<const schema::v0::MetaGraph *>(meta_graph), model, schema_version);
status = GenerateModel<schema::MetaGraph, schema::CNode>(*reinterpret_cast<const schema::MetaGraph *>(meta_graph));
}
#ifdef ENABLE_V0
if (schema_version == SCHEMA_VERSION::SCHEMA_V0) {
status = GenerateModel<schema::v0::MetaGraph, schema::v0::CNode>(
*reinterpret_cast<const schema::v0::MetaGraph *>(meta_graph));
}
#endif
return status;
}
int LiteModel::ConstructModel() {
if (this->buf == nullptr || this->buf_size_ <= 0) {
MS_LOG(ERROR) << "cannot construct model.";
return RET_NULL_PTR;
}
flatbuffers::Verifier verify((const uint8_t *)this->buf, this->buf_size_);
int schema_version = VersionVerify(&verify);
if (schema_version == SCHEMA_INVALID) {
MS_LOG(ERROR) << "The buffer is invalid and fail to create graph.";
return RET_ERROR;
}
VersionManager::GetInstance()->SetSchemaVersion(schema_version);
const void *meta_graph = GetMetaGraphByVerison();
if (meta_graph == nullptr) {
MS_LOG(ERROR) << "meta_graph is nullptr!";
return RET_NULL_PTR;
}
int status = GenerateModelByVersion(meta_graph);
if (status != RET_OK) {
MS_LOG(ERROR) << "fail to generate model";
return status;
}
if (this->version_ != Version()) {
MS_LOG(WARNING) << "model version is " << this->version_ << ", inference version is " << Version() << " not equal";
}
if (this->sub_graphs_.empty()) {
return RET_ERROR;
}
return ModelVerify() ? RET_OK : RET_ERROR;
}
Model *ImportFromBuffer(const char *model_buf, size_t size, bool take_buf) {
if (model_buf == nullptr) {
MS_LOG(ERROR) << "The model buf is nullptr";
return nullptr;
}
flatbuffers::Verifier verify((const uint8_t *)model_buf, size);
int schema_version = VersionVerify(&verify);
if (schema_version == SCHEMA_INVALID) {
MS_LOG(ERROR) << "The buffer is invalid and fail to create graph.";
return nullptr;
}
auto *model = new (std::nothrow) Model();
auto *model = new (std::nothrow) LiteModel();
if (model == nullptr) {
MS_LOG(ERROR) << "new model fail!";
return nullptr;
@ -201,28 +333,15 @@ Model *ImportFromBuffer(const char *model_buf, size_t size, bool take_buf) {
}
memcpy(model->buf, model_buf, size);
}
const void *meta_graph = GetMetaGraphByVerison(model->buf, schema_version);
if (meta_graph == nullptr) {
MS_LOG(ERROR) << "meta_graph is nullptr!";
delete (model);
return nullptr;
}
int status = GenerateModelByVersion(meta_graph, model, schema_version);
model->buf_size_ = size;
auto status = model->ConstructModel();
if (status != RET_OK) {
delete (model);
MS_LOG(ERROR) << "fail to generate model";
MS_LOG(ERROR) << "construct model failed.";
delete model;
return nullptr;
}
if (model->version_ != Version()) {
MS_LOG(WARNING) << "model version is " << model->version_ << ", inference version is " << Version() << " not equal";
}
if (model->sub_graphs_.empty()) {
delete (model);
return nullptr;
}
return ModelVerify(*model) ? model : nullptr;
return model;
}
Model *Model::Import(const char *model_buf, size_t size) { return ImportFromBuffer(model_buf, size, false); }
} // namespace mindspore::lite

