|
|
|
@ -1,187 +1,187 @@
|
|
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
# ============================================================================
|
|
|
|
|
import os
|
|
|
|
|
import shutil
|
|
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
|
|
from mindspore import dataset as ds
|
|
|
|
|
from mindspore import nn, Tensor, context
|
|
|
|
|
from mindspore.nn.metrics import Accuracy
|
|
|
|
|
from mindspore.nn.optim import Momentum
|
|
|
|
|
from mindspore.dataset.transforms import c_transforms as C
|
|
|
|
|
from mindspore.dataset.vision import c_transforms as CV
|
|
|
|
|
from mindspore.dataset.vision import Inter
|
|
|
|
|
from mindspore.common import dtype as mstype
|
|
|
|
|
from mindspore.common.initializer import TruncatedNormal
|
|
|
|
|
from mindspore.train import Model
|
|
|
|
|
from mindspore.profiler import Profiler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
|
|
|
|
|
"""weight initial for conv layer"""
|
|
|
|
|
weight = weight_variable()
|
|
|
|
|
return nn.Conv2d(in_channels, out_channels,
|
|
|
|
|
kernel_size=kernel_size, stride=stride, padding=padding,
|
|
|
|
|
weight_init=weight, has_bias=False, pad_mode="valid")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fc_with_initialize(input_channels, out_channels):
|
|
|
|
|
"""weight initial for fc layer"""
|
|
|
|
|
weight = weight_variable()
|
|
|
|
|
bias = weight_variable()
|
|
|
|
|
return nn.Dense(input_channels, out_channels, weight, bias)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def weight_variable():
|
|
|
|
|
"""weight initial"""
|
|
|
|
|
return TruncatedNormal(0.02)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LeNet5(nn.Cell):
|
|
|
|
|
"""Define LeNet5 network."""
|
|
|
|
|
def __init__(self, num_class=10, channel=1):
|
|
|
|
|
super(LeNet5, self).__init__()
|
|
|
|
|
self.num_class = num_class
|
|
|
|
|
self.conv1 = conv(channel, 6, 5)
|
|
|
|
|
self.conv2 = conv(6, 16, 5)
|
|
|
|
|
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
|
|
|
|
|
self.fc2 = fc_with_initialize(120, 84)
|
|
|
|
|
self.fc3 = fc_with_initialize(84, self.num_class)
|
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
|
|
|
self.flatten = nn.Flatten()
|
|
|
|
|
self.channel = Tensor(channel)
|
|
|
|
|
|
|
|
|
|
def construct(self, data):
|
|
|
|
|
"""define construct."""
|
|
|
|
|
output = self.conv1(data)
|
|
|
|
|
output = self.relu(output)
|
|
|
|
|
output = self.max_pool2d(output)
|
|
|
|
|
output = self.conv2(output)
|
|
|
|
|
output = self.relu(output)
|
|
|
|
|
output = self.max_pool2d(output)
|
|
|
|
|
output = self.flatten(output)
|
|
|
|
|
output = self.fc1(output)
|
|
|
|
|
output = self.relu(output)
|
|
|
|
|
output = self.fc2(output)
|
|
|
|
|
output = self.relu(output)
|
|
|
|
|
output = self.fc3(output)
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1):
|
|
|
|
|
"""create dataset for train"""
|
|
|
|
|
# define dataset
|
|
|
|
|
mnist_ds = ds.MnistDataset(data_path, num_samples=batch_size*100)
|
|
|
|
|
|
|
|
|
|
resize_height, resize_width = 32, 32
|
|
|
|
|
rescale = 1.0 / 255.0
|
|
|
|
|
rescale_nml = 1 / 0.3081
|
|
|
|
|
shift_nml = -1 * 0.1307 / 0.3081
|
|
|
|
|
|
|
|
|
|
# define map operations
|
|
|
|
|
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
|
|
|
|
|
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
|
|
|
|
|
rescale_op = CV.Rescale(rescale, shift=0.0)
|
|
|
|
|
hwc2chw_op = CV.HWC2CHW()
|
|
|
|
|
type_cast_op = C.TypeCast(mstype.int32)
|
|
|
|
|
|
|
|
|
|
# apply map operations on images
|
|
|
|
|
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
|
|
|
|
|
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
|
|
|
|
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
|
|
|
|
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
|
|
|
|
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
|
|
|
|
|
|
|
|
|
# apply DatasetOps
|
|
|
|
|
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
|
|
|
|
|
mnist_ds = mnist_ds.repeat(repeat_size)
|
|
|
|
|
|
|
|
|
|
return mnist_ds
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def cleanup():
|
|
|
|
|
data_path = os.path.join(os.getcwd(), "data")
|
|
|
|
|
kernel_meta_path = os.path.join(os.getcwd(), "kernel_data")
|
|
|
|
|
cache_path = os.path.join(os.getcwd(), "__pycache__")
|
|
|
|
|
if os.path.exists(data_path):
|
|
|
|
|
shutil.rmtree(data_path)
|
|
|
|
|
if os.path.exists(kernel_meta_path):
|
|
|
|
|
shutil.rmtree(kernel_meta_path)
|
|
|
|
|
if os.path.exists(cache_path):
|
|
|
|
|
shutil.rmtree(cache_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestProfiler:
|
|
|
|
|
device_id = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0
|
|
|
|
|
mnist_path = '/home/workspace/mindspore_dataset/mnist'
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def teardown_class(cls):
|
|
|
|
|
""" Run after class end."""
