forked from mindspore-Ecosystem/mindspore
!8162 gpu support dynamic shape
From: @wilfchen Reviewed-by: @limingqi107,@cristoval Signed-off-by: @cristoval
This commit is contained in:
commit
36e69f6ef9
|
@ -35,21 +35,7 @@ const std::map<std::string, cudnnReduceTensorOp_t> kReduceTypeMap = {
|
|||
template <typename T>
|
||||
class ArrayReduceGpuKernel : public GpuKernel {
|
||||
public:
|
||||
ArrayReduceGpuKernel()
|
||||
: cudnn_handle_(nullptr),
|
||||
reduce_tensor_op_(CUDNN_REDUCE_TENSOR_ADD),
|
||||
data_type_(CUDNN_DATA_FLOAT),
|
||||
nan_prop_(CUDNN_NOT_PROPAGATE_NAN),
|
||||
reduce_indices_(CUDNN_REDUCE_TENSOR_NO_INDICES),
|
||||
reduce_tensor_descriptor_(nullptr),
|
||||
inputA_descriptor_(nullptr),
|
||||
outputC_descriptor_(nullptr),
|
||||
keep_dims_(false),
|
||||
all_match_(false),
|
||||
is_null_input_(false),
|
||||
input_size_(0),
|
||||
output_size_(0),
|
||||
workspace_size_(0) {}
|
||||
ArrayReduceGpuKernel() { ResetResource(); }
|
||||
~ArrayReduceGpuKernel() override { DestroyResource(); }
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
|
@ -94,7 +80,7 @@ class ArrayReduceGpuKernel : public GpuKernel {
|
|||
MS_LOG(ERROR) << "Output number is " << output_num << ", but reduce op needs 1 output.";
|
||||
return false;
|
||||
}
|
||||
int input_dim_length = SizeToInt(AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0).size());
|
||||
int input_dim_length = SizeToInt(AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0).size());
|
||||
|
||||
if (AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("axis")->isa<ValueTuple>() ||
|
||||
AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("axis")->isa<ValueList>()) {
|
||||
|
@ -117,8 +103,8 @@ class ArrayReduceGpuKernel : public GpuKernel {
|
|||
}
|
||||
keep_dims_ = GetAttr<bool>(kernel_node, "keep_dims");
|
||||
|
||||
auto inputA_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto outputC_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
auto inputA_shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
auto outputC_shape = AnfAlgo::GetOutputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
is_null_input_ = CHECK_NULL_INPUT(inputA_shape);
|
||||
if (is_null_input_) {
|
||||
MS_LOG(WARNING) << "ArrayReduceGpuKernel input is null";
|
||||
|
@ -132,6 +118,35 @@ class ArrayReduceGpuKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void ResetResource() noexcept override {
|
||||
cudnn_handle_ = nullptr;
|
||||
reduce_tensor_op_ = CUDNN_REDUCE_TENSOR_ADD;
|
||||
data_type_ = CUDNN_DATA_FLOAT;
|
||||
nan_prop_ = CUDNN_NOT_PROPAGATE_NAN;
|
||||
reduce_indices_ = CUDNN_REDUCE_TENSOR_NO_INDICES;
|
||||
reduce_tensor_descriptor_ = nullptr;
|
||||
inputA_descriptor_ = nullptr;
|
||||
outputC_descriptor_ = nullptr;
|
||||
keep_dims_ = false;
|
||||
all_match_ = false;
|
||||
is_null_input_ = false;
|
||||
input_size_ = 0;
|
||||
output_size_ = 0;
|
||||
workspace_size_ = 0;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyReduceTensorDescriptor(reduce_tensor_descriptor_),
|
||||
"cudnnDestroyReduceTensorDescriptor failed.");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(inputA_descriptor_),
|
||||
"cudnnDestroyTensorDescriptor failed.");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(outputC_descriptor_),
|
||||
"cudnnDestroyTensorDescriptor failed.");
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -160,14 +175,6 @@ class ArrayReduceGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyReduceTensorDescriptor(reduce_tensor_descriptor_),
|
||||
"cudnnDestroyReduceTensorDescriptor failed.");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(inputA_descriptor_),
|
||||
"cudnnDestroyTensorDescriptor failed.");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(outputC_descriptor_),
|
||||
"cudnnDestroyTensorDescriptor failed.");
|
||||
}
|
||||
void InferArrayReduceType(const CNodePtr &kernel_node) {
|
||||
std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node);
|
||||
auto iter = kReduceTypeMap.find(kernel_name);
|
||||
|
|
|
@ -26,5 +26,14 @@ MS_REG_GPU_KERNEL_TWO(
|
|||
GatherV2,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat16),
|
||||
GatherV2GpuFwdKernel, half, int)
|
||||
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
SparseGatherV2,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat32),
|
||||
GatherV2GpuFwdKernel, float, int)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
SparseGatherV2,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat16),
|
||||
GatherV2GpuFwdKernel, half, int)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -27,7 +27,7 @@ namespace kernel {
|
|||
template <typename T, typename S>
|
||||
class GatherV2GpuFwdKernel : public GpuKernel {
|
||||
public:
|
||||
GatherV2GpuFwdKernel() : axis_(0), handle_(nullptr) {}
|
||||
GatherV2GpuFwdKernel() { ResetResource(); }
|
||||
~GatherV2GpuFwdKernel() = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
|
@ -52,9 +52,9 @@ class GatherV2GpuFwdKernel : public GpuKernel {
|
|||
if (input_num != 2) {
|
||||
MS_LOG(EXCEPTION) << "Argument number is " << input_num << ", but GatherGpuV2FwdKernel needs 2.";
|
||||
}
|
||||
input_shapes_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
indices_shapes_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
output_shapes_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
input_shapes_ = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
indices_shapes_ = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 1);
|
||||
output_shapes_ = AnfAlgo::GetOutputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
|
||||
axis_ = static_cast<int>(GetAttr<int64_t>(kernel_node, "axis"));
|
||||
if (axis_ < 0) {
|
||||
|
@ -65,9 +65,18 @@ class GatherV2GpuFwdKernel : public GpuKernel {
|
|||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
void ResetResource() noexcept override {
|
||||
input_shapes_.clear();
|
||||
indices_shapes_.clear();
|
||||
output_shapes_.clear();
|
||||
std::fill(dims_, dims_ + 3, 0);
|
||||
axis_ = 0;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override { handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle(); }
|
||||
void InitSizeLists() override {
|
||||
size_t size = GetSize(input_shapes_);
|
||||
input_size_list_.push_back(size);
|
||||
|
@ -118,7 +127,6 @@ class GatherV2GpuFwdKernel : public GpuKernel {
|
|||
|
||||
size_t dims_[3] = {};
|
||||
int axis_;
|
||||
cudnnHandle_t handle_;
|
||||
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
|
|
|
@ -28,14 +28,7 @@ namespace kernel {
|
|||
template <typename T>
|
||||
class SplitGpuFwdKernel : public GpuKernel {
|
||||
public:
|
||||
SplitGpuFwdKernel()
|
||||
: axis_(0),
|
||||
output_num_(1),
|
||||
input_size_(1),
|
||||
axis_step_(1),
|
||||
all_size_before_axis_(1),
|
||||
all_size_axis_(1),
|
||||
outputs_host_(nullptr) {}
|
||||
SplitGpuFwdKernel() { ResetResource(); }
|
||||
~SplitGpuFwdKernel() override = default;
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
|
@ -59,7 +52,7 @@ class SplitGpuFwdKernel : public GpuKernel {
|
|||
bool Init(const CNodePtr &kernel_node) override {
|
||||
axis_ = static_cast<int64_t>(GetAttr<int64_t>(kernel_node, "axis"));
|
||||
if (axis_ < 0) {
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto input_shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
axis_ += SizeToInt(input_shape.size());
|
||||
}
|
||||
output_num_ = static_cast<int64_t>(GetAttr<int64_t>(kernel_node, "output_num"));
|
||||
|
@ -68,7 +61,7 @@ class SplitGpuFwdKernel : public GpuKernel {
|
|||
return false;
|
||||
}
|
||||
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto input_shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
input_size_ = 1;
|
||||
all_size_before_axis_ = 1;
|
||||
all_size_axis_ = 1;
|
||||
|
@ -88,7 +81,7 @@ class SplitGpuFwdKernel : public GpuKernel {
|
|||
|
||||
for (int i = 0; i < output_num_; i++) {
|
||||
size_t output_size = 1;
|
||||
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, i);
|
||||
auto output_shape = AnfAlgo::GetOutputRealDeviceShapeIfExist(kernel_node, i);
|
||||
for (size_t j = 0; j < output_shape.size(); j++) {
|
||||
output_size *= output_shape[j];
|
||||
}
|
||||
|
@ -100,6 +93,19 @@ class SplitGpuFwdKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void ResetResource() noexcept override {
|
||||
axis_ = 0;
|
||||
output_num_ = 1;
|
||||
input_size_ = 1;
|
||||
axis_step_ = 1;
|
||||
