add src dir

This commit is contained in:
wukesong 2020-06-19 12:32:51 +08:00
parent b3f91a4f22
commit 367a51aeeb
15 changed files with 30 additions and 30 deletions

View File

@ -2,7 +2,7 @@
## Description
Training AlexNet with CIFAR-10 dataset in MindSpore.
Training AlexNet with dataset in MindSpore.
This is the simple tutorial for training AlexNet in MindSpore.
@ -10,19 +10,19 @@ This is the simple tutorial for training AlexNet in MindSpore.
- Install [MindSpore](https://www.mindspore.cn/install/en).
- Download the CIFAR-10 dataset, the directory structure is as follows:
- Download the dataset, the directory structure is as follows:
```
├─cifar-10-batches-bin
├─10-batches-bin
└─cifar-10-verify-bin
└─10-verify-bin
```
## Running the example
```python
# train AlexNet, hyperparameter setting in config.py
python train.py --data_path cifar-10-batches-bin
python train.py --data_path 10-batches-bin
```
You will get the loss value of each step as following:
@ -38,8 +38,8 @@ epoch: 1 step: 1538, loss is 1.0221305
Then, evaluate AlexNet according to network model
```python
# evaluate AlexNet, 1 epoch training accuracy is up to 51.1%; 10 epoch training accuracy is up to 81.2%
python eval.py --data_path cifar-10-verify-bin --ckpt_path checkpoint_alexnet-1_1562.ckpt
# evaluate AlexNet
python eval.py --data_path 10-verify-bin --ckpt_path checkpoint_alexnet-1_1562.ckpt
```
## Note

View File

@ -19,9 +19,9 @@ python eval.py --data_path /YourDataPath --ckpt_path Your.ckpt
"""
import argparse
from config import alexnet_cfg as cfg
from dataset import create_dataset_mnist
from alexnet import AlexNet
from src.config import alexnet_cfg as cfg
from src.dataset import create_dataset_mnist
from src.alexnet import AlexNet
import mindspore.nn as nn
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net

View File

View File

@ -19,10 +19,10 @@ python train.py --data_path /YourDataPath
"""
import argparse
from config import alexnet_cfg as cfg
from dataset import create_dataset_mnist
from generator_lr import get_lr
from alexnet import AlexNet
from src.config import alexnet_cfg as cfg
from src.dataset import create_dataset_mnist
from src.generator_lr import get_lr
from src.alexnet import AlexNet
import mindspore.nn as nn
from mindspore import context
from mindspore import Tensor

View File

@ -2,7 +2,7 @@
## Description
Training LeNet with MNIST dataset in MindSpore.
Training LeNet with dataset in MindSpore.
This is the simple and basic tutorial for constructing a network in MindSpore.
@ -10,10 +10,10 @@ This is the simple and basic tutorial for constructing a network in MindSpore.
- Install [MindSpore](https://www.mindspore.cn/install/en).
- Download the MNIST dataset, the directory structure is as follows:
- Download the dataset, the directory structure is as follows:
```
└─MNIST_Data
└─Data
├─test
│ t10k-images.idx3-ubyte
│ t10k-labels.idx1-ubyte
@ -27,7 +27,7 @@ This is the simple and basic tutorial for constructing a network in MindSpore.
```python
# train LeNet, hyperparameter setting in config.py
python train.py --data_path MNIST_Data
python train.py --data_path Data
```
You will get the loss value of each step as following:
@ -43,8 +43,8 @@ epoch: 1 step: 1741, loss is 0.05018193
Then, evaluate LeNet according to network model
```python
# evaluate LeNet, after 1 epoch training, the accuracy is up to 96.5%
python eval.py --data_path MNIST_Data --ckpt_path checkpoint_lenet-1_1875.ckpt
# evaluate LeNet
python eval.py --data_path Data --ckpt_path checkpoint_lenet-1_1875.ckpt
```
## Note

View File

@ -20,9 +20,9 @@ python eval.py --data_path /YourDataPath --ckpt_path Your.ckpt
import os
import argparse
from dataset import create_dataset
from config import mnist_cfg as cfg
from lenet import LeNet5
from src.dataset import create_dataset
from src.config import mnist_cfg as cfg
from src.lenet import LeNet5
import mindspore.nn as nn
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
@ -32,10 +32,10 @@ from mindspore.nn.metrics import Accuracy
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'],
help='device where the code will be implemented (default: Ascend)')
parser.add_argument('--data_path', type=str, default="./MNIST_Data",
parser.add_argument('--data_path', type=str, default="./Data",
help='path where the dataset is saved')
parser.add_argument('--ckpt_path', type=str, default="", help='if mode is test, must provide\
path where the trained ckpt file')

View File

View File

@ -20,9 +20,9 @@ python train.py --data_path /YourDataPath
import os
import argparse
from config import mnist_cfg as cfg
from dataset import create_dataset
from lenet import LeNet5
from src.config import mnist_cfg as cfg
from src.dataset import create_dataset
from src.lenet import LeNet5
import mindspore.nn as nn
from mindspore import context
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
@ -31,10 +31,10 @@ from mindspore.nn.metrics import Accuracy
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'],
help='device where the code will be implemented (default: Ascend)')
parser.add_argument('--data_path', type=str, default="./MNIST_Data",
parser.add_argument('--data_path', type=str, default="./Data",
help='path where the dataset is saved')
parser.add_argument('--dataset_sink_mode', type=bool, default=True, help='dataset_sink_mode is False or True')