check install

This commit is contained in:
fenglovebei 2021-05-22 15:11:22 +08:00 committed by wangfengwfwf
commit 3a368f9608
7 changed files with 284 additions and 193 deletions

View File

@ -326,6 +326,7 @@ install(
${CMAKE_SOURCE_DIR}/mindspore/profiler
${CMAKE_SOURCE_DIR}/mindspore/explainer
${CMAKE_SOURCE_DIR}/mindspore/compression
${CMAKE_SOURCE_DIR}/mindspore/run_check
DESTINATION ${INSTALL_PY_DIR}
COMPONENT mindspore
)

View File

@ -14,7 +14,7 @@
# ============================================================================
""".. MindSpore package."""
from ._check_version import check_version_and_env_config
from .run_check import run_check
from . import common, train, log
from .common import *
from .ops import _op_impl
@ -22,8 +22,10 @@ from .train import *
from .log import *
from .version import __version__
all = ["run_check"]
__all__ = []
__all__.extend(__version__)
__all__.extend(run_check.__all__)
__all__.extend(common.__all__)
__all__.extend(train.__all__)
__all__.extend(log.__all__)

View File

@ -0,0 +1,20 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""".. run_check package."""
from .run_check import run_check
from ._check_version import check_version_and_env_config
__all__ = ['run_check']

View File

@ -20,9 +20,9 @@ from pathlib import Path
from abc import abstractmethod, ABCMeta
import numpy as np
from packaging import version
from . import log as logger
from .version import __version__
from .default_config import __package_name__
from mindspore import log as logger
from ..version import __version__
from ..default_config import __package_name__
class EnvChecker(metaclass=ABCMeta):
@ -282,7 +282,8 @@ class AscendEnvChecker(EnvChecker):
input_args = ["--mindspore_version=" + __version__]
for v in self.version:
input_args.append("--supported_version=" + v)
deps_version_checker = os.path.join(os.path.split(os.path.realpath(__file__))[0], "_check_deps_version.py")
deps_version_checker = os.path.join(os.path.split(os.path.realpath(__file__))[0],
"_check_deps_version.py")
call_cmd = [sys.executable, deps_version_checker] + input_args
try:
process = subprocess.run(call_cmd, timeout=3, text=True, capture_output=True, check=False)
@ -390,7 +391,7 @@ def check_version_and_env_config():
try:
# check version of ascend site or cuda
env_checker.check_version()
from . import _c_expression
from .. import _c_expression
env_checker.set_env()
except ImportError as e:
env_checker.check_env(e)

View File

@ -0,0 +1,67 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
mindspore.run_check
The goal is to provide a convenient API to check if the installation is successful or failed.
"""
import numpy as np
from importlib import import_module
try:
ms = import_module("mindspore")
except ModuleNotFoundError:
ms = None
def _check_mul():
"""
Define the mul method.
"""
input_x = ms.Tensor(np.array([1.0, 2.0, 3.0]), ms.float32)
input_y = ms.Tensor(np.array([4.0, 5.0, 6.0]), ms.float32)
mul = ms.ops.Mul()
mul(input_x, input_y)
print(f"The result of multiplication calculation is correct, MindSpore has been installed successfully!")
def _check_install():
"""
Define the check install method.
Print MindSpore version.
"""
print(f"MindSpore version:", ms.__version__)
def run_check():
"""
Provide a convenient API to check if the installation is successful or failed.
Examples:
>>> import mindspore
>>> mindspore.run_check()
MindSpore version: xxx
The result of multiplication calculation is correct, MindSpore has been installed successfully!
"""
try:
_check_install()
_check_mul()
# pylint: disable=broad-except
except Exception as e:
print("MindSpore installation failed!")
print("CheckFailed: ", str(e))

