forked from mindspore-Ecosystem/mindspore
!22601 impl batch_to_space and space_to_batch
Merge pull request !22601 from zong_shuai/impl_batch_to_space
This commit is contained in:
commit
36be3f9c4f
|
@ -0,0 +1,42 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/arrays/batchtospace_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(BatchToSpace, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
BatchToSpaceGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(BatchToSpace, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
BatchToSpaceGpuKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(BatchToSpace, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
BatchToSpaceGpuKernel, int)
|
||||
MS_REG_GPU_KERNEL_ONE(BatchToSpace, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
BatchToSpaceGpuKernel, int64_t)
|
||||
MS_REG_GPU_KERNEL_ONE(BatchToSpace, KernelAttr().AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16),
|
||||
BatchToSpaceGpuKernel, int16_t)
|
||||
MS_REG_GPU_KERNEL_ONE(BatchToSpace, KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8),
|
||||
BatchToSpaceGpuKernel, int8_t)
|
||||
MS_REG_GPU_KERNEL_ONE(BatchToSpace, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8),
|
||||
BatchToSpaceGpuKernel, uint8_t)
|
||||
MS_REG_GPU_KERNEL_ONE(BatchToSpace, KernelAttr().AddInputAttr(kNumberTypeUInt16).AddOutputAttr(kNumberTypeUInt16),
|
||||
BatchToSpaceGpuKernel, uint16_t)
|
||||
MS_REG_GPU_KERNEL_ONE(BatchToSpace, KernelAttr().AddInputAttr(kNumberTypeUInt32).AddOutputAttr(kNumberTypeUInt32),
|
||||
BatchToSpaceGpuKernel, uint32_t)
|
||||
MS_REG_GPU_KERNEL_ONE(BatchToSpace, KernelAttr().AddInputAttr(kNumberTypeUInt64).AddOutputAttr(kNumberTypeUInt64),
|
||||
BatchToSpaceGpuKernel, uint64_t)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,178 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_BATCHOSPACE_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_BATCHOSPACE_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/batchtospace_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
constexpr size_t SHAPE_SIZE = 4;
|
||||
constexpr size_t CROPS_SHAPE_0 = 2;
|
||||
constexpr size_t CROPS_SHAPE_1 = 2;
|
||||
template <typename T>
|
||||
class BatchToSpaceGpuKernel : public GpuKernel {
|
||||
public:
|
||||
BatchToSpaceGpuKernel() { ResetResource(); }
|
||||
~BatchToSpaceGpuKernel() = default;
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
T *input = GetDeviceAddress<T>(inputs, 0);
|
||||
T *output = GetDeviceAddress<T>(outputs, 0);
|
||||
|
||||
size_t size = output_size_ / sizeof(T);
|
||||
|
||||
CalBatchToSpace<T>(size, input, in_, ih_, iw_, ic_, on_, oh_, ow_, oc_, crops_[0][0], crops_[0][1], crops_[1][0],
|
||||
crops_[1][1], block_size_, output, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
if (!CheckParam(kernel_node)) {
|
||||
return false;
|
||||
}
|
||||
input_size_ = sizeof(T);
|
||||
for (size_t idx = 0; idx < input_shape_.size(); ++idx) {
|
||||
input_size_ *= input_shape_[idx];
|
||||
}
|
||||
|
||||
in_ = input_shape_[0];
|
||||
ic_ = input_shape_[1];
|
||||
ih_ = input_shape_[2];
|
||||
iw_ = input_shape_[3];
|
||||
|
||||
on_ = in_ / (block_size_ * block_size_);
|
||||
oc_ = ic_;
|
||||
oh_ = ih_ * block_size_ - crops_[0][0] - crops_[0][1];
|
||||
ow_ = iw_ * block_size_ - crops_[1][0] - crops_[1][1];
|
||||
output_size_ = on_ * oc_ * oh_ * ow_ * sizeof(T);
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
void ResetResource() noexcept override {
|
||||
in_ = 0;
|
||||
ic_ = 0;
|
||||