View File

@ -0,0 +1,223 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_LITE_MODEL_H_
#define MINDSPORE_LITE_SRC_LITE_MODEL_H_
#include <string>
#include <vector>
#include "include/model.h"
#include "src/ops/primitive_c.h"
#include "include/version.h"
#include "schema/model_generated.h"
#include "src/common/common.h"
#include "src/common/version_manager.h"
#ifndef PRIMITIVE_WRITEABLE
#include "src/ops/ops_register.h"
#endif
#ifdef ENABLE_V0
#include "schema/model_v0_generated.h"
#endif
namespace mindspore {
namespace lite {
class LiteModel : public Model {
public:
int ConstructModel();
bool ModelVerify() const;
void Free() override;
~LiteModel() override;
private:
#ifdef ENABLE_V0
int ConvertAttrs(Model::Node *node, const schema::v0::Primitive *prim, std::vector<schema::Tensor *> *dst_tensor);
int ConvertAttrToTensors(const void *meta_graph);
#endif
template <typename T = schema::MetaGraph, typename U = schema::CNode>
bool ConvertNodes(const T &meta_graph) {
if (meta_graph.nodes() == nullptr) {
MS_LOG(ERROR) << "meta_graph is invalid, please check your model file.";
return false;
}
for (size_t i = 0; i < meta_graph.nodes()->size(); ++i) {
auto *node = new (std::nothrow) Model::Node();
if (node == nullptr) {
MS_LOG(ERROR) << "new node fail!";
return false;
}
auto c_node = meta_graph.nodes()->template GetAs<U>(i);
auto src_prim = reinterpret_cast<const schema::Primitive *>(c_node->primitive());
#ifdef PRIMITIVE_WRITEABLE
node->primitive_ = PrimitiveC::Create(const_cast<schema::Primitive *>(src_prim));
#else
auto primitive = const_cast<schema::Primitive *>(src_prim);
auto func_pointer = OpsRegistry::GetInstance()->GetPrimitiveCreator(primitive->value_type());
if (func_pointer == nullptr) {
MS_LOG(ERROR) << "PrimitiveCreator function pointer is nullptr, type: "
<< schema::EnumNamePrimitiveType(primitive->value_type());
delete node;
return false;
}
node->primitive_ = func_pointer(primitive);
#endif
if (node->primitive_ == nullptr) {
MS_LOG(ERROR) << "unpack primitive == nullptr!";
delete node;
return false;
}
node->primitive_->set_quant_type(static_cast<schema::QuantType>(c_node->quantType()));
node->name_ = c_node->name()->c_str();
node->node_type_ = static_cast<NodeType>(c_node->nodeType());
auto count = c_node->inputIndex()->size();
for (uint32_t j = 0; j < count; ++j) {
node->input_indices_.push_back(size_t(c_node->inputIndex()->template GetAs<uint32_t>(j)));
}
if (c_node->outputIndex() != nullptr) {
count = c_node->outputIndex()->size();
for (uint32_t j = 0; j < count; ++j) {
node->output_indices_.push_back(size_t(c_node->outputIndex()->template GetAs<uint32_t>(j)));
}
}
this->all_nodes_.push_back(node);
}
return true;
}
template <typename T = schema::MetaGraph>
bool ConvertTensors(const T &meta_graph) {
if (meta_graph.allTensors() == nullptr) {
MS_LOG(ERROR) << "meta_graph is invalid, please check your model file.";
return false;
}
auto tensor_count = meta_graph.allTensors()->size();
for (uint32_t i = 0; i < tensor_count; ++i) {
auto *tensor = meta_graph.allTensors()->template GetAs<schema::Tensor>(i);
if (tensor == nullptr) {
MS_LOG(ERROR) << i << "the tensor in metagraph is nullptr";
return false;
}
this->all_tensors_.push_back(const_cast<mindspore::schema::Tensor *>(tensor));
}
return true;
}
template <typename T = schema::MetaGraph>
int MetaGraphMappingSubGraph(const T &meta_graph) {
if (meta_graph.inputIndex() == nullptr || meta_graph.outputIndex() == nullptr || meta_graph.nodes() == nullptr ||
meta_graph.allTensors() == nullptr) {
MS_LOG(ERROR) << "meta_graph is invalid, please check your model file.";
return RET_ERROR;
}
auto *subgraph = new (std::nothrow) Model::SubGraph();
if (subgraph == nullptr) {
MS_LOG(ERROR) << "new subGraph fail!";
return RET_ERROR;
}
if (meta_graph.name() != nullptr) {
subgraph->name_ = meta_graph.name()->c_str();
}
auto in_count = meta_graph.inputIndex()->size();
for (uint32_t i = 0; i < in_count; ++i) {
subgraph->input_indices_.push_back(size_t(meta_graph.inputIndex()->template GetAs<uint32_t>(i)));
}
auto out_count = meta_graph.outputIndex()->size();
for (uint32_t i = 0; i < out_count; ++i) {
subgraph->output_indices_.push_back(size_t(meta_graph.outputIndex()->template GetAs<uint32_t>(i)));
}
auto node_count = meta_graph.nodes()->size();
for (uint32_t i = 0; i < node_count; ++i) {
subgraph->node_indices_.push_back(i);
}
auto tensor_count = meta_graph.allTensors()->size();
for (uint32_t i = 0; i < tensor_count; ++i) {
subgraph->tensor_indices_.push_back(i);
}
this->sub_graphs_.push_back(subgraph);
return RET_OK;
}
template <typename T = schema::MetaGraph, typename U = schema::CNode>
int GenerateModel(const T &meta_graph) {
if (meta_graph.name() != nullptr) {
this->name_ = meta_graph.name()->c_str();
}
if (meta_graph.version() != nullptr) {
this->version_ = meta_graph.version()->c_str();
}
if (!ConvertNodes<T, U>(meta_graph)) {
MS_LOG(ERROR) << "convert node failed";
return RET_ERROR;
}
if (!ConvertTensors<T>(meta_graph)) {
MS_LOG(ERROR) << "convert tensor failed";
return RET_ERROR;
}
if (meta_graph.subGraph() == nullptr) {
int ret = MetaGraphMappingSubGraph<T>(meta_graph);
if (ret != RET_OK) {
MS_LOG(ERROR) << "converter old version model wrong.";
return ret;
}
} else {
auto sub_graphs = meta_graph.subGraph();
auto sub_graph_size = sub_graphs->size();
for (size_t i = 0; i < sub_graph_size; i++) {
auto sub_graph = sub_graphs->template GetAs<schema::SubGraph>(i);
int ret = ConvertSubGraph(*sub_graph);
if (ret != RET_OK) {
MS_LOG(ERROR) << "converter subgraph wrong.";
return ret;
}
}
}
#ifdef ENABLE_V0
if (ConvertAttrToTensors(&meta_graph) != RET_OK) {
MS_LOG(ERROR) << "fail to convert attr to tensor.";
return RET_ERROR;
}
#endif
return RET_OK;
}
int VersionVerify(flatbuffers::Verifier *verify) const;
const void *GetMetaGraphByVerison();
int GenerateModelByVersion(const void *meta_graph);
int ConvertSubGraph(const schema::SubGraph &sub_graph);
int NodeVerify() const;
int SubGraphVerify() const;
public:
size_t buf_size_ = 0;
protected:
std::vector<char *> attr_tensor_bufs_;
};
Model *ImportFromBuffer(const char *model_buf, size_t size, bool take_buf);
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_SRC_LITE_MODEL_H_

