!6233 move batch_size from bert_cfg_cfg to cfg

Merge pull request !6233 from yoonlee666/master
This commit is contained in:
mindspore-ci-bot 2020-09-16 14:51:06 +08:00 committed by Gitee
commit 3671244ff8
16 changed files with 42 additions and 126 deletions

View File

@ -312,6 +312,7 @@ Parameters for training and evaluation can be set in file `config.py` and `finet
```
config for lossscale and etc.
bert_network version of BERT model: base | nezha, default is base
batch_size batch size of input dataset: N, default is 16
loss_scale_value initial value of loss scale: N, default is 2^32
scale_factor factor used to update loss scale: N, default is 2
scale_window steps for once updatation of loss scale: N, default is 1000
@ -321,7 +322,6 @@ config for lossscale and etc.
### Parameters:
```
Parameters for dataset and network (Pre-Training/Fine-Tuning/Evaluation):
batch_size batch size of input dataset: N, default is 16
seq_length length of input sequence: N, default is 128
vocab_size size of each embedding vector: N, must be consistant with the dataset you use. Default is 21136
hidden_size size of bert encoder layers: N, default is 768
@ -335,8 +335,6 @@ Parameters for dataset and network (Pre-Training/Fine-Tuning/Evaluation):
type_vocab_size size of token type vocab: N, default is 16
initializer_range initialization value of TruncatedNormal: Q, default is 0.02
use_relative_positions use relative positions or not: True | False, default is False
input_mask_from_dataset use the input mask loaded form dataset or not: True | False, default is True
token_type_ids_from_dataset use the token type ids loaded from dataset or not: True | False, default is True
dtype data type of input: mstype.float16 | mstype.float32, default is mstype.float32
compute_type compute type in BertTransformer: mstype.float16 | mstype.float32, default is mstype.float16

View File

@ -19,7 +19,6 @@ from src.bert_model import BertModel
from src.bert_model import BertConfig
import mindspore.common.dtype as mstype
bert_net_cfg_base = BertConfig(
batch_size=32,
seq_length=128,
vocab_size=21128,
hidden_size=768,
@ -33,13 +32,10 @@ bert_net_cfg_base = BertConfig(
type_vocab_size=2,
initializer_range=0.02,
use_relative_positions=False,
input_mask_from_dataset=True,
token_type_ids_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float16
)
bert_net_cfg_nezha = BertConfig(
batch_size=32,
seq_length=128,
vocab_size=21128,
hidden_size=1024,
@ -53,8 +49,6 @@ bert_net_cfg_nezha = BertConfig(
type_vocab_size=2,
initializer_range=0.02,
use_relative_positions=True,
input_mask_from_dataset=True,
token_type_ids_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float16
)
@ -63,15 +57,11 @@ def create_network(name, *args, **kwargs):
Create bert network for base and nezha.
'''
if name == 'bert_base':
if "batch_size" in kwargs:
bert_net_cfg_base.batch_size = kwargs["batch_size"]
if "seq_length" in kwargs:
bert_net_cfg_base.seq_length = kwargs["seq_length"]
is_training = kwargs.get("is_training", default=False)
return BertModel(bert_net_cfg_base, is_training, *args)
if name == 'bert_nezha':
if "batch_size" in kwargs:
bert_net_cfg_nezha.batch_size = kwargs["batch_size"]
if "seq_length" in kwargs:
bert_net_cfg_nezha.seq_length = kwargs["seq_length"]
is_training = kwargs.get("is_training", default=False)

View File

@ -131,7 +131,7 @@ def bert_predict():
'''
devid = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=devid)
dataset = get_enwiki_512_dataset(bert_net_cfg.batch_size, 1)
dataset = get_enwiki_512_dataset(cfg.batch_size, 1)
net_for_pretraining = BertPretrainEva(bert_net_cfg)
net_for_pretraining.set_train(False)
param_dict = load_checkpoint(cfg.finetune_ckpt)