ih_ = 0;
|
||||
iw_ = 0;
|
||||
on_ = 0;
|
||||
oc_ = 0;
|
||||
oh_ = 0;
|
||||
ow_ = 0;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
crops_.clear();
|
||||
input_shape_.clear();
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_);
|
||||
output_size_list_.push_back(output_size_);
|
||||
}
|
||||
|
||||
bool CheckParam(const CNodePtr &kernel_node) {
|
||||
block_size_ = GetAttr<int64_t>(kernel_node, "block_size");
|
||||
if (block_size_ < 1) {
|
||||
MS_LOG(ERROR) << "block_size can not be less than 1.";
|
||||
return false;
|
||||
}
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 1) {
|
||||
MS_LOG(ERROR) << "input_num is " << input_num << ", but BatchToSpace needs 1 input.";
|
||||
return false;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(ERROR) << "output_num is " << output_num << ", but BatchToSpace needs 1 output.";
|
||||
return false;
|
||||
}
|
||||
|
||||
// check input_shape
|
||||
auto input_shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
if (input_shape.size() != SHAPE_SIZE) {
|
||||
MS_LOG(ERROR) << "Input is " << input_shape.size() << "-D, but BatchToSpace supports 4-D tensor.";
|
||||
return false;
|
||||
}
|
||||
if ((input_shape[0] % (block_size_ * block_size_)) != 0) {
|
||||
MS_LOG(ERROR) << "input_shape[0] must be divisible by product of block_shape";
|
||||
return false;
|
||||
}
|
||||
for (size_t idx = 0; idx < SHAPE_SIZE; ++idx) {
|
||||
if (input_shape[idx] < 1) {
|
||||
MS_LOG(ERROR) << "input_shape[" << idx << "] can not less than 1";
|
||||
return false;
|
||||
}
|
||||
}
|
||||
input_shape_.assign(input_shape.begin(), input_shape.end());
|
||||
|
||||
// check crops
|
||||
crops_ = (GetAttr<std::vector<std::vector<int64_t>>>(kernel_node, "crops"));
|
||||
|
||||
if (crops_.size() != CROPS_SHAPE_0) {
|
||||
MS_LOG(ERROR) << "crops.size() in BatchToSpace needs 2.";
|
||||
return false;
|
||||
}
|
||||
if (crops_[0].size() != CROPS_SHAPE_1 || crops_[1].size() != CROPS_SHAPE_1) {
|
||||
MS_LOG(ERROR) << "crops[i].size() in BatchToSpace needs 2.";
|
||||
return false;
|
||||
} else {
|
||||
for (size_t idx_i = 0; idx_i < CROPS_SHAPE_0; ++idx_i) {
|
||||
for (size_t idx_j = 0; idx_j < CROPS_SHAPE_1; ++idx_j) {
|
||||
if (crops_[idx_i][idx_j] < 0) {
|
||||
MS_LOG(ERROR) << "the number in crops can not be less than 0.";
|
||||
return false;
|
||||
}
|
||||
}
|
||||
auto tmp_shape = input_shape[idx_i + CROPS_SHAPE_1] * block_size_ - crops_[idx_i][0] - crops_[idx_i][1];
|
||||
if (tmp_shape <= 0) {
|
||||
MS_LOG(ERROR) << "out_shape can not be less 1.";
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
|
||||
std::vector<std::vector<int64_t>> crops_;
|
||||
std::vector<size_t> input_shape_;
|
||||
size_t block_size_;
|
||||
size_t input_size_;
|
||||
size_t output_size_;
|
||||
size_t in_;
|
||||
size_t ic_;
|
||||
size_t ih_;
|
||||
size_t iw_;
|
||||
size_t on_;
|
||||
size_t oc_;
|
||||
size_t oh_;
|
||||
size_t ow_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_BATCHOSPACE_KERNEL_H_
|
|
@ -0,0 +1,42 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/arrays/spacetobatch_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(SpaceToBatch, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
SpaceToBatchGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(SpaceToBatch, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
SpaceToBatchGpuKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(SpaceToBatch, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
SpaceToBatchGpuKernel, int)
|
||||