all_size_before_axis_ = 1;
|
||||
all_size_axis_ = 1;
|
||||
outputs_host_ = nullptr;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {}
|
||||
|
||||
|
|
|
@ -62,7 +62,7 @@ class TransposeGpuFwdKernel : public GpuKernel {
|
|||
MS_LOG(ERROR) << "Output number is " << output_num << ", but transpose needs 1 output.";
|
||||
return false;
|
||||
}
|
||||
auto input_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
|
||||
auto input_shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
shape_size_ = input_shape.size();
|
||||
if (shape_size_ > TRANSPOSE_MAX_DIMENSION) {
|
||||
MS_LOG(EXCEPTION) << "Input is " << shape_size_ << "-D, but transpose supports max " << TRANSPOSE_MAX_DIMENSION
|
||||
|
|
|
@ -27,8 +27,7 @@ namespace kernel {
|
|||
template <typename T, typename S>
|
||||
class UnsortedSegmentSumGpuKernel : public GpuKernel {
|
||||
public:
|
||||
UnsortedSegmentSumGpuKernel()
|
||||
: input_dim0_(1), input_dim1_(1), output_dim0_(1), output_dim1_(1), is_null_input_(false) {}
|
||||
UnsortedSegmentSumGpuKernel() { ResetResource(); }
|
||||
~UnsortedSegmentSumGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
|
@ -53,15 +52,15 @@ class UnsortedSegmentSumGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
auto input_shapes = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto input_shapes = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
is_null_input_ = CHECK_NULL_INPUT(input_shapes);
|
||||
if (is_null_input_) {
|
||||
MS_LOG(WARNING) << "UnsortedSegmentSum input is null";
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
auto ids_shapes = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
auto output_shapes = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
auto ids_shapes = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 1);
|
||||
auto output_shapes = AnfAlgo::GetOutputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
|
||||
auto axis = ids_shapes.size();
|
||||
for (size_t i = 0; i < input_shapes.size(); i++) {
|
||||
|
@ -81,6 +80,17 @@ class UnsortedSegmentSumGpuKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void ResetResource() noexcept override {
|
||||
input_dim0_ = 1;
|
||||
input_dim1_ = 1;
|
||||
output_dim0_ = 1;
|
||||
output_dim1_ = 1;
|
||||
is_null_input_ = false;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_dim0_ * input_dim1_ * sizeof(T));
|
||||
|
|
|
@ -0,0 +1,36 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void GpuDynamicKernel::UpdateArgs() {
|
||||
if (!is_input_dynamic_shape_ && is_output_dynamic_shape_ && !have_depends()) {
|
||||
return;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << "Update Args: " << cnode_ptr_->fullname_with_scope();
|
||||
auto kernel_mod = AnfAlgo::GetKernelMod(cnode_ptr_);
|
||||
MS_EXCEPTION_IF_NULL(kernel_mod);
|
||||
auto gpu_kernel_mod = dynamic_cast<GpuKernel *>(kernel_mod);
|
||||
MS_EXCEPTION_IF_NULL(gpu_kernel_mod);
|
||||
gpu_kernel_mod->DestroyResource();
|
||||
gpu_kernel_mod->ResetResource();
|
||||
gpu_kernel_mod->Init(cnode_ptr_);
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -23,11 +23,13 @@
|
|||
#include <vector>
|
||||
#include <utility>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include "backend/kernel_compiler/kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/kernel_constants.h"
|
||||
#include "runtime/device/gpu/gpu_device_manager.h"
|
||||
#include "runtime/device/gpu/gpu_common.h"
|
||||
#include "backend/session/anf_runtime_algorithm.h"
|
||||
#include "runtime/device/executor/dynamic_kernel.h"
|
||||
using AnfAlgo = mindspore::session::AnfRuntimeAlgorithm;
|
||||
|
||||
namespace mindspore {
|
||||
|
@ -45,10 +47,28 @@ static std::map<int, int> kNHWCToNCHWAxisMap = {
|
|||
{3, 1},
|
||||
};
|
||||
|
||||
class GpuDynamicKernel : public device::DynamicKernel {
|
||||
public:
|
||||
explicit GpuDynamicKernel(const CNodePtr &cnode_ptr) : DynamicKernel(nullptr, cnode_ptr) {}
|
||||
~GpuDynamicKernel() = default;
|
||||
|
||||
void UpdateArgs() override;
|
||||
void PostExecute() final { MS_LOG(EXCEPTION) << "`PostExecute()` should not invoked with gpu backend"; };
|
||||
void Execute() final { MS_LOG(EXCEPTION) << "`Execute()` should not invoked with gpu backend"; }
|
||||
};
|
||||
|
||||
class GpuKernel : public KernelMod {
|
||||
public:
|
||||
virtual ~GpuKernel() = default;
|
||||
virtual bool Init(const CNodePtr &kernel_node) = 0;
|
||||
virtual void ResetResource() noexcept {
|
||||
MS_LOG(EXCEPTION) << "kernel must override the `ResetResource()` method when dynamic shape";
|
||||
}
|
||||
virtual void DestroyResource() noexcept {}
|
||||
virtual void PostExecute() {}
|
||||
|
||||
void InitDynamicKernel(const CNodePtr &cnode_ptr) { dynamic_kernel_ = std::make_shared<GpuDynamicKernel>(cnode_ptr); }
|
||||
device::DynamicKernelPtr DynamicKernel() const { return dynamic_kernel_; }
|
||||
|
||||
protected:
|
||||
virtual void InitResource() {}
|
||||
|
@ -228,7 +248,10 @@ class GpuKernel : public KernelMod {
|
|||
}
|
||||
return type->second;
|
||||
}
|
||||
|
||||
device::DynamicKernelPtr dynamic_kernel_;
|
||||
};
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -123,6 +123,10 @@ class AddNGpuFwdKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(input_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -141,9 +145,6 @@ class AddNGpuFwdKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(input_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
cudnnHandle_t cudnn_handle_;
|
||||
cudnnTensorDescriptor_t input_descriptor_;
|
||||
cudnnDataType_t cudnn_data_type_;
|
||||
|
|
|
@ -112,6 +112,12 @@ class BiasAddGpuKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyOpTensorDescriptor(op_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(b_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_desc_), "cudnnDestroyOpTensorDescriptor failed");
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -129,12 +135,6 @@ class BiasAddGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyOpTensorDescriptor(op_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(b_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_desc_), "cudnnDestroyOpTensorDescriptor failed");
|
||||
}
|
||||
|
||||
cudnnHandle_t cudnn_handle_;
|
||||
cudnnDataType_t cudnn_data_type_;
|
||||
cudnnTensorDescriptor_t x_desc_;
|
||||
|
|
|
@ -31,13 +31,7 @@ constexpr int MAX_DIMS = 7;
|
|||
template <typename T>
|
||||
class BroadcastOpGpuKernel : public GpuKernel {
|
||||
public:
|
||||
BroadcastOpGpuKernel()
|
||||
: op_type_(BROADCAST_TYPE_INVALID),
|
||||
need_broadcast_(false),
|
||||
is_comp_op_(false),
|
||||
input1_num_(1),
|
||||
input2_num_(1),
|
||||
output_num_(1) {}
|
||||
BroadcastOpGpuKernel() { ResetResource(); }
|
||||
~BroadcastOpGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
|
@ -71,9 +65,9 @@ class BroadcastOpGpuKernel : public GpuKernel {
|
|||
}
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
GetOpType(kernel_node);
|
||||
auto shape1 = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
|
||||
auto shape2 = AnfAlgo::GetInputDeviceShape(kernel_node, 1);
|
||||
auto shape3 = AnfAlgo::GetOutputDeviceShape(kernel_node, 0);
|
||||
auto shape1 = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
auto shape2 = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 1);
|
||||
auto shape3 = AnfAlgo::GetOutputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
need_broadcast_ = IsBroadcast(shape1, shape2);
|
||||
if (need_broadcast_ && shape1.size() > 7) {
|
||||
MS_LOG(EXCEPTION) << "Broadcast operation not support dim greater than 7";
|
||||
|
@ -106,6 +100,20 @@ class BroadcastOpGpuKernel : public GpuKernel {
|
|||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
void ResetResource() noexcept override {
|
||||
op_type_ = BROADCAST_TYPE_INVALID;
|
||||
need_broadcast_ = false;
|
||||
is_comp_op_ = false;
|
||||
input1_num_ = 1;
|
||||
input2_num_ = 1;
|
||||
output_num_ = 1;
|
||||
lhs_shape_.clear();
|
||||
rhs_shape_.clear();
|
||||
output_shape_.clear();
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override { return; }
|
||||
|
|
|
@ -30,14 +30,7 @@ namespace kernel {
|
|||
template <typename T>
|
||||
class BroadcastOpGradGpuKernel : public GpuKernel {
|
||||
public:
|
||||
BroadcastOpGradGpuKernel()
|
||||
: op_type_(BROADCAST_GRAD_TYPE_INVALID),
|
||||
need_broadcast_(false),
|
||||
input1_num_(1),
|
||||
input2_num_(1),
|
||||
output_num_(1),
|
||||