View File

@ -188,7 +188,7 @@ def run_classifier():
assessment_method=assessment_method)
if args_opt.do_train.lower() == "true":
ds = create_classification_dataset(batch_size=bert_net_cfg.batch_size, repeat_count=1,
ds = create_classification_dataset(batch_size=optimizer_cfg.batch_size, repeat_count=1,
assessment_method=assessment_method,
data_file_path=args_opt.train_data_file_path,
schema_file_path=args_opt.schema_file_path,
@ -204,7 +204,7 @@ def run_classifier():
ds.get_dataset_size(), epoch_num, "classifier")
if args_opt.do_eval.lower() == "true":
ds = create_classification_dataset(batch_size=bert_net_cfg.batch_size, repeat_count=1,
ds = create_classification_dataset(batch_size=optimizer_cfg.batch_size, repeat_count=1,
assessment_method=assessment_method,
data_file_path=args_opt.eval_data_file_path,
schema_file_path=args_opt.schema_file_path,

View File

@ -104,9 +104,9 @@ def do_eval(dataset=None, network=None, use_crf="", num_class=2, assessment_meth
if load_checkpoint_path == "":
raise ValueError("Finetune model missed, evaluation task must load finetune model!")
if assessment_method == "clue_benchmark":
bert_net_cfg.batch_size = 1
net_for_pretraining = network(bert_net_cfg, False, num_class, use_crf=(use_crf.lower() == "true"),
tag_to_index=tag_to_index)
optimizer_cfg.batch_size = 1
net_for_pretraining = network(bert_net_cfg, optimizer_cfg.batch_size, False, num_class,
use_crf=(use_crf.lower() == "true"), tag_to_index=tag_to_index)
net_for_pretraining.set_train(False)
param_dict = load_checkpoint(load_checkpoint_path)
load_param_into_net(net_for_pretraining, param_dict)
@ -211,11 +211,11 @@ def run_ner():
number_labels = len(tag_to_index)
else:
number_labels = args_opt.num_class
netwithloss = BertNER(bert_net_cfg, True, num_labels=number_labels,
netwithloss = BertNER(bert_net_cfg, optimizer_cfg.batch_size, True, num_labels=number_labels,
use_crf=(args_opt.use_crf.lower() == "true"),
tag_to_index=tag_to_index, dropout_prob=0.1)
if args_opt.do_train.lower() == "true":
ds = create_ner_dataset(batch_size=bert_net_cfg.batch_size, repeat_count=1,
ds = create_ner_dataset(batch_size=optimizer_cfg.batch_size, repeat_count=1,
assessment_method=assessment_method, data_file_path=args_opt.train_data_file_path,
schema_file_path=args_opt.schema_file_path,
do_shuffle=(args_opt.train_data_shuffle.lower() == "true"))

View File

@ -108,7 +108,7 @@ def run_pretrain():
if args_opt.accumulation_steps > 1:
logger.info("accumulation steps: {}".format(args_opt.accumulation_steps))
logger.info("global batch size: {}".format(bert_net_cfg.batch_size * args_opt.accumulation_steps))
logger.info("global batch size: {}".format(cfg.batch_size * args_opt.accumulation_steps))
if args_opt.enable_data_sink == "true":
args_opt.data_sink_steps *= args_opt.accumulation_steps
logger.info("data sink steps: {}".format(args_opt.data_sink_steps))

