!6259 add ut-test_example

Merge pull request !6259 from lijiaqi/add_uttest
This commit is contained in:
mindspore-ci-bot 2020-09-16 10:31:17 +08:00 committed by Gitee
commit 3bc3f8ed8e
3 changed files with 35 additions and 5 deletions

View File

@ -262,15 +262,20 @@ def polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_e
(1 - tmp\_epoch / tmp\_decay\_epoch)^{power} + end\_learning\_rate
Where:
.. math::
`tmp\_epoch = min(current\_epoch, decay\_epoch),
current\_epoch=floor(\frac{i}{step\_per\_epoch})`,
tmp\_epoch = min(current\_epoch, decay\_epoch)
.. math::
`tmp\_decay\_epoch = decay\_epoch`.
current\_epoch=floor(\frac{i}{step\_per\_epoch})
.. math::
tmp\_decay\_epoch = decay\_epoch
If `update_decay_epoch` is true, update the value of `tmp_decay_epoch` every epoch. The formula is:
.. math::
`tmp\_decay\_epoch = decay\_epoch * ceil(current\_epoch / decay\_epoch)`
tmp\_decay\_epoch = decay\_epoch * ceil(current\_epoch / decay\_epoch)
Args:
learning_rate (float): The initial value of learning rate.

View File

@ -194,7 +194,7 @@ class TrainOneStepWithLossScaleCell(TrainOneStepCell):
>>> net_with_loss = Net()
>>> optimizer = nn.Momentum(net_with_loss.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> manager = nn.DynamicLossScaleUpdateCell(loss_scale_value=2**12, scale_factor=2, scale_window=1000)
>>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_update_cell=manager)
>>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_sense=manager)
>>> train_network.set_train()
>>>
>>> inputs = Tensor(np.ones([16, 16]).astype(np.float32))

View File

@ -164,6 +164,31 @@ def test_loss_scale_fp16_lr_overflow():
assert output_1[0].asnumpy() == output_2[0].asnumpy()
assert output_1[1].asnumpy() == output_2[1].asnumpy() == True
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_loss_scale_fp16_lr_overflow_set_sense_scale():
inputs = Tensor(np.ones([16, 16]).astype(np.float32))
label = Tensor(np.zeros([16, 16]).astype(np.float32))
lr = Tensor(np.ones([1], np.float32) * 0.1)
net = NetFP16(16, 16)
net.set_train()
loss = MSELoss()
optimizer = Momentum(net.trainable_params(), learning_rate=lr, momentum=0.9)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepWithLossScaleCell(net_with_loss, optimizer,
scale_sense=Tensor(np.full((1), np.finfo(np.float32).max),
dtype=mstype.float32))
output_1 = train_network(inputs, label)
train_network.set_sense_scale(Tensor(np.full((1), np.finfo(np.float32).max), dtype=mstype.float32))
output_2 = train_network(inputs, label)
assert output_1[0].asnumpy() == output_2[0].asnumpy()
assert output_1[1].asnumpy() == output_2[1].asnumpy() == True
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training