MS_REG_GPU_KERNEL_ONE(SpaceToBatch, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
SpaceToBatchGpuKernel, int64_t)
|
||||
MS_REG_GPU_KERNEL_ONE(SpaceToBatch, KernelAttr().AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16),
|
||||
SpaceToBatchGpuKernel, int16_t)
|
||||
MS_REG_GPU_KERNEL_ONE(SpaceToBatch, KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8),
|
||||
SpaceToBatchGpuKernel, int8_t)
|
||||
MS_REG_GPU_KERNEL_ONE(SpaceToBatch, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8),
|
||||
SpaceToBatchGpuKernel, uint8_t)
|
||||
MS_REG_GPU_KERNEL_ONE(SpaceToBatch, KernelAttr().AddInputAttr(kNumberTypeUInt16).AddOutputAttr(kNumberTypeUInt16),
|
||||
SpaceToBatchGpuKernel, uint16_t)
|
||||
MS_REG_GPU_KERNEL_ONE(SpaceToBatch, KernelAttr().AddInputAttr(kNumberTypeUInt32).AddOutputAttr(kNumberTypeUInt32),
|
||||
SpaceToBatchGpuKernel, uint32_t)
|
||||
MS_REG_GPU_KERNEL_ONE(SpaceToBatch, KernelAttr().AddInputAttr(kNumberTypeUInt64).AddOutputAttr(kNumberTypeUInt64),
|
||||
SpaceToBatchGpuKernel, uint64_t)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,170 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_SPACETOBATCH_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_SPACETOBATCH_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/spacetobatch_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
constexpr size_t SHAPE_SIZE = 4;
|
||||
constexpr size_t PADDING_SHAPE_0 = 2;
|
||||
constexpr size_t PADDING_SHAPE_1 = 2;
|
||||
|
||||
template <typename T>
|
||||
class SpaceToBatchGpuKernel : public GpuKernel {
|
||||
public:
|
||||
SpaceToBatchGpuKernel() { ResetResource(); }
|
||||
~SpaceToBatchGpuKernel() = default;
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
T *input = GetDeviceAddress<T>(inputs, 0);
|
||||
T *output = GetDeviceAddress<T>(outputs, 0);
|
||||
|
||||
size_t size = input_size_ / sizeof(T);
|
||||
|
||||
CalSpaceToBatch<T>(size, input, in_, ih_, iw_, ic_, on_, oh_, ow_, oc_, paddings_[0][0], paddings_[0][1],
|
||||
paddings_[1][0], paddings_[1][1], block_size_, output,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
if (!CheckParam(kernel_node)) {
|
||||
return false;
|
||||
}
|
||||
input_size_ = sizeof(T);
|
||||
for (size_t idx = 0; idx < input_shape_.size(); ++idx) {
|
||||
input_size_ *= input_shape_[idx];
|
||||
}
|
||||
in_ = input_shape_[0];
|
||||
ic_ = input_shape_[1];
|
||||
ih_ = input_shape_[2];
|
||||
iw_ = input_shape_[3];
|
||||
|
||||
on_ = in_ * block_size_ * block_size_;
|
||||
oc_ = ic_;
|
||||
oh_ = (ih_ + paddings_[0][0] + paddings_[0][1]) / block_size_;
|
||||
ow_ = (iw_ + paddings_[1][0] + paddings_[1][1]) / block_size_;
|
||||
output_size_ = on_ * oc_ * oh_ * ow_ * sizeof(T);
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
void ResetResource() noexcept override {
|
||||
in_ = 0;
|
||||
ic_ = 0;
|
||||
ih_ = 0;
|
||||
iw_ = 0;
|
||||
on_ = 0;
|
||||
oc_ = 0;
|
||||
oh_ = 0;
|
||||
ow_ = 0;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
paddings_.clear();
|
||||
input_shape_.clear();
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_);
|
||||
output_size_list_.push_back(output_size_);
|
||||
}
|
||||
|
||||
private:
|
||||
bool CheckParam(const CNodePtr &kernel_node) {
|
||||
block_size_ = static_cast<int64_t>(GetAttr<int64_t>(kernel_node, "block_size"));
|
||||
if (block_size_ < 1) {
|
||||
MS_LOG(ERROR) << "block_size can not be less than 1.";
|
||||
return false;
|
||||
}
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 1) {
|
||||