View File

@ -26,7 +26,7 @@
#include "src/common/utils.h"
#include "src/common/graph_util.h"
#include "src/kernel_registry.h"
#include "src/model_common.h"
#include "src/lite_model.h"
#include "src/runtime/kernel/arm/base/dequant.h"
#if SUPPORT_NPU
#include "src/runtime/agent/npu/npu_manager.h"
@ -363,7 +363,7 @@ int LiteSession::CompileGraph(Model *model) {
is_running_.store(false);
return RET_PARAM_INVALID;
}
if (!ModelVerify(*model)) {
if (!reinterpret_cast<LiteModel *>(model)->ModelVerify()) {
MS_LOG(ERROR) << "wrong model input, please check";
is_running_.store(false);
return RET_ERROR;

View File

@ -1,52 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/ops/primitive_c.h"
#include "include/model.h"
#include "src/common/log_adapter.h"
#include "src/model_common.h"
namespace mindspore::lite {
Model *Model::Import(const char *model_buf, size_t size) { return ImportFromBuffer(model_buf, size, false); }
void Model::Free() {
if (this->buf != nullptr) {
free(this->buf);
this->buf = nullptr;
}
}
void Model::Destroy() {
Free();
auto nodes_size = this->all_nodes_.size();
for (size_t i = 0; i < nodes_size; ++i) {
auto node = this->all_nodes_[i];
MS_ASSERT(node != nullptr);
MS_ASSERT(node->primitive_ != nullptr);
delete node->primitive_;
node->primitive_ = nullptr;
delete node;
}
this->all_nodes_.clear();
auto sub_graph_size = this->sub_graphs_.size();
for (size_t i = 0; i < sub_graph_size; ++i) {
auto sub_graph = this->sub_graphs_[i];
delete sub_graph;
}
}
Model::~Model() { Destroy(); }
} // namespace mindspore::lite