grad_x_(false),
|
||||
grad_y_(false) {}
|
||||
BroadcastOpGradGpuKernel() { ResetResource(); }
|
||||
~BroadcastOpGradGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
|
@ -105,6 +98,22 @@ class BroadcastOpGradGpuKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void ResetResource() noexcept override {
|
||||
op_type_ = BROADCAST_GRAD_TYPE_INVALID;
|
||||
need_broadcast_ = false;
|
||||
input1_num_ = 1;
|
||||
input2_num_ = 1;
|
||||
output_num_ = 1;
|
||||
std::fill(x1_shape_, x1_shape_ + 4, 1);
|
||||
std::fill(x2_shape_, x2_shape_ + 4, 1);
|
||||
std::fill(dy_shape_, dy_shape_ + 4, 1);
|
||||
grad_x_ = false;
|
||||
grad_y_ = false;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override { return; }
|
||||
void InitSizeLists() override {
|
||||
|
|
|
@ -69,21 +69,15 @@ static const std::map<std::string, UnaryOptype> kUnaryOpTypeMap = {{"Exp", UNARY
|
|||
template <typename T>
|
||||
class UnaryOpGpuKernel : public GpuKernel {
|
||||
public:
|
||||
UnaryOpGpuKernel()
|
||||
: unary_op_type_(UNARY_OP_INVALID_TYPE),
|
||||
input_size_(sizeof(T)),
|
||||
output_size_(sizeof(T)),
|
||||
workspace_size_(0),
|
||||
is_null_input_(false) {}
|
||||
UnaryOpGpuKernel() { ResetResource(); }
|
||||
~UnaryOpGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
VARIABLE_NOT_USED(workspace);
|
||||
T *input_addr = GetDeviceAddress<T>(inputs, 0);
|
||||
T *output_addr = GetDeviceAddress<T>(outputs, 0);
|
||||
|
||||
|
@ -184,7 +178,7 @@ class UnaryOpGpuKernel : public GpuKernel {
|
|||
MS_LOG(ERROR) << "Output number is " << output_num << ", but unary op needs 1 output.";
|
||||
return false;
|
||||
}
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto input_shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
is_null_input_ = CHECK_NULL_INPUT(input_shape);
|
||||
if (is_null_input_) {
|
||||
MS_LOG(WARNING) << "UnaryOpGpuKernel input is null";
|
||||
|
@ -198,6 +192,16 @@ class UnaryOpGpuKernel : public GpuKernel {
|
|||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
void ResetResource() noexcept override {
|
||||
unary_op_type_ = UNARY_OP_INVALID_TYPE;
|
||||
input_size_ = sizeof(T);
|
||||
output_size_ = sizeof(T);
|
||||
workspace_size_ = 0;
|
||||
is_null_input_ = false;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
|
|
|
@ -29,16 +29,7 @@ namespace kernel {
|
|||
template <typename T>
|
||||
class ActivationGpuFwdKernel : public GpuKernel {
|
||||
public:
|
||||
ActivationGpuFwdKernel()
|
||||
: cudnn_handle_(nullptr),
|
||||
activation_desc_(nullptr),
|
||||
mode_(CUDNN_ACTIVATION_RELU),
|
||||
data_descriptor_(nullptr),
|
||||
is_null_input_(false),
|
||||
cudnn_data_type_(CUDNN_DATA_FLOAT),
|
||||
input_size_(0),
|
||||
output_size_(0),
|
||||
workspace_size_(0) {}
|
||||
ActivationGpuFwdKernel() { ResetResource(); }
|
||||
~ActivationGpuFwdKernel() override { DestroyResource(); }
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
|
@ -75,7 +66,7 @@ class ActivationGpuFwdKernel : public GpuKernel {
|
|||
MS_LOG(ERROR) << "Argument number is " << input_num << ", but ActivationGpuFwdKernel needs 1.";
|
||||
return false;
|
||||
}
|
||||
auto input_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
|
||||
auto input_shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
is_null_input_ = CHECK_NULL_INPUT(input_shape);
|
||||
if (is_null_input_) {
|
||||
MS_LOG(WARNING) << "ActivationGpuFwdKernel input is null.";
|
||||
|
@ -113,6 +104,27 @@ class ActivationGpuFwdKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyActivationDescriptor(activation_desc_),
|
||||
"cudnnDestroyActivationDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(data_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
|
||||
void ResetResource() noexcept override {
|
||||
cudnn_handle_ = nullptr;
|
||||
activation_desc_ = nullptr;
|
||||
mode_ = CUDNN_ACTIVATION_RELU;
|
||||
data_descriptor_ = nullptr;
|
||||
is_null_input_ = false;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
cudnn_data_type_ = CUDNN_DATA_FLOAT;
|
||||
input_size_ = 0;
|
||||
output_size_ = 0;
|
||||
workspace_size_ = 0;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -132,12 +144,6 @@ class ActivationGpuFwdKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyActivationDescriptor(activation_desc_),
|
||||
"cudnnDestroyActivationDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(data_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
|
||||
std::map<std::string, cudnnActivationMode_t> kernel_map = {{"ReLU", CUDNN_ACTIVATION_RELU},
|
||||
{"ReLU6", CUDNN_ACTIVATION_CLIPPED_RELU},
|
||||
{"Tanh", CUDNN_ACTIVATION_TANH},
|
||||
|
|
|
@ -29,14 +29,7 @@ namespace kernel {
|
|||
template <typename T>
|
||||
class ActivationGradGpuKernel : public GpuKernel {
|
||||
public:
|
||||
ActivationGradGpuKernel()
|
||||
: cudnn_handle_(nullptr),
|
||||
activation_desc_(nullptr),
|
||||
mode_(CUDNN_ACTIVATION_RELU),
|
||||
data_descriptor_(nullptr),
|
||||
is_null_input_(false),
|
||||
cudnn_data_type_(CUDNN_DATA_FLOAT),
|
||||
input_size_(0) {}
|
||||
ActivationGradGpuKernel() { ResetResource(); }
|
||||
~ActivationGradGpuKernel() override { DestroyResource(); }
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
|
@ -117,6 +110,25 @@ class ActivationGradGpuKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyActivationDescriptor(activation_desc_),
|
||||
"cudnnDestroyActivationDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(data_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
|
||||
void ResetResource() noexcept override {
|
||||
cudnn_handle_ = nullptr;
|
||||
activation_desc_ = nullptr;
|
||||
mode_ = CUDNN_ACTIVATION_RELU;
|
||||
data_descriptor_ = nullptr;
|
||||
is_null_input_ = false;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
cudnn_data_type_ = CUDNN_DATA_FLOAT;
|
||||
input_size_ = 0;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -135,12 +147,6 @@ class ActivationGradGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyActivationDescriptor(activation_desc_),
|
||||
"cudnnDestroyActivationDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(data_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
|
||||
std::map<std::string, cudnnActivationMode_t> kernel_map = {{"ReluGrad", CUDNN_ACTIVATION_RELU},
|
||||
{"ReLU6Grad", CUDNN_ACTIVATION_CLIPPED_RELU},
|
||||
{"TanhGrad", CUDNN_ACTIVATION_TANH},
|
||||
|
|
|
@ -121,6 +121,13 @@ class BatchNormGradGpuKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(scale_bias_desc_), "Destroy para desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dx_desc_), "Destroy dx desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dy_desc_), "Destroy dy desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_desc_), "Destroy x desc failed");
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -152,13 +159,6 @@ class BatchNormGradGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(scale_bias_desc_), "Destroy para desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dx_desc_), "Destroy dx desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dy_desc_), "Destroy dy desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_desc_), "Destroy x desc failed");
|
||||
}
|
||||
|
||||
int batch_;
|
||||
int channel_;
|
||||
int height_;
|
||||
|
|
|
@ -111,6 +111,13 @@ class BiasAddGradGpuKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnDestroyReduceTensorDescriptor(op_desc_),
|
||||
"cudnnDestroyReduceTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(db_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dy_desc_), "cudnnDestroyOpTensorDescriptor failed");
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -137,13 +144,6 @@ class BiasAddGradGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnDestroyReduceTensorDescriptor(op_desc_),
|
||||
"cudnnDestroyReduceTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(db_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dy_desc_), "cudnnDestroyOpTensorDescriptor failed");
|
||||
}
|
||||
|
||||
bool same_dims_;
|
||||
cudnnHandle_t cudnn_handle_;
|
||||
cudnnDataType_t cudnn_data_type_;
|
||||
|
|
|
@ -198,6 +198,15 @@ class Conv2dGpuFwdKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyConvolutionDescriptor(conv_desc_),
|
||||
"cudnnDestroyConvolutionDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyFilterDescriptor(filter_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(padded_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(output_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(input_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -243,14 +252,6 @@ class Conv2dGpuFwdKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyConvolutionDescriptor(conv_desc_),
|
||||
"cudnnDestroyConvolutionDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyFilterDescriptor(filter_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(padded_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(output_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(input_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
bool CheckParam(const CNodePtr &kernel_node) {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 2) {
|
||||
|
|
|
@ -199,6 +199,15 @@ class ConvGradFilterGpuBkwKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyConvolutionDescriptor(conv_desc_),
|
||||
"cudnnDestroyConvolutionDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyFilterDescriptor(dw_desc_), "cudnnDestroyFilterDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(padded_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dy_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -243,14 +252,6 @@ class ConvGradFilterGpuBkwKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyConvolutionDescriptor(conv_desc_),
|
||||
"cudnnDestroyConvolutionDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyFilterDescriptor(dw_desc_), "cudnnDestroyFilterDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(padded_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dy_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
bool CheckParam(const CNodePtr &kernel_node) {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 2) {
|
||||
|
|
|
@ -203,6 +203,15 @@ class ConvGradInputGpuBkwKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyConvolutionDescriptor(conv_desc_),
|
||||
"cudnnDestroyConvolutionDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyFilterDescriptor(w_desc_), "cudnnDestroyFilterDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(padded_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dy_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dx_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -244,14 +253,6 @@ class ConvGradInputGpuBkwKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyConvolutionDescriptor(conv_desc_),
|
||||
"cudnnDestroyConvolutionDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyFilterDescriptor(w_desc_), "cudnnDestroyFilterDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(padded_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dy_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dx_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
bool CheckParam(const CNodePtr &kernel_node) {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 2) {
|
||||
|
|
|
@ -27,7 +27,7 @@ namespace kernel {
|
|||
template <typename T>
|
||||
class FlattenGpuFwdKernel : public GpuKernel {
|
||||
public:
|
||||
FlattenGpuFwdKernel() : input_size_(0), output_size_(0), workspace_size_(0) {}
|
||||
FlattenGpuFwdKernel() : input_size_(0) {}
|
||||
~FlattenGpuFwdKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
|
@ -47,7 +47,7 @@ class FlattenGpuFwdKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
auto shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
input_size_ = sizeof(T);
|
||||
for (size_t i = 0; i < shape.size(); ++i) {
|
||||
input_size_ *= shape[i];
|
||||
|
@ -55,12 +55,17 @@ class FlattenGpuFwdKernel : public GpuKernel {
|
|||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
void ResetResource() noexcept override {
|
||||
input_size_ = 0;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_);
|
||||
output_size_ = input_size_;
|
||||
output_size_list_.push_back(output_size_);
|
||||
output_size_list_.push_back(input_size_);
|
||||
}
|
||||
|
||||
private:
|
||||
|
@ -69,8 +74,6 @@ class FlattenGpuFwdKernel : public GpuKernel {
|
|||
std::vector<size_t> workspace_size_list_;
|
||||
|
||||
size_t input_size_;
|
||||
size_t output_size_;
|
||||
size_t workspace_size_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -27,7 +27,7 @@ namespace kernel {
|
|||
template <typename T>
|
||||
class FlattenGardGpuBkwKernel : public GpuKernel {
|
||||
public:
|
||||
FlattenGardGpuBkwKernel() : input_size_(0), output_size_(0), workspace_size_(0) {}
|
||||
FlattenGardGpuBkwKernel() { ResetResource(); }
|
||||
~FlattenGardGpuBkwKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
|
@ -54,7 +54,7 @@ class FlattenGardGpuBkwKernel : public GpuKernel {
|
|||
return false;
|
||||
}
|
||||
|
||||
auto shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
for (size_t i = 0; i < shape.size(); ++i) {
|
||||
if (input_size_ == 0) {
|
||||
input_size_ = 1;
|
||||
|
@ -67,11 +67,17 @@ class FlattenGardGpuBkwKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void ResetResource() noexcept override {
|
||||
input_size_ = 0;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_);
|
||||
output_size_ = input_size_;
|
||||
output_size_list_.push_back(output_size_);
|
||||
output_size_list_.push_back(input_size_);
|
||||
}
|
||||
|
||||
private:
|
||||
|
@ -80,8 +86,6 @@ class FlattenGardGpuBkwKernel : public GpuKernel {
|
|||
std::vector<size_t> workspace_size_list_;
|
||||
|
||||
size_t input_size_;
|
||||
size_t output_size_;
|
||||
size_t workspace_size_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -140,6 +140,20 @@ class FusedBatchNormExGpuKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_desc_), "Destroy x desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(y_desc_), "Destroy y desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(scale_bias_mean_var_desc_), "Destroy para desc failed");
|
||||
if (bn_ops_ == CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION) {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(z_desc_), "Destroy z desc failed");
|
||||
}
|
||||
|
||||
if (bn_ops_ != CUDNN_BATCHNORM_OPS_BN) {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyActivationDescriptor(activation_desc_),
|
||||
"Destroy activation descriptor failed");
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -238,20 +252,6 @@ class FusedBatchNormExGpuKernel : public GpuKernel {
|
|||
}
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_desc_), "Destroy x desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(y_desc_), "Destroy y desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(scale_bias_mean_var_desc_), "Destroy para desc failed");
|
||||
if (bn_ops_ == CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION) {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(z_desc_), "Destroy z desc failed");
|
||||
}
|
||||
|
||||
if (bn_ops_ != CUDNN_BATCHNORM_OPS_BN) {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyActivationDescriptor(activation_desc_),
|
||||
"Destroy activation descriptor failed");
|
||||
}
|
||||
}
|
||||
|
||||
size_t input_x_size_;
|
||||
size_t input_z_size_;
|
||||
size_t para_size_;
|
||||
|
|
|
@ -133,6 +133,12 @@ class FusedBatchNormGpuKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_desc_), "Destroy x desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(y_desc_), "Destroy y desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(scale_bias_mean_var_desc_), "Destroy para desc failed");
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -165,12 +171,6 @@ class FusedBatchNormGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_desc_), "Destroy x desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(y_desc_), "Destroy y desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(scale_bias_mean_var_desc_), "Destroy para desc failed");
|
||||
}
|
||||
|
||||
int batch_;
|
||||
int channel_;
|
||||
int height_;
|
||||
|
|
|
@ -201,6 +201,21 @@ class FusedBatchNormGradExGpuKernel : public GpuKernel {
|
|||
|
||||
workspace_size_list_.push_back(workspace_size_);
|
||||
}
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_desc_), "Destroy x desc failed");
|
||||
if (bn_ops_ != CUDNN_BATCHNORM_OPS_BN) {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(y_desc_), "Destroy y desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyActivationDescriptor(activation_desc_),
|
||||
"Destroy activation descriptor failed");
|
||||
}
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dy_desc_), "Destroy dy desc failed");
|
||||