View File

@ -1,187 +1,187 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import shutil
import pytest
from mindspore import dataset as ds
from mindspore import nn, Tensor, context
from mindspore.nn.metrics import Accuracy
from mindspore.nn.optim import Momentum
from mindspore.dataset.transforms import c_transforms as C
from mindspore.dataset.vision import c_transforms as CV
from mindspore.dataset.vision import Inter
from mindspore.common import dtype as mstype
from mindspore.common.initializer import TruncatedNormal
from mindspore.train import Model
from mindspore.profiler import Profiler
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
"""weight initial for conv layer"""
weight = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
weight_init=weight, has_bias=False, pad_mode="valid")
def fc_with_initialize(input_channels, out_channels):
"""weight initial for fc layer"""
weight = weight_variable()
bias = weight_variable()
return nn.Dense(input_channels, out_channels, weight, bias)
def weight_variable():
"""weight initial"""
return TruncatedNormal(0.02)
class LeNet5(nn.Cell):
"""Define LeNet5 network."""
def __init__(self, num_class=10, channel=1):
super(LeNet5, self).__init__()
self.num_class = num_class
self.conv1 = conv(channel, 6, 5)
self.conv2 = conv(6, 16, 5)
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
self.fc2 = fc_with_initialize(120, 84)
self.fc3 = fc_with_initialize(84, self.num_class)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
self.channel = Tensor(channel)
def construct(self, data):
"""define construct."""
output = self.conv1(data)
output = self.relu(output)
output = self.max_pool2d(output)
output = self.conv2(output)
output = self.relu(output)
output = self.max_pool2d(output)
output = self.flatten(output)
output = self.fc1(output)
output = self.relu(output)
output = self.fc2(output)
output = self.relu(output)
output = self.fc3(output)
return output
def create_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1):
"""create dataset for train"""
# define dataset
mnist_ds = ds.MnistDataset(data_path, num_samples=batch_size*100)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081
# define map operations
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift=0.0)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32)
# apply map operations on images
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
# apply DatasetOps
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size)
return mnist_ds
def cleanup():
data_path = os.path.join(os.getcwd(), "data")
kernel_meta_path = os.path.join(os.getcwd(), "kernel_data")
cache_path = os.path.join(os.getcwd(), "__pycache__")
if os.path.exists(data_path):
shutil.rmtree(data_path)
if os.path.exists(kernel_meta_path):
shutil.rmtree(kernel_meta_path)
if os.path.exists(cache_path):
shutil.rmtree(cache_path)
class TestProfiler:
device_id = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0
mnist_path = '/home/workspace/mindspore_dataset/mnist'
@classmethod
def teardown_class(cls):
""" Run after class end."""
cleanup()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gpu_profiler(self):
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
profiler = Profiler(output_path='data')
profiler_name = os.listdir(os.path.join(os.getcwd(), 'data'))[0]
self.profiler_path = os.path.join(os.getcwd(), f'data/{profiler_name}/')
ds_train = create_dataset(os.path.join(self.mnist_path, "train"))
if ds_train.get_dataset_size() == 0:
raise ValueError("Please check dataset size > 0 and batch_size <= dataset size")
lenet = LeNet5()
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
optim = Momentum(lenet.trainable_params(), learning_rate=0.1, momentum=0.9)
model = Model(lenet, loss_fn=loss, optimizer=optim, metrics={'acc': Accuracy()})
model.train(1, ds_train, dataset_sink_mode=True)
profiler.analyse()
self._check_gpu_profiling_file()
def _check_gpu_profiling_file(self):
op_detail_file = self.profiler_path + f'gpu_op_detail_info_{self.device_id}.csv'
op_type_file = self.profiler_path + f'gpu_op_type_info_{self.device_id}.csv'
activity_file = self.profiler_path + f'gpu_activity_data_{self.device_id}.csv'
timeline_file = self.profiler_path + f'gpu_timeline_display_{self.device_id}.json'
getnext_file = self.profiler_path + f'minddata_getnext_profiling_{self.device_id}.txt'
pipeline_file = self.profiler_path + f'minddata_pipeline_raw_{self.device_id}.csv'
assert os.path.exists(op_detail_file)
assert os.path.exists(op_type_file)
assert os.path.exists(activity_file)
assert os.path.exists(timeline_file)
assert os.path.exists(getnext_file)
assert os.path.exists(pipeline_file)
def _check_d_profiling_file(self):
aicore_file = self.profiler_path + f'aicore_intermediate_{self.device_id}_detail.csv'
step_trace_file = self.profiler_path + f'step_trace_raw_{self.device_id}_detail_time.csv'
timeline_file = self.profiler_path + f'ascend_timeline_display_{self.device_id}.json'
aicpu_file = self.profiler_path + f'aicpu_intermediate_{self.device_id}.csv'
minddata_pipeline_file = self.profiler_path + f'minddata_pipeline_raw_{self.device_id}.csv'
queue_profiling_file = self.profiler_path + f'device_queue_profiling_{self.device_id}.txt'
assert os.path.exists(aicore_file)
assert os.path.exists(step_trace_file)
assert os.path.exists(timeline_file)
assert os.path.exists(queue_profiling_file)
assert os.path.exists(minddata_pipeline_file)
assert os.path.exists(aicpu_file)