View File

@ -1,192 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_MODEL_COMMON_H_
#define MINDSPORE_LITE_SRC_MODEL_COMMON_H_
#include <string>
#include "src/ops/primitive_c.h"
#include "include/model.h"
#include "include/version.h"
#include "schema/model_generated.h"
#include "schema/model_v0_generated.h"
#include "src/common/common.h"
#ifndef PRIMITIVE_WRITEABLE
#include "src/ops/ops_register.h"
#endif
namespace mindspore::lite {
int ConvertSubGraph(const schema::SubGraph &sub_graph, Model *model);
template <typename T = schema::MetaGraph, typename U = schema::CNode>
bool ConvertNodes(const T &meta_graph, Model *model, int schema_version = SCHEMA_CUR) {
if (model == nullptr || meta_graph.nodes() == nullptr) {
MS_LOG(ERROR) << "model or meta_graph is invalid, please check your model file.";
return false;
}
for (size_t i = 0; i < meta_graph.nodes()->size(); ++i) {
auto *node = new (std::nothrow) Model::Node();
if (node == nullptr) {
MS_LOG(ERROR) << "new node fail!";
return false;
}
auto c_node = meta_graph.nodes()->template GetAs<U>(i);
auto src_prim = reinterpret_cast<const schema::Primitive *>(c_node->primitive());
#ifdef PRIMITIVE_WRITEABLE
node->primitive_ = PrimitiveC::Create(const_cast<schema::Primitive *>(src_prim));
#else
auto primitive = const_cast<schema::Primitive *>(src_prim);
auto func_pointer = OpsRegistry::GetInstance()->GetPrimitiveCreator(primitive->value_type());
if (func_pointer == nullptr) {
MS_LOG(ERROR) << "PrimitiveCreator function pointer is nullptr, type: "
<< schema::EnumNamePrimitiveType(primitive->value_type());
delete node;
return false;
}
node->primitive_ = func_pointer(primitive);
#endif
if (node->primitive_ == nullptr) {
MS_LOG(ERROR) << "unpack primitive == nullptr!";
delete node;
return false;
}
node->primitive_->set_quant_type(static_cast<schema::QuantType>(c_node->quantType()));
node->name_ = c_node->name()->c_str();
node->node_type_ = static_cast<NodeType>(c_node->nodeType());
auto count = c_node->inputIndex()->size();
for (uint32_t j = 0; j < count; ++j) {
node->input_indices_.push_back(size_t(c_node->inputIndex()->template GetAs<uint32_t>(j)));
}
if (c_node->outputIndex() != nullptr) {
count = c_node->outputIndex()->size();
for (uint32_t j = 0; j < count; ++j) {
node->output_indices_.push_back(size_t(c_node->outputIndex()->template GetAs<uint32_t>(j)));
}
}
model->all_nodes_.push_back(node);
}
return true;
}
template <typename T = schema::MetaGraph>
bool ConvertTensors(const T &meta_graph, Model *model) {
if (model == nullptr || meta_graph.allTensors() == nullptr) {
MS_LOG(ERROR) << "model or meta_graph is invalid, please check your model file.";
return false;
}
auto tensor_count = meta_graph.allTensors()->size();
for (uint32_t i = 0; i < tensor_count; ++i) {
auto *tensor = meta_graph.allTensors()->template GetAs<schema::Tensor>(i);
if (tensor == nullptr) {
MS_LOG(ERROR) << i << "th tensor in model is nullptr";
return false;
}
model->all_tensors_.push_back(const_cast<mindspore::schema::Tensor *>(tensor));
}
return true;
}
template <typename T = schema::MetaGraph>
int MetaGraphMappingSubGraph(const T &meta_graph, Model *model) {
if (model == nullptr || meta_graph.inputIndex() == nullptr || meta_graph.outputIndex() == nullptr ||
meta_graph.nodes() == nullptr || meta_graph.allTensors() == nullptr) {
MS_LOG(ERROR) << "model or meta_graph is invalid, please check your model file.";
return RET_ERROR;
}
auto *subgraph = new (std::nothrow) Model::SubGraph();
if (subgraph == nullptr) {
MS_LOG(ERROR) << "new subGraph fail!";
return RET_ERROR;
}
if (meta_graph.name() != nullptr) {
subgraph->name_ = meta_graph.name()->c_str();
}
auto in_count = meta_graph.inputIndex()->size();
for (uint32_t i = 0; i < in_count; ++i) {
subgraph->input_indices_.push_back(size_t(meta_graph.inputIndex()->template GetAs<uint32_t>(i)));
}
auto out_count = meta_graph.outputIndex()->size();
for (uint32_t i = 0; i < out_count; ++i) {
subgraph->output_indices_.push_back(size_t(meta_graph.outputIndex()->template GetAs<uint32_t>(i)));
}
auto node_count = meta_graph.nodes()->size();
for (uint32_t i = 0; i < node_count; ++i) {
subgraph->node_indices_.push_back(i);
}
auto tensor_count = meta_graph.allTensors()->size();
for (uint32_t i = 0; i < tensor_count; ++i) {
subgraph->tensor_indices_.push_back(i);
}
model->sub_graphs_.push_back(subgraph);
return RET_OK;
}
template <typename T = schema::MetaGraph, typename U = schema::CNode>
int GenerateModel(const T &meta_graph, Model *model, int schema_version = 0) {
if (model == nullptr) {
MS_LOG(ERROR) << "model is nullptr.";
return RET_ERROR;
}
if (meta_graph.name() != nullptr) {
model->name_ = meta_graph.name()->c_str();
}
if (meta_graph.version() != nullptr) {
model->version_ = meta_graph.version()->c_str();
}
if (!ConvertNodes<T, U>(meta_graph, model, schema_version)) {
MS_LOG(ERROR) << "convert node failed";
return RET_ERROR;
}
if (!ConvertTensors<T>(meta_graph, model)) {
MS_LOG(ERROR) << "convert tensor failed";
return RET_ERROR;
}
if (meta_graph.subGraph() == nullptr) {
int ret = MetaGraphMappingSubGraph<T>(meta_graph, model);
if (ret != RET_OK) {
MS_LOG(ERROR) << "converter old version model wrong.";
return ret;
}
} else {
auto sub_graphs = meta_graph.subGraph();
auto sub_graph_size = sub_graphs->size();
for (size_t i = 0; i < sub_graph_size; i++) {
auto sub_graph = sub_graphs->template GetAs<schema::SubGraph>(i);
int ret = ConvertSubGraph(*sub_graph, model);
if (ret != RET_OK) {
MS_LOG(ERROR) << "converter subgraph wrong.";
return ret;
}
}
}
return RET_OK;
}
int VersionVerify(flatbuffers::Verifier *verify);
int NodeVerify(const Model &model);
int SubGraphVerify(const Model &model);
bool ModelVerify(const Model &model);
const void *GetMetaGraphByVerison(const char *buf, const int &schema_version);
int GenerateModelByVersion(const void *meta_graph, Model *model, const int &schema_version);
Model *ImportFromBuffer(const char *model_buf, size_t size, bool take_buf);
} // namespace mindspore::lite
#endif // MINDSPORE_LITE_SRC_MODEL_COMMON_H_