View File

@ -123,7 +123,7 @@ def do_eval(dataset=None, vocab_file="", eval_json="", load_checkpoint_path="",
start = logits[1].asnumpy()
end = logits[2].asnumpy()
for i in range(bert_net_cfg.batch_size):
for i in range(optimizer_cfg.batch_size):
unique_id = int(ids[i])
start_logits = [float(x) for x in start[i].flat]
end_logits = [float(x) for x in end[i].flat]
@ -193,7 +193,7 @@ def run_squad():
netwithloss = BertSquad(bert_net_cfg, True, 2, dropout_prob=0.1)
if args_opt.do_train.lower() == "true":
ds = create_squad_dataset(batch_size=bert_net_cfg.batch_size, repeat_count=1,
ds = create_squad_dataset(batch_size=optimizer_cfg.batch_size, repeat_count=1,
data_file_path=args_opt.train_data_file_path,
schema_file_path=args_opt.schema_file_path,
do_shuffle=(args_opt.train_data_shuffle.lower() == "true"))
@ -207,7 +207,7 @@ def run_squad():
ds.get_dataset_size(), epoch_num, "squad")
if args_opt.do_eval.lower() == "true":
ds = create_squad_dataset(batch_size=bert_net_cfg.batch_size, repeat_count=1,
ds = create_squad_dataset(batch_size=optimizer_cfg.batch_size, repeat_count=1,
data_file_path=args_opt.eval_data_file_path,
schema_file_path=args_opt.schema_file_path, is_training=False,
do_shuffle=(args_opt.eval_data_shuffle.lower() == "true"))

View File

@ -274,15 +274,15 @@ class BertNER(nn.Cell):
"""
Train interface for sequence labeling finetuning task.
"""
def __init__(self, config, is_training, num_labels=11, use_crf=False, tag_to_index=None, dropout_prob=0.0,
use_one_hot_embeddings=False):
def __init__(self, config, batch_size, is_training, num_labels=11, use_crf=False,
tag_to_index=None, dropout_prob=0.0, use_one_hot_embeddings=False):
super(BertNER, self).__init__()
self.bert = BertNERModel(config, is_training, num_labels, use_crf, dropout_prob, use_one_hot_embeddings)
if use_crf:
if not tag_to_index:
raise Exception("The dict for tag-index mapping should be provided for CRF.")
from src.CRF import CRF
self.loss = CRF(tag_to_index, config.batch_size, config.seq_length, is_training)
self.loss = CRF(tag_to_index, batch_size, config.seq_length, is_training)
else:
self.loss = CrossEntropyCalculation(is_training)
self.num_labels = num_labels

View File

@ -92,9 +92,8 @@ class GetMaskedLMOutput(nn.Cell):
self.matmul = P.MatMul(transpose_b=True)
self.log_softmax = nn.LogSoftmax(axis=-1)
self.shape_flat_offsets = (-1, 1)
self.rng = Tensor(np.array(range(0, config.batch_size)).astype(np.int32))
self.last_idx = (-1,)
self.shape_flat_sequence_tensor = (config.batch_size * config.seq_length, self.width)
self.shape_flat_sequence_tensor = (-1, self.width)
self.seq_length_tensor = Tensor(np.array((config.seq_length,)).astype(np.int32))
self.cast = P.Cast()
self.compute_type = config.compute_type
@ -105,8 +104,8 @@ class GetMaskedLMOutput(nn.Cell):
output_weights,
positions):
"""Get output log_probs"""
flat_offsets = self.reshape(
self.rng * self.seq_length_tensor, self.shape_flat_offsets)
rng = F.tuple_to_array(F.make_range(P.Shape()(input_tensor)[0]))
flat_offsets = self.reshape(rng * self.seq_length_tensor, self.shape_flat_offsets)
flat_position = self.reshape(positions + flat_offsets, self.last_idx)
flat_sequence_tensor = self.reshape(input_tensor, self.shape_flat_sequence_tensor)
input_tensor = self.gather(flat_sequence_tensor, flat_position, 0)