|
|
|
|
|
cleanup()
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_gpu_profiler(self):
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
profiler = Profiler(output_path='data')
|
|
|
|
|
profiler_name = os.listdir(os.path.join(os.getcwd(), 'data'))[0]
|
|
|
|
|
self.profiler_path = os.path.join(os.getcwd(), f'data/{profiler_name}/')
|
|
|
|
|
ds_train = create_dataset(os.path.join(self.mnist_path, "train"))
|
|
|
|
|
if ds_train.get_dataset_size() == 0:
|
|
|
|
|
raise ValueError("Please check dataset size > 0 and batch_size <= dataset size")
|
|
|
|
|
|
|
|
|
|
lenet = LeNet5()
|
|
|
|
|
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
|
|
|
|
optim = Momentum(lenet.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
|
|
|
model = Model(lenet, loss_fn=loss, optimizer=optim, metrics={'acc': Accuracy()})
|
|
|
|
|
|
|
|
|
|
model.train(1, ds_train, dataset_sink_mode=True)
|
|
|
|
|
profiler.analyse()
|
|
|
|
|
|
|
|
|
|
self._check_gpu_profiling_file()
|
|
|
|
|
|
|
|
|
|
def _check_gpu_profiling_file(self):
|
|
|
|
|
op_detail_file = self.profiler_path + f'gpu_op_detail_info_{self.device_id}.csv'
|
|
|
|
|
op_type_file = self.profiler_path + f'gpu_op_type_info_{self.device_id}.csv'
|
|
|
|
|
activity_file = self.profiler_path + f'gpu_activity_data_{self.device_id}.csv'
|
|
|
|
|
timeline_file = self.profiler_path + f'gpu_timeline_display_{self.device_id}.json'
|
|
|
|
|
getnext_file = self.profiler_path + f'minddata_getnext_profiling_{self.device_id}.txt'
|
|
|
|
|
pipeline_file = self.profiler_path + f'minddata_pipeline_raw_{self.device_id}.csv'
|
|
|
|
|
|
|
|
|
|
assert os.path.exists(op_detail_file)
|
|
|
|
|
assert os.path.exists(op_type_file)
|
|
|
|
|
assert os.path.exists(activity_file)
|
|
|
|
|
assert os.path.exists(timeline_file)
|
|
|
|
|
assert os.path.exists(getnext_file)
|
|
|
|
|
assert os.path.exists(pipeline_file)
|
|
|
|
|
|
|
|
|
|
def _check_d_profiling_file(self):
|
|
|
|
|
aicore_file = self.profiler_path + f'aicore_intermediate_{self.device_id}_detail.csv'
|
|
|
|
|
step_trace_file = self.profiler_path + f'step_trace_raw_{self.device_id}_detail_time.csv'
|
|
|
|
|
timeline_file = self.profiler_path + f'ascend_timeline_display_{self.device_id}.json'
|
|
|
|
|
aicpu_file = self.profiler_path + f'aicpu_intermediate_{self.device_id}.csv'
|
|
|
|
|
minddata_pipeline_file = self.profiler_path + f'minddata_pipeline_raw_{self.device_id}.csv'
|
|
|
|
|
queue_profiling_file = self.profiler_path + f'device_queue_profiling_{self.device_id}.txt'
|
|
|
|
|
|
|
|
|
|
assert os.path.exists(aicore_file)
|
|
|
|
|
assert os.path.exists(step_trace_file)
|
|
|
|
|
assert os.path.exists(timeline_file)
|
|
|
|
|
assert os.path.exists(queue_profiling_file)
|
|
|
|
|
assert os.path.exists(minddata_pipeline_file)
|
|
|
|
|
assert os.path.exists(aicpu_file)
|
|
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
# ============================================================================
|
|
|
|
|
import os
|
|
|
|
|
import shutil
|
|
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
|
|
from mindspore import dataset as ds
|
|
|
|
|
from mindspore import nn, Tensor, context
|
|
|
|
|
from mindspore.nn.metrics import Accuracy
|
|
|
|
|
from mindspore.nn.optim import Momentum
|
|
|
|
|
from mindspore.dataset.transforms import c_transforms as C
|
|
|
|
|
from mindspore.dataset.vision import c_transforms as CV
|
|
|
|
|
from mindspore.dataset.vision import Inter
|
|
|
|
|
from mindspore.common import dtype as mstype
|
|
|
|
|
from mindspore.common.initializer import TruncatedNormal
|
|
|
|
|
from mindspore.train import Model
|
|
|
|
|
from mindspore.profiler import Profiler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
|
|
|
|
|
"""weight initial for conv layer"""
|
|
|
|
|
weight = weight_variable()
|
|
|
|
|