View File

@ -4,6 +4,10 @@ file(GLOB OPS_SRC
${CMAKE_CURRENT_SOURCE_DIR}/*.cc
${CMAKE_CURRENT_SOURCE_DIR}/populate/*.cc
)
if (ENABLE_V0)
file(GLOB_RECURSE COMPAT_SRC ${CMAKE_CURRENT_SOURCE_DIR}/compat/*.cc)
set(OPS_SRC ${OPS_SRC} ${COMPAT_SRC})
endif ()
add_library(cpu_ops_mid OBJECT ${OPS_SRC})
add_dependencies(cpu_ops_mid fbs_src)

View File

@ -0,0 +1,65 @@
/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/ops/compat/attr_transfer_common.h"
#include <vector>
#include "src/common/log_adapter.h"
namespace mindspore {
namespace lite {
schema::Tensor *AttrToTensor(void *data, int data_size, bool is_array, TypeId type_id,
std::vector<char *> *tensor_bufs) {
if (data == nullptr || tensor_bufs == nullptr) {
MS_LOG(ERROR) << "the parameter of this function is nullptr.";
return nullptr;
}
auto dst_tensor =
(is_array ? new (std::nothrow) Tensor(type_id, {data_size}, schema::Format_NHWC, Tensor::Category::CONST_TENSOR)
: new (std::nothrow) Tensor(type_id, {}, schema::Format_NHWC, Tensor::Category::CONST_SCALAR));
auto dst_data = dst_tensor->MutableData();
if (dst_data == nullptr) {
MS_LOG(ERROR) << "Data from tensor is nullptr";
return nullptr;
}
std::vector<uint8_t> uint8_data;
uint8_data.resize(dst_tensor->Size());
memcpy(uint8_data.data(), data, dst_tensor->Size());
auto shape = dst_tensor->shape();
flatbuffers::FlatBufferBuilder fbb(1024);
auto tensor_offset = schema::CreateTensorDirect(fbb, schema::NodeType_ValueNode, type_id, &shape, schema::Format_NHWC,
0, 0, &uint8_data);
fbb.Finish(tensor_offset);
delete dst_tensor;
auto buf = fbb.GetBufferPointer();
if (buf == nullptr) {
MS_LOG(ERROR) << "GetBufferPointer return nullptr";
fbb.Clear();
return nullptr;
}
auto tensor_buf = reinterpret_cast<char *>(malloc(fbb.GetSize()));
if (tensor_buf == nullptr) {
MS_LOG(ERROR) << "malloc primitive_buf_ failed";
fbb.Clear();
return nullptr;
}
memcpy(tensor_buf, buf, fbb.GetSize());
auto tensor = flatbuffers::GetRoot<schema::Tensor>(tensor_buf);
tensor_bufs->push_back(tensor_buf);
fbb.Clear();
return const_cast<schema::Tensor *>(tensor);
}
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,35 @@
/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LITE_MINDSPORE_LITE_C_OPS_OP_ATTR_TRANSFER_COMMON_H_
#define LITE_MINDSPORE_LITE_C_OPS_OP_ATTR_TRANSFER_COMMON_H_
#include <vector>
#include "ir/dtype/type_id.h"
#include "src/tensor.h"
#include "include/errorcode.h"
#include "schema/model_v0_generated.h"
#include "src/common/common.h"
#include "src/ops/compat/compat_register.h"
namespace mindspore {
namespace lite {
schema::Tensor *AttrToTensor(void *data, int data_size, bool is_array, TypeId type_id,
std::vector<char *> *tensor_bufs);
} // namespace lite
} // namespace mindspore
#endif // LITE_MINDSPORE_LITE_C_OPS_OP_ATTR_TRANSFER_COMMON_H_