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dx_desc_), "Destroy dx desc failed");
|
||||
if (bn_ops_ == CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION) {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dz_desc_), "Destroy z desc failed");
|
||||
}
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(scale_bias_diff_desc_), "Destroy para desc failed");
|
||||
}
|
||||
|
||||
private:
|
||||
void SetTensorDescriptor(const std::string &format, const std::vector<size_t> &shape) {
|
||||
|
@ -255,22 +270,6 @@ class FusedBatchNormGradExGpuKernel : public GpuKernel {
|
|||
}
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_desc_), "Destroy x desc failed");
|
||||
if (bn_ops_ != CUDNN_BATCHNORM_OPS_BN) {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(y_desc_), "Destroy y desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyActivationDescriptor(activation_desc_),
|
||||
"Destroy activation descriptor failed");
|
||||
}
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dy_desc_), "Destroy dy desc failed");
|
||||
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dx_desc_), "Destroy dx desc failed");
|
||||
if (bn_ops_ == CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION) {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dz_desc_), "Destroy z desc failed");
|
||||
}
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(scale_bias_diff_desc_), "Destroy para desc failed");
|
||||
}
|
||||
|
||||
size_t x_size_;
|
||||
size_t para_size_;
|
||||
size_t workspace_size_;
|
||||
|
|
|
@ -117,6 +117,13 @@ class FusedBatchNormGradGpuKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(scale_bias_desc_), "Destroy para desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dx_desc_), "Destroy dx desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dy_desc_), "Destroy dy desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_desc_), "Destroy x desc failed");
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -146,13 +153,6 @@ class FusedBatchNormGradGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(scale_bias_desc_), "Destroy para desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dx_desc_), "Destroy dx desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dy_desc_), "Destroy dy desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_desc_), "Destroy x desc failed");
|
||||
}
|
||||
|
||||
int batch_;
|
||||
int channel_;
|
||||
int height_;
|
||||
|
|
|
@ -123,6 +123,15 @@ class Im2ColGpuFwdKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyConvolutionDescriptor(conv_desc_),
|
||||
"cudnnDestroyConvolutionDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyFilterDescriptor(filter_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(padded_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(output_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(input_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -152,14 +161,6 @@ class Im2ColGpuFwdKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyConvolutionDescriptor(conv_desc_),
|
||||
"cudnnDestroyConvolutionDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyFilterDescriptor(filter_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(padded_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(output_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(input_desc_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
bool CheckParam(const CNodePtr &kernel_node) {
|
||||
cudnn_data_type_ = GetCudnnDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 0)));
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
|
|
|
@ -157,6 +157,21 @@ class LstmGpuKernel : public GpuKernel {
|
|||
}
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyRNNDescriptor(rnn_desc_), "destroy rnn_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyDropoutDescriptor(dropout_desc_), "destroy dropout_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(cy_desc_), "destroy cy_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(hy_desc_), "destroy hy_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyFilterDescriptor(w_desc_), "destroy w_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(hx_desc_), "destroy hx_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(cx_desc_), "destroy cx_desc failed");
|
||||
|
||||
for (size_t i = 0; i < IntToSize(seq_len_); ++i) {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(y_desc_[i]), "destroy y_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_desc_[i]), "destroy x_desc failed");
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -195,21 +210,6 @@ class LstmGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyRNNDescriptor(rnn_desc_), "destroy rnn_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyDropoutDescriptor(dropout_desc_), "destroy dropout_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(cy_desc_), "destroy cy_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(hy_desc_), "destroy hy_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyFilterDescriptor(w_desc_), "destroy w_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(hx_desc_), "destroy hx_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(cx_desc_), "destroy cx_desc failed");
|
||||
|
||||
for (size_t i = 0; i < IntToSize(seq_len_); ++i) {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(y_desc_[i]), "destroy y_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_desc_[i]), "destroy x_desc failed");
|
||||
}
|
||||
}
|
||||
|
||||
int batch_size_;
|
||||
int seq_len_;
|
||||
int input_size_;
|
||||
|
|
|
@ -150,6 +150,18 @@ class LstmGradDataGpuKernel : public GpuKernel {
|
|||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyRNNDescriptor(rnn_desc_), "destroy rnn_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyDropoutDescriptor(dropout_desc_), "destroy dropout_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dcx_desc_), "destroy dcx_desc_ failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dhx_desc_), "destroy dhx_desc_ failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyFilterDescriptor(w_desc_), "destroy w_desc_ failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(cx_desc_), "destroy cx_desc_ failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(hx_desc_), "destroy hx_desc_ failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dcy_desc_), "destroy dcy_desc_ failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dhy_desc_), "destroy dhy_desc_ failed");
|
||||
DestroyTensorDescGrp();
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
|
@ -195,18 +207,6 @@ class LstmGradDataGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyRNNDescriptor(rnn_desc_), "destroy rnn_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyDropoutDescriptor(dropout_desc_), "destroy dropout_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dcx_desc_), "destroy dcx_desc_ failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dhx_desc_), "destroy dhx_desc_ failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyFilterDescriptor(w_desc_), "destroy w_desc_ failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(cx_desc_), "destroy cx_desc_ failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(hx_desc_), "destroy hx_desc_ failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dcy_desc_), "destroy dcy_desc_ failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dhy_desc_), "destroy dhy_desc_ failed");
|
||||
DestroyTensorDescGrp();
|
||||
}
|
||||
void CreateTensorDescGrp() {
|
||||
int x_dims[3]{batch_size_, input_size_, 1};
|
||||
int y_dims[3]{batch_size_, hidden_size_ * (bidirectional_ ? 2 : 1), 1};
|
||||
|
|
|
@ -162,6 +162,13 @@ class LstmGradWeightGpuKernel : public GpuKernel {
|
|||
"get workspace size failed");
|
||||
workspace_size_list_.push_back(workspace_size);
|
||||
}
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyRNNDescriptor(rnn_desc_), "destroy rnn_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyDropoutDescriptor(dropout_desc_), "destroy dropout_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyFilterDescriptor(dw_desc_), "destroy dw_desc_ failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(hx_desc_), "destroy hx_desc_ failed");
|
||||
DestroyTensorDescGrp();
|
||||
}
|
||||
|
||||
private:
|
||||
void CreateTensorDescGrp() {
|
||||
|
@ -187,13 +194,6 @@ class LstmGradWeightGpuKernel : public GpuKernel {
|
|||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_desc_[i]), "destroy x_desc failed");