return nn.Conv2d(in_channels, out_channels,
|
|
|
|
|
kernel_size=kernel_size, stride=stride, padding=padding,
|
|
|
|
|
weight_init=weight, has_bias=False, pad_mode="valid")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fc_with_initialize(input_channels, out_channels):
|
|
|
|
|
"""weight initial for fc layer"""
|
|
|
|
|
weight = weight_variable()
|
|
|
|
|
bias = weight_variable()
|
|
|
|
|
return nn.Dense(input_channels, out_channels, weight, bias)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def weight_variable():
|
|
|
|
|
"""weight initial"""
|
|
|
|
|
return TruncatedNormal(0.02)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LeNet5(nn.Cell):
|
|
|
|
|
"""Define LeNet5 network."""
|
|
|
|
|
def __init__(self, num_class=10, channel=1):
|
|
|
|
|
super(LeNet5, self).__init__()
|
|
|
|
|
self.num_class = num_class
|
|
|
|
|
self.conv1 = conv(channel, 6, 5)
|
|
|
|
|
self.conv2 = conv(6, 16, 5)
|
|
|
|
|
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
|
|
|
|
|
self.fc2 = fc_with_initialize(120, 84)
|
|
|
|
|
self.fc3 = fc_with_initialize(84, self.num_class)
|
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
|
|
|
self.flatten = nn.Flatten()
|
|
|
|
|
self.channel = Tensor(channel)
|
|
|
|
|
|
|
|
|
|
def construct(self, data):
|
|
|
|
|
"""define construct."""
|
|
|
|
|
output = self.conv1(data)
|
|
|
|
|
output = self.relu(output)
|
|
|
|
|
output = self.max_pool2d(output)
|
|
|
|
|
output = self.conv2(output)
|
|
|
|
|
output = self.relu(output)
|
|
|
|
|
output = self.max_pool2d(output)
|
|
|
|
|
output = self.flatten(output)
|
|
|
|
|
output = self.fc1(output)
|
|
|
|
|
output = self.relu(output)
|
|
|
|
|
output = self.fc2(output)
|
|
|
|
|
output = self.relu(output)
|
|
|
|
|
output = self.fc3(output)
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1):
|
|
|
|
|
"""create dataset for train"""
|
|
|
|
|
# define dataset
|
|
|
|
|
mnist_ds = ds.MnistDataset(data_path, num_samples=batch_size*100)
|
|
|
|
|
|
|
|
|
|
resize_height, resize_width = 32, 32
|
|
|
|
|
rescale = 1.0 / 255.0
|
|
|
|
|
rescale_nml = 1 / 0.3081
|
|
|
|
|
shift_nml = -1 * 0.1307 / 0.3081
|
|
|
|
|
|
|
|
|
|
# define map operations
|
|
|
|
|
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
|
|
|
|
|
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
|
|
|
|
|
rescale_op = CV.Rescale(rescale, shift=0.0)
|
|
|
|
|
hwc2chw_op = CV.HWC2CHW()
|
|
|
|
|
type_cast_op = C.TypeCast(mstype.int32)
|
|
|
|
|
|
|
|
|
|
# apply map operations on images
|
|
|
|
|
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
|
|
|
|
|
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
|
|
|
|
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
|
|
|
|
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
|
|
|
|
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
|
|
|
|
|
|
|
|
|
# apply DatasetOps
|
|
|
|
|
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
|
|
|
|
|
mnist_ds = mnist_ds.repeat(repeat_size)
|
|
|
|
|
|
|
|
|
|
return mnist_ds
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def cleanup():
|
|
|
|
|
data_path = os.path.join(os.getcwd(), "data")
|
|
|
|
|
kernel_meta_path = os.path.join(os.getcwd(), "kernel_data")
|
|
|
|
|
cache_path = os.path.join(os.getcwd(), "__pycache__")
|
|
|
|
|
if os.path.exists(data_path):
|
|
|
|
|
shutil.rmtree(data_path)
|
|
|
|
|
if os.path.exists(kernel_meta_path):
|
|
|
|
|
shutil.rmtree(kernel_meta_path)
|
|
|
|
|
if os.path.exists(cache_path):
|
|
|
|
|
shutil.rmtree(cache_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestProfiler:
|
|
|
|
|
device_id = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0
|
|
|
|
|
mnist_path = '/home/workspace/mindspore_dataset/mnist'
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def teardown_class(cls):
|
|
|
|
|
""" Run after class end."""