MS_LOG(ERROR) << "input_num is " << input_num << ", but BatchToSpace needs 1 input.";
|
||||
return false;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(ERROR) << "output_num is " << output_num << ", but BatchToSpace needs 1 output.";
|
||||
return false;
|
||||
}
|
||||
|
||||
// check input_shape
|
||||
auto input_shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
if (input_shape.size() != SHAPE_SIZE) {
|
||||
MS_LOG(ERROR) << "Input is " << input_shape.size() << "-D, but BatchToSpace supports 4-D tensor.";
|
||||
return false;
|
||||
}
|
||||
input_shape_.assign(input_shape.begin(), input_shape.end());
|
||||
// check paddings_
|
||||
paddings_ = GetAttr<std::vector<std::vector<int64_t>>>(kernel_node, "paddings");
|
||||
if (paddings_.size() != PADDING_SHAPE_0) {
|
||||
MS_LOG(ERROR) << "paddings.size() in BatchToSpace needs 2.";
|
||||
return false;
|
||||
}
|
||||
if (paddings_[0].size() != PADDING_SHAPE_1 || paddings_[1].size() != PADDING_SHAPE_1) {
|
||||
MS_LOG(ERROR) << "paddings[i].size() in BatchToSpace needs 2.";
|
||||
return false;
|
||||
} else {
|
||||
for (size_t idx_i = 0; idx_i < PADDING_SHAPE_0; ++idx_i) {
|
||||
for (size_t idx_j = 0; idx_j < PADDING_SHAPE_1; ++idx_j) {
|
||||
if (paddings_[idx_i][idx_j] < 0) {
|
||||
MS_LOG(ERROR) << "the number in paddings can not be less than 0.";
|
||||
return false;
|
||||
}
|
||||
}
|
||||
auto tmp_shape = input_shape[idx_i + PADDING_SHAPE_1] + paddings_[idx_i][0] + paddings_[idx_i][1];
|
||||
if ((tmp_shape % block_size_) != 0) {
|
||||
MS_LOG(ERROR) << "padded shape must be divisible by block_size";
|
||||
return false;
|
||||
}
|
||||
if ((tmp_shape / block_size_) == 0) {
|
||||
MS_LOG(ERROR) << "padded shape can not be less than block_size";
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
std::vector<std::vector<int64_t>> paddings_;
|
||||
std::vector<size_t> input_shape_;
|
||||
size_t block_size_;
|
||||
size_t input_size_;
|
||||
size_t output_size_;
|
||||
size_t in_;
|
||||
size_t ic_;
|
||||
size_t ih_;
|
||||
size_t iw_;
|
||||
size_t on_;
|
||||
size_t oc_;
|
||||
size_t oh_;
|
||||
size_t ow_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_SPACETOBATCH_KERNEL_H_
|
|
@ -0,0 +1,133 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <cuda_runtime.h>
|
||||
#include "batchtospace_impl.cuh"
|
||||
#include "runtime/device/gpu/cuda_common.h"
|
||||
|
||||
template <typename T>
|
||||
__global__ void BatchToSpace(const size_t size, const T *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t crop_up, const size_t crop_dn,
|
||||
const size_t crop_lft, const size_t crop_rht, const size_t block_num,
|
||||
T *output) {
|
||||
size_t temp_stride = 0;
|
||||
size_t temp_pos = 0;
|
||||
size_t idx_on = 0;
|
||||
size_t idx_oc = 0;
|
||||
size_t idx_oh = 0;
|
||||
size_t idx_ow = 0;
|
||||
size_t idx_in = 0;
|
||||
size_t input_pos = 0;
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size;
|
||||
pos += blockDim.x * gridDim.x) {
|
||||
temp_stride = oc * oh * ow;
|
||||
idx_on = pos / temp_stride;
|
||||
temp_pos = pos % temp_stride;
|
||||
|
||||
temp_stride /= oc;
|
||||
idx_oc = temp_pos / temp_stride;
|
||||
temp_pos = pos % temp_stride;
|
||||
|
||||
temp_stride /= oh;
|
||||
idx_oh = temp_pos / temp_stride;
|
||||
temp_pos = pos % temp_stride;
|
||||
|
||||
temp_stride /= ow;
|
||||
idx_ow = temp_pos / temp_stride;
|
||||
|
||||
idx_in = (((idx_oh + crop_up) % block_num) * block_num + ((idx_ow + crop_lft) % block_num)) * on + idx_on;
|
||||
input_pos = idx_in * ic;
|
||||