View File

@ -0,0 +1,67 @@
/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LITE_MINDSPORE_LITE_C_OPS_OP_COMPAT_REGISTER_H_
#define LITE_MINDSPORE_LITE_C_OPS_OP_COMPAT_REGISTER_H_
#include <unordered_map>
#include <string>
#include <vector>
#include "include/model.h"
#include "schema/model_generated.h"
#include "src/common/log_adapter.h"
namespace mindspore {
namespace lite {
// compatibility, transfer attr to input tensor.
typedef int (*TransferAttrFunc)(const void *primitive, Model::Node *node, std::vector<schema::Tensor *> *tensor,
std::vector<char *> *tensor_bufs);
class CompatRegistry {
public:
static CompatRegistry *GetInstance() {
static CompatRegistry registry;
return &registry;
}
void InsertTransferAttrFuncMap(int schema_version, int primitive_type, TransferAttrFunc transfer_attr_func) {
int key = primitive_type * 10 + schema_version;
transfer_attr_funcs_[key] = transfer_attr_func;
}
TransferAttrFunc GetTransferAttrFunc(int schema_version, int primitive_type) {
int key = primitive_type * 10 + schema_version;
if (transfer_attr_funcs_.find(key) != transfer_attr_funcs_.end()) {
return transfer_attr_funcs_[key];
} else {
MS_LOG(DEBUG) << "Unsupported transformer type in Create : " << key;
return nullptr;
}
}
protected:
std::unordered_map<int, TransferAttrFunc> transfer_attr_funcs_;
};
class Register {
public:
Register(int schema_version, int primitive_type, TransferAttrFunc transfer_attr_func) {
CompatRegistry::GetInstance()->InsertTransferAttrFuncMap(schema_version, primitive_type, transfer_attr_func);
}
virtual ~Register() = default;
};
} // namespace lite
} // namespace mindspore
#endif // LITE_MINDSPORE_LITE_C_OPS_OP_COMPAT_REGISTER_H_