View File

@ -32,7 +32,6 @@ class BertConfig:
Configuration for `BertModel`.
Args:
batch_size (int): Batch size of input dataset.
seq_length (int): Length of input sequence. Default: 128.
vocab_size (int): The shape of each embedding vector. Default: 32000.
hidden_size (int): Size of the bert encoder layers. Default: 768.
@ -52,15 +51,10 @@ class BertConfig:
type_vocab_size (int): Size of token type vocab. Default: 16.
initializer_range (float): Initialization value of TruncatedNormal. Default: 0.02.
use_relative_positions (bool): Specifies whether to use relative positions. Default: False.
input_mask_from_dataset (bool): Specifies whether to use the input mask that loaded from
dataset. Default: True.
token_type_ids_from_dataset (bool): Specifies whether to use the token type ids that loaded
from dataset. Default: True.
dtype (:class:`mindspore.dtype`): Data type of the input. Default: mstype.float32.
compute_type (:class:`mindspore.dtype`): Compute type in BertTransformer. Default: mstype.float32.
"""
def __init__(self,
batch_size,
seq_length=128,
vocab_size=32000,
hidden_size=768,
@ -74,11 +68,8 @@ class BertConfig:
type_vocab_size=16,
initializer_range=0.02,
use_relative_positions=False,
input_mask_from_dataset=True,
token_type_ids_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float32):
self.batch_size = batch_size
self.seq_length = seq_length
self.vocab_size = vocab_size
self.hidden_size = hidden_size
@ -91,8 +82,6 @@ class BertConfig:
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.input_mask_from_dataset = input_mask_from_dataset
self.token_type_ids_from_dataset = token_type_ids_from_dataset
self.use_relative_positions = use_relative_positions
self.dtype = dtype
self.compute_type = compute_type
@ -385,7 +374,6 @@ class BertAttention(nn.Cell):
Apply multi-headed attention from "from_tensor" to "to_tensor".
Args:
batch_size (int): Batch size of input datasets.
from_tensor_width (int): Size of last dim of from_tensor.
to_tensor_width (int): Size of last dim of to_tensor.
from_seq_length (int): Length of from_tensor sequence.
@ -406,7 +394,6 @@ class BertAttention(nn.Cell):
compute_type (:class:`mindspore.dtype`): Compute type in BertAttention. Default: mstype.float32.
"""
def __init__(self,
batch_size,
from_tensor_width,
to_tensor_width,
from_seq_length,
@ -425,7 +412,6 @@ class BertAttention(nn.Cell):
compute_type=mstype.float32):
super(BertAttention, self).__init__()
self.batch_size = batch_size
self.from_seq_length = from_seq_length
self.to_seq_length = to_seq_length
self.num_attention_heads = num_attention_heads
@ -452,9 +438,8 @@ class BertAttention(nn.Cell):
activation=value_act,
weight_init=weight).to_float(compute_type)
self.shape_from = (batch_size, from_seq_length, num_attention_heads, size_per_head)
self.shape_to = (
batch_size, to_seq_length, num_attention_heads, size_per_head)
self.shape_from = (-1, from_seq_length, num_attention_heads, size_per_head)
self.shape_to = (-1, to_seq_length, num_attention_heads, size_per_head)
self.matmul_trans_b = P.BatchMatMul(transpose_b=True)
self.multiply = P.Mul()
@ -463,7 +448,6 @@ class BertAttention(nn.Cell):
self.trans_shape_relative = (2, 0, 1, 3)
self.trans_shape_position = (1, 2, 0, 3)
self.multiply_data = -10000.0
self.batch_num = batch_size * num_attention_heads
self.matmul = P.BatchMatMul()
self.softmax = nn.Softmax()
@ -476,9 +460,9 @@ class BertAttention(nn.Cell):
self.cast = P.Cast()
self.get_dtype = P.DType()
if do_return_2d_tensor:
self.shape_return = (batch_size * from_seq_length, num_attention_heads * size_per_head)
self.shape_return = (-1, num_attention_heads * size_per_head)
else:
self.shape_return = (batch_size, from_seq_length, num_attention_heads * size_per_head)
self.shape_return = (-1, from_seq_length, num_attention_heads * size_per_head)
self.cast_compute_type = SaturateCast(dst_type=compute_type)
if self.use_relative_positions:
@ -514,7 +498,7 @@ class BertAttention(nn.Cell):
# query_layer_r is [F, B * N, H]
query_layer_r = self.reshape(query_layer_t,
(self.from_seq_length,
self.batch_num,
-1,
self.size_per_head))
# key_position_scores is [F, B * N, F|T]
key_position_scores = self.matmul_trans_b(query_layer_r,
@ -522,7 +506,7 @@ class BertAttention(nn.Cell):
# key_position_scores_r is [F, B, N, F|T]
key_position_scores_r = self.reshape(key_position_scores,
(self.from_seq_length,
self.batch_size,
-1,
self.num_attention_heads,
self.from_seq_length))
# key_position_scores_r_t is [B, N, F, F|T]
@ -585,7 +569,6 @@ class BertSelfAttention(nn.Cell):
Apply self-attention.
Args:
batch_size (int): Batch size of input dataset.
seq_length (int): Length of input sequence.
hidden_size (int): Size of the bert encoder layers.
num_attention_heads (int): Number of attention heads. Default: 12.
@ -598,7 +581,6 @@ class BertSelfAttention(nn.Cell):
compute_type (:class:`mindspore.dtype`): Compute type in BertSelfAttention. Default: mstype.float32.
"""
def __init__(self,
batch_size,
seq_length,
hidden_size,
num_attention_heads=12,
@ -616,7 +598,6 @@ class BertSelfAttention(nn.Cell):