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import shutil
import pytest
from mindspore import dataset as ds
from mindspore import nn, Tensor, context
from mindspore.nn.metrics import Accuracy
from mindspore.nn.optim import Momentum
from mindspore.dataset.transforms import c_transforms as C
from mindspore.dataset.vision import c_transforms as CV
from mindspore.dataset.vision import Inter
from mindspore.common import dtype as mstype
from mindspore.common.initializer import TruncatedNormal
from mindspore.train import Model
from mindspore.profiler import Profiler
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
"""weight initial for conv layer"""
weight = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
weight_init=weight, has_bias=False, pad_mode="valid")
def fc_with_initialize(input_channels, out_channels):
"""weight initial for fc layer"""
weight = weight_variable()
bias = weight_variable()
return nn.Dense(input_channels, out_channels, weight, bias)
def weight_variable():
"""weight initial"""
return TruncatedNormal(0.02)
class LeNet5(nn.Cell):
"""Define LeNet5 network."""
def __init__(self, num_class=10, channel=1):
super(LeNet5, self).__init__()
self.num_class = num_class
self.conv1 = conv(channel, 6, 5)
self.conv2 = conv(6, 16, 5)
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
self.fc2 = fc_with_initialize(120, 84)
self.fc3 = fc_with_initialize(84, self.num_class)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
self.channel = Tensor(channel)
def construct(self, data):
"""define construct."""
output = self.conv1(data)
output = self.relu(output)
output = self.max_pool2d(output)
output = self.conv2(output)
output = self.relu(output)
output = self.max_pool2d(output)
output = self.flatten(output)
output = self.fc1(output)
output = self.relu(output)
output = self.fc2(output)
output = self.relu(output)
output = self.fc3(output)
return output
def create_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1):
"""create dataset for train"""
# define dataset
mnist_ds = ds.MnistDataset(data_path, num_samples=batch_size*100)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081
# define map operations
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift=0.0)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32)
# apply map operations on images
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
# apply DatasetOps
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size)
return mnist_ds
def cleanup():
data_path = os.path.join(os.getcwd(), "data")
kernel_meta_path = os.path.join(os.getcwd(), "kernel_data")
cache_path = os.path.join(os.getcwd(), "__pycache__")
if os.path.exists(data_path):
shutil.rmtree(data_path)
if os.path.exists(kernel_meta_path):
shutil.rmtree(kernel_meta_path)
if os.path.exists(cache_path):
shutil.rmtree(cache_path)
class TestProfiler:
device_id = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0
mnist_path = '/home/workspace/mindspore_dataset/mnist'
@classmethod
def teardown_class(cls):
""" Run after class end."""
cleanup()
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gpu_profiler(self):
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
profiler = Profiler(output_path='data')
profiler_name = os.listdir(os.path.join(os.getcwd(), 'data'))[0]
self.profiler_path = os.path.join(os.getcwd(), f'data/{profiler_name}/')
ds_train = create_dataset(os.path.join(self.mnist_path, "train"))
if ds_train.get_dataset_size() == 0:
raise ValueError("Please check dataset size > 0 and batch_size <= dataset size")
lenet = LeNet5()
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
optim = Momentum(lenet.trainable_params(), learning_rate=0.1, momentum=0.9)
model = Model(lenet, loss_fn=loss, optimizer=optim, metrics={'acc': Accuracy()})
model.train(1, ds_train, dataset_sink_mode=True)
profiler.analyse()
self._check_gpu_profiling_file()
def _check_gpu_profiling_file(self):
op_detail_file = self.profiler_path + f'gpu_op_detail_info_{self.device_id}.csv'
op_type_file = self.profiler_path + f'gpu_op_type_info_{self.device_id}.csv'
activity_file = self.profiler_path + f'gpu_activity_data_{self.device_id}.csv'
timeline_file = self.profiler_path + f'gpu_timeline_display_{self.device_id}.json'
getnext_file = self.profiler_path + f'minddata_getnext_profiling_{self.device_id}.txt'
pipeline_file = self.profiler_path + f'minddata_pipeline_raw_{self.device_id}.csv'
assert os.path.exists(op_detail_file)
assert os.path.exists(op_type_file)
assert os.path.exists(activity_file)
assert os.path.exists(timeline_file)
assert os.path.exists(getnext_file)
assert os.path.exists(pipeline_file)
def _check_d_profiling_file(self):
aicore_file = self.profiler_path + f'aicore_intermediate_{self.device_id}_detail.csv'
step_trace_file = self.profiler_path + f'step_trace_raw_{self.device_id}_detail_time.csv'
timeline_file = self.profiler_path + f'ascend_timeline_display_{self.device_id}.json'
aicpu_file = self.profiler_path + f'aicpu_intermediate_{self.device_id}.csv'
minddata_pipeline_file = self.profiler_path + f'minddata_pipeline_raw_{self.device_id}.csv'
queue_profiling_file = self.profiler_path + f'device_queue_profiling_{self.device_id}.txt'
assert os.path.exists(aicore_file)
assert os.path.exists(step_trace_file)
assert os.path.exists(timeline_file)
assert os.path.exists(queue_profiling_file)
assert os.path.exists(minddata_pipeline_file)
assert os.path.exists(aicpu_file)