View File

@ -0,0 +1,48 @@
/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/ops/compat/attr_transfer_common.h"
namespace mindspore {
namespace lite {
int TransferBroadcastToAttr(const void *primitive, Model::Node *node, std::vector<schema::Tensor *> *dst_tensors,
std::vector<char *> *tensor_bufs) {
if (primitive == nullptr || node == nullptr || dst_tensors == nullptr || tensor_bufs == nullptr) {
MS_LOG(ERROR) << "the parameter of this function is nullptr.";
return RET_ERROR;
}
if (node->input_indices_.size() != 1) {
MS_LOG(DEBUG) << "broadcast_to don't need to convert attr to tensor.";
return RET_OK;
}
dst_tensors->clear();
tensor_bufs->clear();
auto prim = reinterpret_cast<const schema::v0::Primitive *>(primitive);
auto dst_shape_attr = prim->value_as_BroadcastTo()->dst_shape();
std::vector<int> dst_shape = std::vector<int>(dst_shape_attr->begin(), dst_shape_attr->end());
auto dst_shape_tensor = AttrToTensor(dst_shape.data(), dst_shape.size(), true, kNumberTypeInt32, tensor_bufs);
if (dst_shape_tensor == nullptr) {
MS_LOG(ERROR) << "attr tensor is nullptr, transform is failed.";
return RET_NULL_PTR;
}
dst_tensors->push_back(dst_shape_tensor);
return RET_OK;
}
Register BroadcastToTransferRegistry(SCHEMA_VERSION::SCHEMA_V0, schema::v0::PrimitiveType_BroadcastTo,
TransferBroadcastToAttr);
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,47 @@
/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/ops/compat/attr_transfer_common.h"
namespace mindspore {
namespace lite {
int TransferReshapeAttr(const void *primitive, Model::Node *node, std::vector<schema::Tensor *> *dst_tensors,
std::vector<char *> *tensor_bufs) {
if (primitive == nullptr || node == nullptr || dst_tensors == nullptr || tensor_bufs == nullptr) {
MS_LOG(ERROR) << "the parameter of this function is nullptr.";
return RET_ERROR;
}
if (node->input_indices_.size() != 1) {
MS_LOG(DEBUG) << "reshape need to convert attr to tensor.";
return RET_OK;
}
dst_tensors->clear();
tensor_bufs->clear();
auto prim = reinterpret_cast<const schema::v0::Primitive *>(primitive);
auto dst_shape_attr = prim->value_as_Reshape()->shape();
std::vector<int> dst_shape = std::vector<int>(dst_shape_attr->begin(), dst_shape_attr->end());
auto dst_shape_tensor = AttrToTensor(dst_shape.data(), dst_shape.size(), true, kNumberTypeInt32, tensor_bufs);
if (dst_shape_tensor == nullptr) {
MS_LOG(ERROR) << "attr tensor is nullptr, transform is failed.";
return RET_NULL_PTR;
}
dst_tensors->push_back(dst_shape_tensor);
return RET_OK;
}
Register ReshapeTransferRegistry(SCHEMA_VERSION::SCHEMA_V0, schema::v0::PrimitiveType_Reshape, TransferReshapeAttr);
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,67 @@
/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/ops/compat/attr_transfer_common.h"
namespace mindspore {
namespace lite {
int TransferStridedSliceAttr(const void *primitive, Model::Node *node, std::vector<schema::Tensor *> *dst_tensors,
std::vector<char *> *tensor_bufs) {
if (primitive == nullptr || node == nullptr || dst_tensors == nullptr || tensor_bufs == nullptr) {
MS_LOG(ERROR) << "the parameter of this function is nullptr.";
return RET_ERROR;
}
dst_tensors->clear();
tensor_bufs->clear();
auto prim = reinterpret_cast<const schema::v0::Primitive *>(primitive);
int inputs_size = node->input_indices_.size();
switch (inputs_size) {
case 1: {
auto begins_attr = prim->value_as_StridedSlice()->begin();
std::vector<int> dst_begins = std::vector<int>(begins_attr->begin(), begins_attr->end());
auto dst_begins_tensor = AttrToTensor(dst_begins.data(), dst_begins.size(), true, kNumberTypeInt32, tensor_bufs);
dst_tensors->push_back(dst_begins_tensor);
}
case 2: {
auto ends_attr = prim->value_as_StridedSlice()->end();
std::vector<int> dst_ends = std::vector<int>(ends_attr->begin(), ends_attr->end());
auto dst_ends_tensor = AttrToTensor(dst_ends.data(), dst_ends.size(), true, kNumberTypeInt32, tensor_bufs);
dst_tensors->push_back(dst_ends_tensor);
}
case 3: {
auto strides_attr = prim->value_as_StridedSlice()->stride();
std::vector<int> dst_strides = std::vector<int>(strides_attr->begin(), strides_attr->end());
auto dst_strides_tensor =
AttrToTensor(dst_strides.data(), dst_strides.size(), true, kNumberTypeInt32, tensor_bufs);
dst_tensors->push_back(dst_strides_tensor);
break;
}
default: {
MS_LOG(DEBUG) << "stride_slice don't need to convert attr to tensor.";
return RET_OK;
}
}
if (std::any_of(dst_tensors->begin(), dst_tensors->end(), [](schema::Tensor *tensor) { return tensor == nullptr; })) {
MS_LOG(ERROR) << "convert attr to tensor failed.";
return RET_ERROR;
}
return RET_OK;
}
Register StridedSliceTransferRegistry(SCHEMA_VERSION::SCHEMA_V0, schema::v0::PrimitiveType_StridedSlice,
TransferStridedSliceAttr);
} // namespace lite
} // namespace mindspore

View File

@ -18,7 +18,6 @@
#include "src/common/log_adapter.h"
#include "include/errorcode.h"
#include "src/common/graph_util.h"
#include "src/model_common.h"
namespace mindspore::lite {
@ -27,12 +26,6 @@ TrainModel *TrainModel::Import(const char *model_buf, size_t size) {
MS_LOG(ERROR) << "The model buf is nullptr";
return nullptr;
}
flatbuffers::Verifier verify((const uint8_t *)model_buf, size);
int schema_version = VersionVerify(&verify);
if (schema_version == -1) {
MS_LOG(ERROR) << "The model buffer is invalid, cannot get schema version";
return nullptr;
}
TrainModel *model = new (std::nothrow) TrainModel();
if (model == nullptr) {
MS_LOG(ERROR) << "new model fail!";
@ -46,19 +39,10 @@ TrainModel *TrainModel::Import(const char *model_buf, size_t size) {
}
memcpy(model->buf, model_buf, size);
model->buf_size_ = size;
const void *meta_graph = GetMetaGraphByVerison(model->buf, schema_version);
if (meta_graph == nullptr) {
MS_LOG(ERROR) << "meta_graph is nullptr!";
free(model->buf);
delete (model);
return nullptr;
}
int status = GenerateModelByVersion(meta_graph, model, schema_version);
auto status = model->ConstructModel();
if (status != RET_OK) {
free(model->buf);
delete (model);
MS_LOG(ERROR) << "fail to generate model";
MS_LOG(ERROR) << "construct model failed.";
delete model;
return nullptr;
}
return model;
@ -91,6 +75,4 @@ char *TrainModel::ExportBuf(char *buffer, size_t *len) const {
*len = buf_size_;
return buffer;
}
TrainModel::~TrainModel() { Model::Free(); }
} // namespace mindspore::lite