|
|
|
|
|
cleanup()
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level1
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_gpu_profiler(self):
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
profiler = Profiler(output_path='data')
|
|
|
|
|
profiler_name = os.listdir(os.path.join(os.getcwd(), 'data'))[0]
|
|
|
|
|
self.profiler_path = os.path.join(os.getcwd(), f'data/{profiler_name}/')
|
|
|
|
|
ds_train = create_dataset(os.path.join(self.mnist_path, "train"))
|
|
|
|
|
if ds_train.get_dataset_size() == 0:
|
|
|
|
|
raise ValueError("Please check dataset size > 0 and batch_size <= dataset size")
|
|
|
|
|
|
|
|
|
|
lenet = LeNet5()
|
|
|
|
|
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
|
|
|
|
optim = Momentum(lenet.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
|
|
|
model = Model(lenet, loss_fn=loss, optimizer=optim, metrics={'acc': Accuracy()})
|
|
|
|
|
|
|
|
|
|
model.train(1, ds_train, dataset_sink_mode=True)
|
|
|
|
|
profiler.analyse()
|
|
|
|
|
|
|
|
|
|
self._check_gpu_profiling_file()
|
|
|
|
|
|
|
|
|
|
def _check_gpu_profiling_file(self):
|
|
|
|
|
op_detail_file = self.profiler_path + f'gpu_op_detail_info_{self.device_id}.csv'
|
|
|
|
|
op_type_file = self.profiler_path + f'gpu_op_type_info_{self.device_id}.csv'
|
|
|
|
|
activity_file = self.profiler_path + f'gpu_activity_data_{self.device_id}.csv'
|
|
|
|
|
timeline_file = self.profiler_path + f'gpu_timeline_display_{self.device_id}.json'
|
|
|
|
|
getnext_file = self.profiler_path + f'minddata_getnext_profiling_{self.device_id}.txt'
|
|
|
|
|
pipeline_file = self.profiler_path + f'minddata_pipeline_raw_{self.device_id}.csv'
|
|
|
|
|
|
|
|
|
|
assert os.path.exists(op_detail_file)
|
|
|
|
|
assert os.path.exists(op_type_file)
|
|
|
|
|
assert os.path.exists(activity_file)
|
|
|
|
|
assert os.path.exists(timeline_file)
|
|
|
|
|
assert os.path.exists(getnext_file)
|
|
|
|
|
assert os.path.exists(pipeline_file)
|
|
|
|
|
|
|
|
|
|
def _check_d_profiling_file(self):
|
|
|
|
|
aicore_file = self.profiler_path + f'aicore_intermediate_{self.device_id}_detail.csv'
|
|
|
|
|
step_trace_file = self.profiler_path + f'step_trace_raw_{self.device_id}_detail_time.csv'
|
|
|
|
|
timeline_file = self.profiler_path + f'ascend_timeline_display_{self.device_id}.json'
|
|
|
|
|
aicpu_file = self.profiler_path + f'aicpu_intermediate_{self.device_id}.csv'
|
|
|
|
|
minddata_pipeline_file = self.profiler_path + f'minddata_pipeline_raw_{self.device_id}.csv'
|
|
|
|
|
queue_profiling_file = self.profiler_path + f'device_queue_profiling_{self.device_id}.txt'
|
|
|
|
|
|
|
|
|
|
assert os.path.exists(aicore_file)
|
|
|
|
|
assert os.path.exists(step_trace_file)
|
|
|
|
|
assert os.path.exists(timeline_file)
|
|
|
|
|
assert os.path.exists(queue_profiling_file)
|
|
|
|
|
assert os.path.exists(minddata_pipeline_file)
|
|
|
|
|
assert os.path.exists(aicpu_file)
|
|
|
|
|