input_pos = (input_pos + idx_oc) * ih;
|
||||
input_pos = (input_pos + ((idx_oh + crop_up) - (idx_in / (on * block_num))) / block_num) * iw;
|
||||
input_pos = (input_pos + ((idx_ow + crop_lft) - ((idx_in / on) % block_num)) / block_num);
|
||||
output[pos] = input[input_pos];
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CalBatchToSpace(const size_t size, const T *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t crop_up, const size_t crop_dn,
|
||||
const size_t crop_lft, const size_t crop_rht, const size_t block_num,
|
||||
T *output, cudaStream_t cuda_stream) {
|
||||
BatchToSpace<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(
|
||||
size, input, in, ih, iw, ic, on, oh, ow, oc, crop_up, crop_dn, crop_lft, crop_rht, block_num, output);
|
||||
return;
|
||||
}
|
||||
|
||||
template void CalBatchToSpace<float>(const size_t size, const float *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t crop_up, const size_t crop_dn,
|
||||
const size_t crop_lft, const size_t crop_rht, const size_t block_num,
|
||||
float *output, cudaStream_t cuda_stream);
|
||||
template void CalBatchToSpace<half>(const size_t size, const half *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t crop_up, const size_t crop_dn,
|
||||
const size_t crop_lft, const size_t crop_rht, const size_t block_num,
|
||||
half *output, cudaStream_t cuda_stream);
|
||||
template void CalBatchToSpace<int>(const size_t size, const int *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t crop_up, const size_t crop_dn,
|
||||
const size_t crop_lft, const size_t crop_rht, const size_t block_num,
|
||||
int *output, cudaStream_t cuda_stream);
|
||||
template void CalBatchToSpace<int64_t>(const size_t size, const int64_t *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t crop_up, const size_t crop_dn,
|
||||
const size_t crop_lft, const size_t crop_rht, const size_t block_num,
|
||||
int64_t *output, cudaStream_t cuda_stream);
|
||||
template void CalBatchToSpace<int16_t>(const size_t size, const int16_t *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t crop_up, const size_t crop_dn,
|
||||
const size_t crop_lft, const size_t crop_rht, const size_t block_num,
|
||||
int16_t *output, cudaStream_t cuda_stream);
|
||||
template void CalBatchToSpace<int8_t>(const size_t size, const int8_t *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t crop_up, const size_t crop_dn,
|
||||
const size_t crop_lft, const size_t crop_rht, const size_t block_num,
|
||||
int8_t *output, cudaStream_t cuda_stream);
|
||||
template void CalBatchToSpace<uint8_t>(const size_t size, const uint8_t *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t crop_up, const size_t crop_dn,
|
||||
const size_t crop_lft, const size_t crop_rht, const size_t block_num,
|
||||
uint8_t *output, cudaStream_t cuda_stream);
|
||||
template void CalBatchToSpace<uint16_t>(const size_t size, const uint16_t *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t crop_up, const size_t crop_dn,
|
||||
const size_t crop_lft, const size_t crop_rht, const size_t block_num,
|
||||
uint16_t *output, cudaStream_t cuda_stream);
|
||||
template void CalBatchToSpace<uint32_t>(const size_t size, const uint32_t *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t crop_up, const size_t crop_dn,
|
||||
const size_t crop_lft, const size_t crop_rht, const size_t block_num,
|
||||
uint32_t *output, cudaStream_t cuda_stream);
|
||||
template void CalBatchToSpace<uint64_t>(const size_t size, const uint64_t *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t crop_up, const size_t crop_dn,