self.size_per_head = int(hidden_size / num_attention_heads)
self.attention = BertAttention(
batch_size=batch_size,
from_tensor_width=hidden_size,
to_tensor_width=hidden_size,
from_seq_length=seq_length,
@ -651,7 +632,6 @@ class BertEncoderCell(nn.Cell):
Encoder cells used in BertTransformer.
Args:
batch_size (int): Batch size of input dataset.
hidden_size (int): Size of the bert encoder layers. Default: 768.
seq_length (int): Length of input sequence. Default: 512.
num_attention_heads (int): Number of attention heads. Default: 12.
@ -666,7 +646,6 @@ class BertEncoderCell(nn.Cell):
compute_type (:class:`mindspore.dtype`): Compute type in attention. Default: mstype.float32.
"""
def __init__(self,
batch_size,
hidden_size=768,
seq_length=512,
num_attention_heads=12,
@ -680,7 +659,6 @@ class BertEncoderCell(nn.Cell):
compute_type=mstype.float32):
super(BertEncoderCell, self).__init__()
self.attention = BertSelfAttention(
batch_size=batch_size,
hidden_size=hidden_size,
seq_length=seq_length,
num_attention_heads=num_attention_heads,
@ -715,7 +693,6 @@ class BertTransformer(nn.Cell):
Multi-layer bert transformer.
Args:
batch_size (int): Batch size of input dataset.
hidden_size (int): Size of the encoder layers.
seq_length (int): Length of input sequence.
num_hidden_layers (int): Number of hidden layers in encoder cells.
@ -732,7 +709,6 @@ class BertTransformer(nn.Cell):
return_all_encoders (bool): Specifies whether to return all encoders. Default: False.
"""
def __init__(self,
batch_size,
hidden_size,
seq_length,
num_hidden_layers,
@ -751,8 +727,7 @@ class BertTransformer(nn.Cell):
layers = []
for _ in range(num_hidden_layers):
layer = BertEncoderCell(batch_size=batch_size,
hidden_size=hidden_size,
layer = BertEncoderCell(hidden_size=hidden_size,
seq_length=seq_length,
num_attention_heads=num_attention_heads,
intermediate_size=intermediate_size,
@ -769,7 +744,7 @@ class BertTransformer(nn.Cell):
self.reshape = P.Reshape()
self.shape = (-1, hidden_size)
self.out_shape = (batch_size, seq_length, hidden_size)
self.out_shape = (-1, seq_length, hidden_size)
def construct(self, input_tensor, attention_mask):
"""Multi-layer bert transformer."""
@ -799,24 +774,12 @@ class CreateAttentionMaskFromInputMask(nn.Cell):
"""
def __init__(self, config):
super(CreateAttentionMaskFromInputMask, self).__init__()
self.input_mask_from_dataset = config.input_mask_from_dataset
self.input_mask = None
if not self.input_mask_from_dataset:
self.input_mask = initializer(
"ones", [config.batch_size, config.seq_length], mstype.int32).to_tensor()
self.cast = P.Cast()
self.reshape = P.Reshape()
self.shape = (config.batch_size, 1, config.seq_length)
self.broadcast_ones = initializer(
"ones", [config.batch_size, config.seq_length, 1], mstype.float32).to_tensor()
self.batch_matmul = P.BatchMatMul()
self.shape = (-1, 1, config.seq_length)
def construct(self, input_mask):
if not self.input_mask_from_dataset:
input_mask = self.input_mask
attention_mask = self.cast(self.reshape(input_mask, self.shape), mstype.float32)
return attention_mask
@ -840,9 +803,6 @@ class BertModel(nn.Cell):
config.hidden_dropout_prob = 0.0
config.attention_probs_dropout_prob = 0.0
self.input_mask_from_dataset = config.input_mask_from_dataset
self.token_type_ids_from_dataset = config.token_type_ids_from_dataset
self.batch_size = config.batch_size
self.seq_length = config.seq_length
self.hidden_size = config.hidden_size
self.num_hidden_layers = config.num_hidden_layers
@ -850,12 +810,7 @@ class BertModel(nn.Cell):
self.token_type_ids = None
self.last_idx = self.num_hidden_layers - 1
output_embedding_shape = [self.batch_size, self.seq_length,
self.embedding_size]
if not self.token_type_ids_from_dataset:
self.token_type_ids = initializer(
"zeros", [self.batch_size, self.seq_length], mstype.int32).to_tensor()
output_embedding_shape = [-1, self.seq_length, self.embedding_size]
self.bert_embedding_lookup = EmbeddingLookup(
vocab_size=config.vocab_size,
@ -876,7 +831,6 @@ class BertModel(nn.Cell):
dropout_prob=config.hidden_dropout_prob)
self.bert_encoder = BertTransformer(
batch_size=self.batch_size,
hidden_size=self.hidden_size,
seq_length=self.seq_length,
num_attention_heads=config.num_attention_heads,
@ -905,8 +859,6 @@ class BertModel(nn.Cell):
def construct(self, input_ids, token_type_ids, input_mask):
"""Bidirectional Encoder Representations from Transformers."""
# embedding
if not self.token_type_ids_from_dataset:
token_type_ids = self.token_type_ids
word_embeddings, embedding_tables = self.bert_embedding_lookup(input_ids)
embedding_output = self.bert_embedding_postprocessor(token_type_ids,
word_embeddings)
@ -921,9 +873,10 @@ class BertModel(nn.Cell):
sequence_output = self.cast(encoder_output[self.last_idx], self.dtype)
# pooler
batch_size = P.Shape()(input_ids)[0]
sequence_slice = self.slice(sequence_output,
(0, 0, 0),
(self.batch_size, 1, self.hidden_size),
(batch_size, 1, self.hidden_size),
(1, 1, 1))
first_token = self.squeeze_1(sequence_slice)
pooled_output = self.dense(first_token)

