!4326 add kaiming normal init

Merge pull request !4326 from baihuawei/kaiming
This commit is contained in:
mindspore-ci-bot 2020-08-13 16:52:45 +08:00 committed by Gitee
commit 3e215aaac2
1 changed files with 108 additions and 0 deletions

View File

@ -151,6 +151,84 @@ class One(Initializer):
_assignment(arr, 1)
def _calculate_fan_in_and_fan_out(shape):
"""
calculate fan_in and fan_out
Args:
shape (tuple): input shape.
Returns:
Tuple, a tuple with two elements, the first element is `n_in` and the second element is `n_out`.
"""
dimensions = len(shape)
if dimensions < 2:
raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions")
if dimensions == 2: # Linear
fan_in = shape[1]
fan_out = shape[0]
else:
num_input_fmaps = shape[1]
num_output_fmaps = shape[0]
receptive_field_size = 1
if dimensions > 2:
receptive_field_size = shape[2] * shape[3]
fan_in = num_input_fmaps * receptive_field_size
fan_out = num_output_fmaps * receptive_field_size
return fan_in, fan_out
def _calculate_correct_fan(shape, mode):
"""
Calculate fan.
Args:
shape (tuple): input shape.
mode (str): only support fan_in and fan_out.
Returns:
fan_in or fan_out.
"""
mode = mode.lower()
valid_modes = ['fan_in', 'fan_out']
if mode not in valid_modes:
raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes))
fan_in, fan_out = _calculate_fan_in_and_fan_out(shape)
return fan_in if mode == 'fan_in' else fan_out
def _calculate_gain(nonlinearity, param=None):
"""
Calculate gain.
Args:
nonlinearity (str): nonlinearity function.
param (str): used to calculate negative_slope.
Returns:
number.
"""
linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']
if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
res = 1
elif nonlinearity == 'tanh':
res = 5.0 / 3
elif nonlinearity == 'relu':
res = math.sqrt(2.0)
elif nonlinearity == 'leaky_relu':
if param is None:
negative_slope = 0.01
elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float):
# True/False are instances of int, hence check above
negative_slope = param
else:
raise ValueError("negative_slope {} not a valid number".format(param))
res = math.sqrt(2.0 / (1 + negative_slope ** 2))
else:
raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))
return res
def _calculate_in_and_out(arr):
"""
Calculate n_in and n_out.
@ -223,6 +301,35 @@ class HeUniform(Initializer):
_assignment(arr, data)
@_register('he_normal')
class HeNormal(Initializer):
r"""
Initialize the array with He kaiming Normal algorithm, and from a normal distribution collect samples within
N(0, sigma).
Args:
negative_slope (int, float, bool): Default: 0, used when nonlinearity is 'leaky_relu'.
mode (str): Default: fan_in.
nonlinearity (str): Default: leaky_relu.
Returns:
Array, assigned array.
"""
def __init__(self, negative_slope=0, mode='fan_in', nonlinearity='leaky_relu'):
super(HeNormal, self).__init__(negative_slope=negative_slope, mode=mode, nonlinearity=nonlinearity)
self.negative_slope = negative_slope
self.mode = mode
self.nonlinearity = nonlinearity
def _initialize(self, arr):
fan = _calculate_correct_fan(arr.shape, self.mode)
gain = _calculate_gain(self.nonlinearity, self.negative_slope)
std = gain / math.sqrt(fan)
data = np.random.normal(0, std, arr.shape)
_assignment(arr, data)
class Constant(Initializer):
"""
Initialize a constant.
@ -372,6 +479,7 @@ __all__ = [
'Normal',
'Uniform',
'HeUniform',
'HeNormal',
'XavierUniform',
'One',
'Zero',