|
||||
const size_t crop_lft, const size_t crop_rht, const size_t block_num,
|
||||
uint64_t *output, cudaStream_t cuda_stream);
|
|
@ -0,0 +1,27 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_BATCHTOSPACE_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_BATCHTOSPACE_H_
|
||||
template <typename T>
|
||||
void CalBatchToSpace(const size_t size, const T *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t crop_up, const size_t crop_dn,
|
||||
const size_t crop_lft, const size_t crop_rht, const size_t block_num,
|
||||
T *output, cudaStream_t cuda_stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_BATCHTOSPACE_H_
|
|
@ -0,0 +1,134 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <cuda_runtime.h>
|
||||
#include "spacetobatch_impl.cuh"
|
||||
#include "runtime/device/gpu/cuda_common.h"
|
||||
|
||||
template <typename T>
|
||||
__global__ void SpaceToBatch(const size_t size, const T *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t pad_up, const size_t pad_dn,
|
||||
const size_t pad_lft, const size_t pad_rht, const size_t block_num,
|
||||
T *output) {
|
||||
size_t temp_stride = 0;
|
||||
size_t temp_pos = 0;
|
||||
size_t idx_in = 0;
|
||||
size_t idx_ic = 0;
|
||||
size_t idx_ih = 0;
|
||||
size_t idx_iw = 0;
|
||||
size_t idx_on = 0;
|
||||
size_t output_pos = 0;
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size;
|
||||
pos += blockDim.x * gridDim.x) {
|
||||
temp_stride = ic * ih * iw;
|
||||
idx_in = pos / temp_stride;
|
||||
temp_pos = pos % temp_stride;
|
||||
|
||||
temp_stride /= ic;
|
||||
idx_ic = temp_pos / temp_stride;
|
||||
temp_pos = pos % temp_stride;
|
||||
|
||||
temp_stride /= ih;
|
||||
idx_ih = temp_pos / temp_stride;
|
||||
temp_pos = pos % temp_stride;
|
||||
|
||||
temp_stride /= iw;
|
||||
idx_iw = temp_pos / temp_stride;
|
||||
|
||||
idx_on = (((idx_ih + pad_up) % block_num) * block_num + ((idx_iw + pad_lft) % block_num)) * in + idx_in;
|
||||
output_pos = idx_on * oc;
|
||||
output_pos = (output_pos + idx_ic) * oh;
|
||||
output_pos = (output_pos + ((idx_ih + pad_up) - (idx_on / (in * block_num))) / block_num) * ow;
|
||||
output_pos = (output_pos + ((idx_iw + pad_lft) - ((idx_on / in) % block_num)) / block_num);
|
||||
output[output_pos] = input[pos];
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CalSpaceToBatch(const size_t size, const T *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t pad_up, const size_t pad_dn,
|
||||
const size_t pad_lft, const size_t pad_rht, const size_t block_num,
|
||||
T *output, cudaStream_t cuda_stream) {
|
||||
cudaMemset(output, 0, on * oc * oh * ow * sizeof(T));
|
||||
SpaceToBatch<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(
|
||||
size, input, in, ih, iw, ic, on, oh, ow, oc, pad_up, pad_dn, pad_lft, pad_rht, block_num, output);
|
||||
return;
|
||||
}
|
||||
|
||||
template void CalSpaceToBatch<float>(const size_t size, const float *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t pad_up, const size_t pad_dn,
|
||||
const size_t pad_lft, const size_t pad_rht, const size_t block_num,
|
||||
float *output, cudaStream_t cuda_stream);
|
||||
template void CalSpaceToBatch<half>(const size_t size, const half *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t pad_up, const size_t pad_dn,
|
||||
const size_t pad_lft, const size_t pad_rht, const size_t block_num,
|
||||
half *output, cudaStream_t cuda_stream);
|
||||
