add tensor dim(), numpy(), param copy

This commit is contained in:
changzherui 2022-10-18 22:47:47 +08:00
parent 10d6e6535e
commit 3d3254a990
10 changed files with 75 additions and 3 deletions

View File

@ -0,0 +1,6 @@
mindspore.Tensor.numpy
======================
.. py:method:: mindspore.Tensor.numpy()
参考 `Tensor.asnumpy() <https://www.mindspore.cn/docs/zh-CN/master/api_python/mindspore/Tensor/mindspore.Tensor.asnumpy.html>`_

View File

@ -37,6 +37,13 @@
返回:
Parameter返回克隆的新参数。
.. py:method:: copy
拷贝参数。
返回:
Parameter返回拷贝的新参数。
.. py:method:: comm_fusion
:property:

View File

@ -5,7 +5,7 @@ mindspore.nn.Rprop
弹性反向传播Rprop算法的实现。
请参阅论文 `A Direct Adaptive Method for Faster Backpropagation Learning <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.1417>`_
请参阅论文 `A Direct Adaptive Method for Faster Backpropagation Learning <https://ieeexplore.ieee.org/document/298623>`_
更新公式如下:

View File

@ -337,6 +337,7 @@ BuiltInTypeMap &GetMethodMap() {
{"div", std::string("div")}, // div()
{"equal", std::string("equal")}, // equal()
{"expm1", std::string("expm1")}, // expm1()
{"dim", prim::kPrimRank}, // P.Rank()
}},
{kObjectTypeRowTensorType,
{

View File

@ -34,7 +34,7 @@ class JitConfig:
**kwargs (dict): A dictionary of keyword arguments that the class needs.
Examples:
>>> from mindspore.common.jit_config import JitConfig
>>> from mindspore import JitConfig
>>>
>>> jitconfig = JitConfig(jit_level="O1")
>>> net = LeNet5()

View File

@ -331,6 +331,15 @@ class Parameter(Tensor_):
self.init_in_server = init_in_server
self.param_info.init_in_server = init_in_server
def copy(self):
"""
Copy the parameter.
Returns:
Parameter, a new parameter.
"""
return self.clone(init='same')
def set_param_fl(self, push_to_server=False, pull_from_server=False, requires_aggr=True):
"""
Set the way of parameter and server interaction.

View File

@ -616,6 +616,13 @@ class Tensor(Tensor_):
self._init_check()
return Tensor_.asnumpy(self)
def numpy(self):
"""
Refer to `Tensor.asnumpy() \
<https://www.mindspore.cn/docs/en/master/api_python/mindspore/Tensor/mindspore.Tensor.asnumpy.html>`_.
"""
return self.asnumpy()
def is_persistent_data(self):
"""
Check if size of tensor is huge, and need save data to persistent storage.

View File

@ -30,7 +30,7 @@ class Rprop(Optimizer):
Implements Resilient backpropagation.
Further information about this implementation can be found at `A Direct Adaptive Method for Faster Backpropagation
Learning: The RPROP Algorithm <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.1417>`_.
Learning: The RPROP Algorithm <https://ieeexplore.ieee.org/document/298623>`_.
The updating formulas are as follows:

View File

@ -96,3 +96,33 @@ def test_margin_ranking_loss_mean(mode):
output = loss(input1, input2, target)
expect_output = np.array(1.2293333)
assert np.allclose(output.asnumpy(), expect_output)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE])
def test_tensor_dim(mode):
"""
Feature: test tensor dim
Description: Verify the result of dim.
Expectation: expect correct forward result.
"""
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.tensor = Tensor([[1, 2, 3], [4, 5, 6]])
def construct(self, x):
return x.dim(), self.tensor.dim()
net = Net()
input11 = Tensor([[1, 2, 3], [4, 5, 6]])
input22 = Tensor([[[1, 2, 3], [4, 5, 6]]])
net(input11)
net(input22)

View File

@ -277,3 +277,15 @@ def test_parameter_init_from_tensor():
assert np.allclose(param.asnumpy(), np.array([1]))
tensor.asnumpy()[0] = 2
assert np.allclose(param.asnumpy(), np.array([2]))
def test_parameter_copy():
"""
Feature: Parameter copy.
Description: Parameter copy.
Expectation: The two Parameter's data are the same.
"""
tensor = Tensor(np.array([[1, 2, 3], [2, 3, 4]]))
param1 = Parameter(tensor, name="testParameter")
param2 = param1.copy()
np.all(param1.data.asnumpy() == param2.data.asnumpy())