View File

@ -19,6 +19,7 @@ from easydict import EasyDict as edict
import mindspore.common.dtype as mstype
from .bert_model import BertConfig
cfg = edict({
'batch_size': 32,
'bert_network': 'base',
'loss_scale_value': 65536,
'scale_factor': 2,
@ -57,7 +58,6 @@ large: BERT-NEZHA(a Chinese pretrained language model developed by Huawei, which
'''
if cfg.bert_network == 'base':
bert_net_cfg = BertConfig(
batch_size=64,
seq_length=128,
vocab_size=21128,
hidden_size=768,
@ -71,14 +71,11 @@ if cfg.bert_network == 'base':
type_vocab_size=2,
initializer_range=0.02,
use_relative_positions=False,
input_mask_from_dataset=True,
token_type_ids_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float16
)
if cfg.bert_network == 'nezha':
bert_net_cfg = BertConfig(
batch_size=96,
seq_length=128,
vocab_size=21128,
hidden_size=1024,
@ -92,14 +89,11 @@ if cfg.bert_network == 'nezha':
type_vocab_size=2,
initializer_range=0.02,
use_relative_positions=True,
input_mask_from_dataset=True,
token_type_ids_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float16
)
if cfg.bert_network == 'large':
bert_net_cfg = BertConfig(
batch_size=24,
seq_length=512,
vocab_size=30522,
hidden_size=1024,
@ -113,8 +107,6 @@ if cfg.bert_network == 'large':
type_vocab_size=2,
initializer_range=0.02,
use_relative_positions=False,
input_mask_from_dataset=True,
token_type_ids_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float16
)