|
||||
}
|
||||
}
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyRNNDescriptor(rnn_desc_), "destroy rnn_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyDropoutDescriptor(dropout_desc_), "destroy dropout_desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyFilterDescriptor(dw_desc_), "destroy dw_desc_ failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(hx_desc_), "destroy hx_desc_ failed");
|
||||
DestroyTensorDescGrp();
|
||||
}
|
||||
|
||||
int batch_size_;
|
||||
int seq_len_;
|
||||
|
|
|
@ -113,6 +113,13 @@ class PoolingGpuFwdKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyPoolingDescriptor(pooling_descriptor_),
|
||||
"cudnnDestroyPoolingDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(output_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(input_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() {
|
||||
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -196,12 +203,6 @@ class PoolingGpuFwdKernel : public GpuKernel {
|
|||
2, windowDimA, paddingA, strideA),
|
||||
"cudnnSetPoolingNdDescriptor failed");
|
||||
}
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyPoolingDescriptor(pooling_descriptor_),
|
||||
"cudnnDestroyPoolingDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(output_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(input_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
|
||||
cudnnHandle_t cudnn_handle_;
|
||||
cudnnTensorDescriptor_t input_descriptor_;
|
||||
|
|
|
@ -129,6 +129,14 @@ class PoolingGradGpuKernel : public GpuKernel {
|
|||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyPoolingDescriptor(pooling_descriptor_),
|
||||
"cudnnDestroyPoolingDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dx_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dy_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(y_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
|
@ -230,14 +238,6 @@ class PoolingGradGpuKernel : public GpuKernel {
|
|||
pad_value_ = kSignedMinFloat;
|
||||
}
|
||||
}
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyPoolingDescriptor(pooling_descriptor_),
|
||||
"cudnnDestroyPoolingDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dx_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dy_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(y_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
|
||||
cudnnHandle_t cudnn_handle_;
|
||||
cudnnPoolingDescriptor_t pooling_descriptor_;
|
||||
|
|
|
@ -101,6 +101,13 @@ class SoftmaxCrossEntropyWithLogitsGpuKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(softmax_output_descriptor_),
|
||||
"cudnnDestroyTensorDescriptor failed.");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(logits_descriptor_),
|
||||
"cudnnDestroyTensorDescriptor failed.");
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -118,12 +125,6 @@ class SoftmaxCrossEntropyWithLogitsGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(softmax_output_descriptor_),
|
||||
"cudnnDestroyTensorDescriptor failed.");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(logits_descriptor_),
|
||||
"cudnnDestroyTensorDescriptor failed.");
|
||||
}
|
||||
void InferInputOutputSize(const CNodePtr &kernel_node) {
|
||||
auto logits_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
is_null_input_ = CHECK_NULL_INPUT(logits_shape);
|
||||
|
|
|
@ -140,6 +140,11 @@ class SoftmaxGpuKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(output_descriptor_), "destroy output_descriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(input_descriptor_), "destroy input_descriptor failed");
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -159,11 +164,6 @@ class SoftmaxGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(output_descriptor_), "destroy output_descriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(input_descriptor_), "destroy input_descriptor failed");
|
||||
}
|
||||
|
||||
void InitSizeByAxis(const std::vector<size_t> &input_shape, const int &axis) {
|
||||
if (input_shape.size() == 2) {
|
||||
InitSizeByAxis2D(input_shape, axis);
|
||||
|
|
|
@ -142,6 +142,10 @@ class SoftmaxGradGpuKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(y_desc_), "destroy output_descriptor failed");
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -161,10 +165,6 @@ class SoftmaxGradGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(y_desc_), "destroy output_descriptor failed");
|
||||
}
|
||||
|
||||
void InitSizeByAxis(const std::vector<size_t> input_shape, const int axis) {
|
||||
axis_ = axis;
|
||||
if (axis_ < 0) {
|
||||
|
|
|
@ -103,6 +103,13 @@ class SparseSoftmaxCrossEntropyWithLogitsGpuKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(softmax_output_descriptor_),
|
||||
"cudnnDestroyTensorDescriptor failed.");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(logits_descriptor_),
|
||||
"cudnnDestroyTensorDescriptor failed.");
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
|
@ -120,12 +127,6 @@ class SparseSoftmaxCrossEntropyWithLogitsGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(softmax_output_descriptor_),
|
||||
"cudnnDestroyTensorDescriptor failed.");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(logits_descriptor_),
|
||||
"cudnnDestroyTensorDescriptor failed.");
|
||||
}
|
||||
void InferInputOutputSize(const CNodePtr &kernel_node) {
|
||||
auto logits_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
is_null_input_ = CHECK_NULL_INPUT(logits_shape);
|
||||
|
|
|
@ -113,8 +113,6 @@ class BatchNormFold2GpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {}
|
||||
|
||||
cudnnHandle_t cudnn_handle_;
|
||||
bool is_null_input_;
|
||||
size_t batch_size_;
|
||||
|
|
|
@ -152,6 +152,11 @@ class BatchNormFoldGpuKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
void DestroyResource() noexcept override {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_desc_), "Destroy x desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(scale_bias_mean_var_desc_), "Destroy para desc failed");
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
// x, mean, variance, current_step
|
||||
|
@ -177,11 +182,6 @@ class BatchNormFoldGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_desc_), "Destroy x desc failed");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(scale_bias_mean_var_desc_), "Destroy para desc failed");
|
||||
}
|
||||
|
||||
size_t input_size_;
|
||||
size_t output_size_;
|
||||
std::vector<size_t> input_size_list_;
|
||||
|
|
|
@ -81,8 +81,6 @@ class CorrectionMulGpuKernel : public GpuKernel {
|
|||
void InitResource() override {}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {}
|
||||
|
||||
size_t batch_size_;
|
||||
size_t channel_;
|
||||
size_t height_;
|
||||
|
|
|
@ -89,8 +89,6 @@ class CorrectionMulGradGpuKernel : public GpuKernel {
|
|||
void InitResource() override {}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {}
|
||||
|
||||
size_t batch_size_;
|
||||
size_t channel_;
|
||||
size_t height_;
|
||||
|
|
|
@ -237,6 +237,10 @@ void MemSwapManager::SaveUserKernelTopoOrder() {
|
|||
continue;
|
||||
}
|
||||
|
||||
if (opt::IsNopNode(user_kernel)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
size_t user_kernel_topo_sort = SearchKernelExecutionInfo(user_kernel).topo_order_;
|
||||
auto kernel_with_index = AnfAlgo::GetPrevNodeOutput(user_kernel, node_pair.second - 1);
|
||||
auto &output_idx = kernel_with_index.second;
|
||||
|
|
|
@ -50,6 +50,10 @@ bool IsShapeDynamic(const abstract::ShapePtr &shape) {
|
|||
return std::any_of(shape->shape().begin(), shape->shape().end(), [](int s) { return s < 0; });
|
||||
}
|
||||
|
||||
bool IsShapeDynamic(const std::vector<size_t> &shape) {
|
||||
return std::any_of(shape.begin(), shape.end(), [](int s) { return s < 0; });
|
||||
}
|
||||
|
||||
std::vector<size_t> TransShapeToSizet(const abstract::ShapePtr &shape) {
|
||||
MS_EXCEPTION_IF_NULL(shape);
|
||||
std::vector<size_t> shape_size_t;
|
||||
|
@ -1389,5 +1393,29 @@ bool AnfRuntimeAlgorithm::IsNodeDynamicShape(const AnfNodePtr &node) {
|
|||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
std::vector<size_t> AnfRuntimeAlgorithm::GetInputRealDeviceShapeIfExist(const AnfNodePtr &anf_node, size_t index) {
|
||||
auto device_shape = GetInputDeviceShape(anf_node, index);
|
||||
// Initialize GPUKernel with max shape to fit 'InitDynamicOutputKernelRef()' for memory reuse.