template void CalSpaceToBatch<int>(const size_t size, const int *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t pad_up, const size_t pad_dn,
|
||||
const size_t pad_lft, const size_t pad_rht, const size_t block_num,
|
||||
int *output, cudaStream_t cuda_stream);
|
||||
template void CalSpaceToBatch<int64_t>(const size_t size, const int64_t *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t pad_up, const size_t pad_dn,
|
||||
const size_t pad_lft, const size_t pad_rht, const size_t block_num,
|
||||
int64_t *output, cudaStream_t cuda_stream);
|
||||
template void CalSpaceToBatch<int16_t>(const size_t size, const int16_t *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t pad_up, const size_t pad_dn,
|
||||
const size_t pad_lft, const size_t pad_rht, const size_t block_num,
|
||||
int16_t *output, cudaStream_t cuda_stream);
|
||||
template void CalSpaceToBatch<int8_t>(const size_t size, const int8_t *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t pad_up, const size_t pad_dn,
|
||||
const size_t pad_lft, const size_t pad_rht, const size_t block_num,
|
||||
int8_t *output, cudaStream_t cuda_stream);
|
||||
template void CalSpaceToBatch<uint8_t>(const size_t size, const uint8_t *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t pad_up, const size_t pad_dn,
|
||||
const size_t pad_lft, const size_t pad_rht, const size_t block_num,
|
||||
uint8_t *output, cudaStream_t cuda_stream);
|
||||
template void CalSpaceToBatch<uint16_t>(const size_t size, const uint16_t *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t pad_up, const size_t pad_dn,
|
||||
const size_t pad_lft, const size_t pad_rht, const size_t block_num,
|
||||
uint16_t *output, cudaStream_t cuda_stream);
|
||||
template void CalSpaceToBatch<uint32_t>(const size_t size, const uint32_t *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t pad_up, const size_t pad_dn,
|
||||
const size_t pad_lft, const size_t pad_rht, const size_t block_num,
|
||||
uint32_t *output, cudaStream_t cuda_stream);
|
||||
template void CalSpaceToBatch<uint64_t>(const size_t size, const uint64_t *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t pad_up, const size_t pad_dn,
|
||||
const size_t pad_lft, const size_t pad_rht, const size_t block_num,
|
||||
uint64_t *output, cudaStream_t cuda_stream);
|
|
@ -0,0 +1,27 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SPACETOBATCH_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SPACETOBATCH_H_
|
||||
template <typename T>
|
||||
void CalSpaceToBatch(const size_t size, const T *input, const size_t in,
|
||||
const size_t ih, const size_t iw, const size_t ic,
|
||||
const size_t on, const size_t oh, const size_t ow,
|
||||
const size_t oc, const size_t pad_up, const size_t pad_dn,
|
||||
const size_t pad_lft, const size_t pad_rht, const size_t block_num,
|
||||
T *output, cudaStream_t cuda_stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SPACETOBATCH_H_
|
|
@ -0,0 +1,84 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops.operations.array_ops as P
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
class BatchToSpaceNet(nn.Cell):
|
||||
def __init__(self, nptype, block_size=2, input_shape=(4, 1, 2, 2)):
|
||||
super(BatchToSpaceNet, self).__init__()
|
||||
self.BatchToSpace = P.BatchToSpace(block_size=block_size, crops=[[0, 0], [0, 0]])
|
||||
input_size = 1
|
||||
for i in input_shape:
|
||||
input_size = input_size*i
|
||||
data_np = np.arange(input_size).reshape(input_shape).astype(nptype)
|
||||
self.x1 = Parameter(initializer(Tensor(data_np), input_shape), name='x1')
|
||||