View File

@ -16,13 +16,13 @@
#ifndef MINDSPORE_LITE_SRC_TRAIN_TRAIN_MODEL_H_
#define MINDSPORE_LITE_SRC_TRAIN_TRAIN_MODEL_H_
#include <vector>
#include "include/model.h"
#include "src/lite_model.h"
namespace mindspore {
namespace lite {
/// \brief TrainModel Defines a class that allows to import and export a mindsport trainable model
struct TrainModel : public lite::Model {
struct TrainModel : public lite::LiteModel {
/// \brief Static method to create a TrainModel object
///
/// \param[in] model_buf A buffer that was read from a MS model file
@ -35,7 +35,7 @@ struct TrainModel : public lite::Model {
void Free() override;
/// \brief Class destructor, free all memory
virtual ~TrainModel();
virtual ~TrainModel() = default;
/// \brief Export Model into a buffer
///
@ -44,8 +44,6 @@ struct TrainModel : public lite::Model {
///
/// \return Pointer to buffer with exported model
char *ExportBuf(char *buf, size_t *len) const;
size_t buf_size_;
};
} // namespace lite
} // namespace mindspore

View File

@ -105,7 +105,8 @@ if (PLATFORM_ARM32 OR PLATFORM_ARM64)
endif()
endif()
### runtime framework
file(GLOB_RECURSE OPS_SRC ${LITE_DIR}/src/ops/*.cc ${LITE_DIR}/src/ops/populate/*.cc)
add_definitions(-DENABLE_V0)
file(GLOB_RECURSE OPS_SRC ${LITE_DIR}/src/ops/*.cc)
set(TEST_LITE_SRC
${TEST_LITE_SRC}
${CCSRC_SRC}
@ -123,8 +124,7 @@ set(TEST_LITE_SRC
${LITE_DIR}/src/lite_kernel.cc
${LITE_DIR}/src/lite_session.cc
${LITE_DIR}/src/sub_graph_kernel.cc
${LITE_DIR}/src/model.cc
${LITE_DIR}/src/model_common.cc
${LITE_DIR}/src/lite_model.cc
${LITE_DIR}/src/scheduler.cc
${LITE_DIR}/src/common/graph_util.cc
${LITE_DIR}/src/common/file_utils.cc

View File

@ -9,7 +9,7 @@ set(CCSRC_SRC
include(${TOP_DIR}/cmake/external_libs/glog.cmake)
file(GLOB_RECURSE OPS_SRC ${CMAKE_CURRENT_SOURCE_DIR}/../../src/ops/*.cc
file(GLOB OPS_SRC ${CMAKE_CURRENT_SOURCE_DIR}/../../src/ops/*.cc
${CMAKE_CURRENT_SOURCE_DIR}/../../src/ops/populate/*.cc)
file(GLOB_RECURSE CONVERTER_SRC RELATIVE ${CMAKE_CURRENT_SOURCE_DIR}
@ -88,8 +88,7 @@ set(LITE_SRC
${SRC_DIR}/sub_graph_kernel.cc
${SRC_DIR}/lite_session.cc
${SRC_DIR}/executor.cc
${SRC_DIR}/model.cc
${SRC_DIR}/model_common.cc
${SRC_DIR}/lite_model.cc
${SRC_DIR}/errorcode.cc
)
if (SUPPORT_TRAIN)

View File

@ -1581,6 +1581,7 @@ STATUS PostTrainingQuantizer::DoQuantize(FuncGraphPtr func_graph) {
flatbuffers::FlatBufferBuilder builder(1024);
auto offset = schema::MetaGraph::Pack(builder, meta_graph);
builder.Finish(offset);
schema::FinishMetaGraphBuffer(builder, offset);
size_t size = builder.GetSize();
auto *content = reinterpret_cast<const char *>(builder.GetBufferPointer());
if (content == nullptr) {
@ -1662,6 +1663,7 @@ STATUS PostTrainingQuantizer::DoQuantize(FuncGraphPtr func_graph) {
flatbuffers::FlatBufferBuilder int8_builder(1024);
auto int8_offset = schema::MetaGraph::Pack(int8_builder, int8_meta_graph);
int8_builder.Finish(int8_offset);
schema::FinishMetaGraphBuffer(int8_builder, int8_offset);
size = int8_builder.GetSize();
auto *int8_content = reinterpret_cast<const char *>(int8_builder.GetBufferPointer());
if (int8_content == nullptr) {

View File

@ -24,6 +24,7 @@
#include "tools/common/flag_parser.h"
#include "src/common/file_utils.h"
#include "src/common/utils.h"
#include "schema/model_generated.h"
#include "include/lite_session.h"
#include "tools/lib_cropper/cropper_flags.h"