|
||||
if (IsShapeDynamic(device_shape)) {
|
||||
auto max_shape = GetInputMaxShape(anf_node, index);
|
||||
std::transform(max_shape.begin(), max_shape.end(), device_shape.begin(), IntToSize);
|
||||
auto format = GetInputFormat(anf_node, index);
|
||||
trans::TransShapeToDevice(device_shape, format);
|
||||
}
|
||||
return device_shape;
|
||||
}
|
||||
|
||||
std::vector<size_t> AnfRuntimeAlgorithm::GetOutputRealDeviceShapeIfExist(const AnfNodePtr &anf_node, size_t index) {
|
||||
auto device_shape = GetOutputDeviceShape(anf_node, index);
|
||||
// Initialize GPUKernel with max shape to fit 'InitDynamicOutputKernelRef()' for memory reuse.
|
||||
if (IsShapeDynamic(device_shape)) {
|
||||
auto max_shape = GetOutputMaxShape(anf_node, index);
|
||||
std::transform(max_shape.begin(), max_shape.end(), device_shape.begin(), IntToSize);
|
||||
auto format = GetOutputFormat(anf_node, index);
|
||||
trans::TransShapeToDevice(device_shape, format);
|
||||
}
|
||||
return device_shape;
|
||||
}
|
||||
} // namespace session
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -230,6 +230,8 @@ class AnfRuntimeAlgorithm {
|
|||
static std::vector<int64_t> GetOutputMaxShape(const AnfNodePtr &anf_node, size_t index);
|
||||
static std::vector<int64_t> GetOutputMinShape(const AnfNodePtr &anf_node, size_t index);
|
||||
static bool IsNodeDynamicShape(const AnfNodePtr &node);
|
||||
static std::vector<size_t> GetInputRealDeviceShapeIfExist(const AnfNodePtr &anf_node, size_t index);
|
||||
static std::vector<size_t> GetOutputRealDeviceShapeIfExist(const AnfNodePtr &anf_node, size_t index);
|
||||
};
|
||||
} // namespace session
|
||||
using AnfAlgo = session::AnfRuntimeAlgorithm;
|
||||
|
|
|
@ -306,7 +306,9 @@ GraphId GPUSession::CompileGraphImpl(const AnfNodePtrList &lst, const AnfNodePtr
|
|||
if (save_graphs) {
|
||||
DumpIRProto(graph, "before_removeNop_" + std::to_string(graph_id));
|
||||
}
|
||||
|
||||
// Update Graph Dynamic Shape Attr.
|
||||
UpdateGraphDynamicShapeAttr(NOT_NULL(graph));
|
||||
graph->UpdateGraphDynamicAttr();
|
||||
// Hide NopOp from execution graph
|
||||
opt::HideNopNode(graph.get());
|
||||
// Build kernel if node is cnode
|
||||
|
@ -317,13 +319,10 @@ GraphId GPUSession::CompileGraphImpl(const AnfNodePtrList &lst, const AnfNodePtr
|
|||
graph->set_execution_order(execution_order);
|
||||
// Get summary nodes.
|
||||
SetSummaryNodes(graph.get());
|
||||
// Remove NopOp from execution graph
|
||||
opt::RemoveNopNode(graph.get());
|
||||
// Dump .pb graph after graph optimization
|
||||
if (save_graphs) {
|
||||
DumpIRProto(graph, "after_opt_" + std::to_string(graph_id));
|
||||
}
|
||||
|
||||
// Set graph manager.
|
||||
MS_EXCEPTION_IF_NULL(context_);
|
||||
FuncGraphManagerPtr manager = MakeManager({graph});
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
file(GLOB_RECURSE DEVICE_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "common/*.cc"
|
||||
"kernel_info.cc" "executor/dynamic_kernel.cc" "kernel_runtime.cc" "memory_manager.cc" "kernel_runtime_manager.cc" "convert_tensor_utils.cc"
|
||||
"kernel_info.cc" "executor/dynamic_kernel.cc" "executor/executor_callback.cc" "kernel_runtime.cc" "memory_manager.cc" "kernel_runtime_manager.cc" "convert_tensor_utils.cc"
|
||||
)
|
||||
|
||||
if (ENABLE_GPU)
|
||||
|
|
|
@ -48,7 +48,7 @@
|
|||
#include "backend/optimizer/mem_reuse/mem_reuse_checker.h"
|
||||
#endif
|
||||
#include "runtime/device/ascend/executor/tiling/op_tiling_calculater.h"
|
||||
#include "runtime/device/ascend/executor/executor_callback.h"
|
||||
#include "runtime/device/executor/executor_callback.h"
|
||||
#include "runtime/device/ascend/executor/hccl_dynamic_kernel.h"
|
||||
#include "profiler/device/ascend/ascend_profiling.h"
|
||||
#include "profiler/device/ascend/profiling_context.h"
|
||||
|
|
|
@ -22,7 +22,7 @@
|
|||
#include "runtime/kernel.h"
|
||||
#include "backend/session/anf_runtime_algorithm.h"
|
||||
#include "backend/kernel_compiler/aicpu/aicpu_util.h"
|
||||
#include "runtime/device/ascend/executor/executor_callback.h"
|
||||
#include "runtime/device/executor/executor_callback.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace device {
|
||||
|
|
|
@ -14,12 +14,11 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "runtime/device/ascend/executor/executor_callback.h"
|
||||
#include "runtime/device/executor/executor_callback.h"
|
||||
#include "utils/log_adapter.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace device {
|
||||
namespace ascend {
|
||||
void ExecutorCallback::RegistCallback(const std::function<void()> &callback) {
|
||||
std::lock_guard<std::mutex> guard(lock_);
|
||||
callback_queue_.push(callback);
|
||||
|
@ -36,6 +35,5 @@ void ExecutorCallback::Consume() {
|
|||
callback_func();
|
||||
}
|
||||
}
|
||||
} // namespace ascend
|
||||
} // namespace device
|
||||
} // namespace mindspore
|
|
@ -14,8 +14,8 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_MINDSPORE_CCSRC_RUNTIME_DEVICE_ASCEND_EXECUTOR_EXECUTOR_CALLBACK_H_
|
||||
#define MINDSPORE_MINDSPORE_CCSRC_RUNTIME_DEVICE_ASCEND_EXECUTOR_EXECUTOR_CALLBACK_H_
|
||||
#ifndef MINDSPORE_MINDSPORE_CCSRC_RUNTIME_DEVICE_EXECUTOR_EXECUTOR_CALLBACK_H_
|
||||
#define MINDSPORE_MINDSPORE_CCSRC_RUNTIME_DEVICE_EXECUTOR_EXECUTOR_CALLBACK_H_
|
||||
|
||||
#include <queue>
|
||||
#include <mutex>
|
||||
|
@ -24,7 +24,6 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace device {