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
y1 = self.BatchToSpace(self.x1)
|
||||
return y1
|
||||
|
||||
|
||||
def BatchToSpace(nptype, block_size=2, input_shape=(4, 1, 2, 2)):
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
input_size = 1
|
||||
for i in input_shape:
|
||||
input_size = input_size*i
|
||||
expect = np.array([[[[0, 4, 1, 5],
|
||||
[8, 12, 9, 13],
|
||||
[2, 6, 3, 7],
|
||||
[10, 14, 11, 15]]]]).astype(nptype)
|
||||
|
||||
dts = BatchToSpaceNet(nptype, block_size, input_shape)
|
||||
output = dts()
|
||||
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
def BatchToSpace_pynative(nptype, block_size=2, input_shape=(4, 1, 2, 2)):
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
input_size = 1
|
||||
for i in input_shape:
|
||||
input_size = input_size*i
|
||||
expect = np.array([[[[0, 4, 1, 5],
|
||||
[8, 12, 9, 13],
|
||||
[2, 6, 3, 7],
|
||||
[10, 14, 11, 15]]]]).astype(nptype)
|
||||
|
||||
dts = P.BatchToSpace(block_size=block_size, crops=[[0, 0], [0, 0]])
|
||||
arr_input = Tensor(np.arange(input_size).reshape(input_shape).astype(nptype))
|
||||
output = dts(arr_input)
|
||||
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_batchtospace_graph_float32():
|
||||
BatchToSpace(np.float32)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_batchtospace_graph_float16():
|
||||
BatchToSpace(np.float16)
|
|
@ -0,0 +1,92 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops.operations.array_ops as P
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
class SpaceToBatchNet(nn.Cell):
|
||||
def __init__(self, nptype, block_size=2, input_shape=(1, 1, 4, 4)):
|
||||
super(SpaceToBatchNet, self).__init__()
|
||||
self.SpaceToBatch = P.SpaceToBatch(block_size=block_size, paddings=[[0, 0], [0, 0]])
|
||||
input_size = 1
|
||||
for i in input_shape:
|
||||
input_size = input_size*i
|
||||
data_np = np.arange(input_size).reshape(input_shape).astype(nptype)
|
||||
self.x1 = Parameter(initializer(Tensor(data_np), input_shape), name='x1')
|
||||
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
y1 = self.SpaceToBatch(self.x1)
|
||||
return y1
|
||||
|
||||
|
||||
def SpaceToBatch(nptype, block_size=2, input_shape=(1, 1, 4, 4)):
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
input_size = 1
|
||||
for i in input_shape:
|
||||
input_size = input_size*i
|
||||
expect = np.array([[[[0, 2],
|
||||
[8, 10]]],
|
||||
[[[1, 3],
|
||||
[9, 11]]],
|
||||
[[[4, 6],
|
||||
[12, 14]]],
|
||||
[[[5, 7],
|
||||
[13, 15]]]]).astype(nptype)
|
||||
|
||||
dts = SpaceToBatchNet(nptype, block_size, input_shape)
|
||||
output = dts()
|
||||
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
def SpaceToBatch_pynative(nptype, block_size=2, input_shape=(1, 1, 4, 4)):
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
input_size = 1
|
||||
for i in input_shape:
|
||||
input_size = input_size*i
|
||||
expect = np.array([[[[0, 2],
|
||||
[8, 10]]],
|
||||
[[[1, 3],
|
||||
[9, 11]]],
|
||||
[[[4, 6],
|
||||
[12, 14]]],
|
||||
[[[5, 7],
|
||||
[13, 15]]]]).astype(nptype)
|
||||
|
||||
dts = P.SpaceToBatch(block_size=block_size, paddings=[[0, 0], [0, 0]])
|
||||
arr_input = Tensor(np.arange(input_size).reshape(input_shape).astype(nptype))
|
||||
output = dts(arr_input)
|
||||
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_spacetobatch_graph_float32():
|
||||
SpaceToBatch(np.float32)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_spacetobatch_graph_float16():
|
||||
SpaceToBatch(np.float16)
|
Loading…
Reference in New Issue