forked from mindspore-Ecosystem/mindspore
!28519 optimize code docs about 6 issue items
Merge pull request !28519 from chentangyu/code_docs_cty_master_I4OYDQ_I4OYED_I4OYEG_I4OYEQ_I4OYF5_I4OOHO
This commit is contained in:
commit
37cd18b6cf
|
@ -1692,20 +1692,20 @@ class Neg(PrimitiveWithInfer):
|
|||
|
||||
class InplaceAdd(PrimitiveWithInfer):
|
||||
"""
|
||||
Adds v into specified rows of x. Computes y = x; y[i,] += v.
|
||||
Adds `v` into specified rows of `x`. Computes `y` = `x`; y[i,] += `v`.
|
||||
|
||||
Args:
|
||||
indices (Union[int, tuple]): Indices into the left-most dimension of x, and determines which rows of x
|
||||
to add with v. It is an integer or a tuple, whose value is in [0, the first dimension size of x).
|
||||
indices (Union[int, tuple]): Indices into the left-most dimension of `x`, and determines which rows of `x`
|
||||
to add with `v`. It is an integer or a tuple, whose value is in [0, the first dimension size of `x`).
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - The first input is a tensor whose data type is float16, float32 or int32.
|
||||
:math:`(N,*)` where :math:`*` means, any number of additional dimensions, its rank should be less than 8.
|
||||
- **input_v** (Tensor) - The second input is a tensor that has the same dimension sizes as x except
|
||||
- **input_v** (Tensor) - The second input is a tensor that has the same dimension sizes as `x` except
|
||||
the first dimension, which must be the same as indices' size. It has the same data type with `x`.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same shape and dtype as x.
|
||||
Tensor, has the same shape and dtype as `x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `indices` is neither int nor tuple.
|
||||
|
@ -1761,20 +1761,20 @@ class InplaceAdd(PrimitiveWithInfer):
|
|||
|
||||
class InplaceSub(PrimitiveWithInfer):
|
||||
"""
|
||||
Subtracts v into specified rows of x. Computes y = x; y[i, :] -= v.
|
||||
Subtracts `v` into specified rows of `x`. Computes `y` = `x`; y[i,] -= `v.
|
||||
|
||||
Args:
|
||||
indices (Union[int, tuple]): Indices into the left-most dimension of x, and determines which rows of x
|
||||
to subtract with v. It is an int or tuple, whose value is in [0, the first dimension size of x).
|
||||
indices (Union[int, tuple]): Indices into the left-most dimension of `x`, and determines which rows of `x`
|
||||
to subtract with `v`. It is an int or tuple, whose value is in [0, the first dimension size of `x`).
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - The first input is a tensor whose data type is float16, float32 or int32.
|
||||
:math:`(N,*)` where :math:`*` means, any number of additional dimensions, its rank should be less than 8.
|
||||
- **input_v** (Tensor) - The second input is a tensor who has the same dimension sizes as x except
|
||||
- **input_v** (Tensor) - The second input is a tensor who has the same dimension sizes as `x` except
|
||||
the first dimension, which must be the same as indices' size. It has the same data type with `x`.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same shape and dtype as x.
|
||||
Tensor, has the same shape and dtype as `x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `indices` is neither int nor tuple.
|
||||
|
@ -3475,11 +3475,11 @@ class ApproximateEqual(_LogicBinaryOp):
|
|||
& \text{ if } \left | x_{i} - y_{i} \right | \ge \text{tolerance},\ \ False
|
||||
\end{cases}
|
||||
|
||||
where :math:`\text{tolerance}` indicates Acceptable maximum tolerance.
|
||||
where `tolerance` indicates Acceptable maximum tolerance.
|
||||
|
||||
Inputs of `x` and `y` comply with the implicit type conversion rules to make the data types consistent.
|
||||
If they have different data types, the lower priority data type will be converted to
|
||||
the relatively highest priority data type.
|
||||
If they have different data types, the lower precision data type will be converted to
|
||||
the relatively highest precision data type.
|
||||
|
||||
Args:
|
||||
tolerance (float): The maximum deviation that two elements can be considered equal. Default: 1e-05.
|
||||
|
@ -3487,15 +3487,15 @@ class ApproximateEqual(_LogicBinaryOp):
|
|||
Inputs:
|
||||
- **x** (Tensor) - A tensor. Must be one of the following types: float32, float16.
|
||||
:math:`(N,*)` where :math:`*` means, any number of additional dimensions, its rank should be less than 8.
|
||||
- **y** (Tensor) - A tensor of the same type and shape as 'x'.
|
||||
- **y** (Tensor) - A tensor of the same type and shape as `x`.
|
||||
|
||||
Outputs:
|
||||
Tensor, the shape is the same as the shape of 'x', and the data type is bool.
|
||||
Tensor, the shape is the same as the shape of `x`, and the data type is bool.
|
||||
|
||||
Raises:
|
||||
TypeError: If `tolerance` is not a float.
|
||||
RuntimeError: If the data type of `x`, `y` conversion of Parameter is required
|
||||
when data type conversion of Parameter is not supported.
|
||||
RuntimeError: If the data type of `x`, `y` conversion of Parameter is given
|
||||
but data type conversion of Parameter is not supported.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
|
@ -3964,8 +3964,8 @@ class IsNan(Primitive):
|
|||
.. math::
|
||||
|
||||
out_i = \begin{cases}
|
||||
& \text{ if } x_{i} = \text{Nan},\ \ True \\
|
||||
& \text{ if } x_{i} \ne \text{Nan},\ \ False
|
||||
& \ True,\ \text{ if } x_{i} = \text{Nan} \\
|
||||
& \ False,\ \text{ if } x_{i} \ne \text{Nan}
|
||||
\end{cases}
|
||||
|
||||
where :math:`Nan` means not a number.
|
||||
|
@ -5094,11 +5094,11 @@ class BesselI1e(Primitive):
|
|||
|
||||
class Inv(Primitive):
|
||||
r"""
|
||||
Computes Inv(Reciprocal) of input tensor element-wise.
|
||||
Computes Reciprocal of input tensor element-wise.
|
||||
|
||||
.. math::
|
||||
|
||||
out_i = out_i = \frac{1}{x_{i} }
|
||||
out_i = \frac{1}{x_{i} }
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - The shape of tensor is
|
||||
|
@ -5358,7 +5358,8 @@ class IndexAdd(Primitive):
|
|||
... def __init__(self):
|
||||
... super(Net, self).__init__()
|
||||
... self.index_add = ops.IndexAdd(axis=1)
|
||||
... self.x = Parameter(Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32))
|
||||
... self.x = Parameter(Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32),
|
||||
... name="name_x")
|
||||
... self.indices = Tensor(np.array([0, 2]), mindspore.int32)
|
||||
...
|
||||
... def construct(self, y):
|
||||
|
|
Loading…
Reference in New Issue