|
||||
namespace ascend {
|
||||
class ExecutorCallback {
|
||||
public:
|
||||
static ExecutorCallback &GetInstance() {
|
||||
|
@ -43,7 +42,6 @@ class ExecutorCallback {
|
|||
std::queue<std::function<void()>> callback_queue_;
|
||||
std::mutex lock_;
|
||||
};
|
||||
} // namespace ascend
|
||||
} // namespace device
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_MINDSPORE_CCSRC_RUNTIME_DEVICE_ASCEND_EXECUTOR_EXECUTOR_CALLBACK_H_
|
||||
#endif // MINDSPORE_MINDSPORE_CCSRC_RUNTIME_DEVICE_EXECUTOR_EXECUTOR_CALLBACK_H_
|
|
@ -67,6 +67,8 @@ void GpuBuild(const KernelGraphPtr &kernel_graph) {
|
|||
if (!gpu_kernel_ptr->Init(kernel)) {
|
||||
MS_LOG(EXCEPTION) << "Initialize gpu kernel op[" << kernel->fullname_with_scope() << "] failed.";
|
||||
}
|
||||
gpu_kernel_ptr->InitDynamicKernel(kernel);
|
||||
gpu_kernel_ptr->DynamicKernel()->Initialize();
|
||||
session::AnfRuntimeAlgorithm::SetKernelMod((kernel::KernelModPtr)gpu_kernel_ptr, kernel.get());
|
||||
}
|
||||
}
|
||||
|
|
|
@ -36,6 +36,8 @@
|
|||
#include "profiler/device/gpu/gpu_profiling.h"
|
||||
#include "utils/shape_utils.h"
|
||||
#include "debug/data_dump/dump_json_parser.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "runtime/device/executor/executor_callback.h"
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
#include "debug/debug_services.h"
|
||||
#endif
|
||||
|
@ -588,6 +590,29 @@ bool GPUKernelRuntime::LaunchKernelDynamic(const session::KernelGraph *graph, bo
|
|||
MS_LOG(INFO) << "[inplace optimizer] skip node: " << kernel->DebugString();
|
||||
continue;
|
||||
}
|
||||
|
||||
// akg kernel do not support dynamic shape by now.
|
||||
device::DynamicKernelPtr dynamic_kernel = nullptr;
|
||||
kernel::GpuKernel *gpu_kernel = nullptr;
|
||||
if (session::AnfRuntimeAlgorithm::GetKernelType(kernel) != KernelType::AKG_KERNEL) {
|
||||
gpu_kernel = dynamic_cast<kernel::GpuKernel *>(kernel_mod);
|
||||
dynamic_kernel = gpu_kernel->DynamicKernel();
|
||||
}
|
||||
|
||||
if (dynamic_kernel && dynamic_kernel->have_depends()) {
|
||||
MS_LOG(INFO) << "Match Dynamic Kernel, Start SyncStream";
|
||||
if (!SyncStream()) {
|
||||
MS_LOG(ERROR) << "SyncStream failed";
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (dynamic_kernel && dynamic_kernel->is_dynamic_shape()) {
|
||||
ExecutorCallback::GetInstance().Consume();
|
||||
dynamic_kernel->InferShape();
|
||||
dynamic_kernel->UpdateArgs();
|
||||
}
|
||||
|
||||
AddressPtrList kernel_inputs;
|
||||
AddressPtrList kernel_workspaces;
|
||||
AddressPtrList kernel_outputs;
|
||||
|
@ -615,6 +640,10 @@ bool GPUKernelRuntime::LaunchKernelDynamic(const session::KernelGraph *graph, bo
|
|||
} else {
|
||||
LaunchKernelWithTimeProfiling(kernel, kernel_inputs, kernel_workspaces, kernel_outputs);
|
||||
}
|
||||
|
||||
ExecutorCallback::GetInstance().RegistCallback([&gpu_kernel] {
|
||||
if (gpu_kernel) gpu_kernel->PostExecute();
|
||||
});
|
||||
// called once per kernel to collect the outputs to the kernel (does a SyncDeviceToHost)
|
||||
LoadKernelData(debugger_.get(), kernel, kernel_inputs, kernel_workspaces, kernel_outputs, exec_order, stream_,
|
||||
dump_enabled);
|
||||
|
@ -633,6 +662,7 @@ bool GPUKernelRuntime::LaunchKernelDynamic(const session::KernelGraph *graph, bo
|
|||
// collect weights and bias for dump mode
|
||||
debugger_->LoadParametersAndConst();
|
||||
CHECK_OP_RET_WITH_EXCEPT(SyncStream(), "SyncStream failed.");
|
||||
ExecutorCallback::GetInstance().Consume();
|
||||
}
|
||||
ClearSwapInfo(mock);
|
||||
return true;
|
||||
|
|
|
@ -19,12 +19,19 @@
|
|||
#include "runtime/device/ascend/executor/rts/profiling_rts_dynamic_kernel.h"
|
||||
#include "runtime/device/ascend/executor/ai_core_dynamic_kernel.h"
|
||||
#include "profiler/device/ascend/rt_callback_manager.h"
|
||||
#include "runtime/device/ascend/executor/executor_callback.h"
|
||||
#include "runtime/device/executor/executor_callback.h"
|
||||
#include "profiler/device/ascend/ascend_profiling.h"
|
||||
#include "runtime/device/ascend/executor/tiling/op_tiling_calculater.h"
|
||||
#include "backend/kernel_compiler/host/host_kernel_metadata.h"
|
||||
#include "backend/kernel_compiler/host/host_kernel_build.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace device {
|
||||
void ExecutorCallback::RegistCallback(const std::function<void()> &callback) {}
|
||||
void ExecutorCallback::Consume() {}
|
||||
} // namespace device
|
||||
} // namespace mindspore
|
||||
|
||||
namespace mindspore {
|
||||
namespace device {
|
||||
namespace ascend {
|
||||
|
@ -45,11 +52,9 @@ void AiCoreDynamicKernel::PostExecute() {}
|
|||
bool HcclExecutorManager::Initialize() { return true; }
|
||||
bool HcclExecutorManager::Finalize() { return true; }
|
||||
|
||||
void ExecutorCallback::RegistCallback(const std::function<void()> &callback) {}
|
||||
void ExecutorCallback::Consume() {}
|
||||
|
||||
void OpTilingCalculater::Init() {}
|
||||
void OpTilingCalculater::CalculateTiling(const NotNull<CNodePtr> &cnode, const NotNull<std::shared_ptr<nlohmann::json>> &compile_info_json,
|
||||
void OpTilingCalculater::CalculateTiling(const NotNull<CNodePtr> &cnode,
|
||||
const NotNull<std::shared_ptr<nlohmann::json>> &compile_info_json,
|
||||
const std::map<uint32_t, tensor::TensorPtr> &depend_tensor_map,
|
||||
NotNull<optiling::OpRunInfo *> op_run_info) {}
|
||||
} // namespace ascend
|
||||
|
|
Loading…
Reference in New Issue