View File

@ -20,7 +20,7 @@ import mindspore.common.dtype as mstype
import mindspore.dataset.engine.datasets as de
import mindspore.dataset.transforms.c_transforms as C
from mindspore import log as logger
from .config import bert_net_cfg
from .config import cfg
def create_bert_dataset(device_num=1, rank=0, do_shuffle="true", data_dir=None, schema_dir=None):
@ -46,7 +46,7 @@ def create_bert_dataset(device_num=1, rank=0, do_shuffle="true", data_dir=None,
ds = ds.map(operations=type_cast_op, input_columns="input_mask")
ds = ds.map(operations=type_cast_op, input_columns="input_ids")
# apply batch operations
ds = ds.batch(bert_net_cfg.batch_size, drop_remainder=True)
ds = ds.batch(cfg.batch_size, drop_remainder=True)
logger.info("data size: {}".format(ds.get_dataset_size()))
logger.info("repeat count: {}".format(ds.get_repeat_count()))
return ds

View File

@ -22,6 +22,7 @@ import mindspore.common.dtype as mstype
from .bert_model import BertConfig
optimizer_cfg = edict({
'batch_size': 16,
'optimizer': 'Lamb',
'AdamWeightDecay': edict({
'learning_rate': 2e-5,
@ -45,7 +46,6 @@ optimizer_cfg = edict({
})
bert_net_cfg = BertConfig(
batch_size=16,
seq_length=128,
vocab_size=21128,
hidden_size=768,
@ -59,8 +59,6 @@ bert_net_cfg = BertConfig(
type_vocab_size=2,
initializer_range=0.02,
use_relative_positions=False,
input_mask_from_dataset=True,
token_type_ids_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float16,
)

View File

@ -107,7 +107,7 @@ class BertNERModel(nn.Cell):
self.reshape = P.Reshape()
self.shape = (-1, config.hidden_size)
self.use_crf = use_crf
self.origin_shape = (config.batch_size, config.seq_length, self.num_labels)
self.origin_shape = (-1, config.seq_length, self.num_labels)
def construct(self, input_ids, input_mask, token_type_id):
"""Return the final logits as the results of log_softmax."""

View File

@ -41,11 +41,10 @@ DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"]
SCHEMA_DIR = "/home/workspace/mindspore_dataset/bert/example/datasetSchema.json"
def get_config(version='base', batch_size=1):
def get_config(version='base'):
"""get config"""
if version == 'base':
bert_config = BertConfig(
batch_size=batch_size,
seq_length=128,
vocab_size=21136,
hidden_size=768,
@ -59,13 +58,10 @@ def get_config(version='base', batch_size=1):
type_vocab_size=2,
initializer_range=0.02,
use_relative_positions=True,
input_mask_from_dataset=True,
token_type_ids_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float32)
elif version == 'large':
bert_config = BertConfig(
batch_size=batch_size,
seq_length=128,
vocab_size=21136,
hidden_size=1024,
@ -79,12 +75,10 @@ def get_config(version='base', batch_size=1):
type_vocab_size=2,
initializer_range=0.02,
use_relative_positions=False,
input_mask_from_dataset=True,
token_type_ids_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float16)
else:
bert_config = BertConfig(batch_size=batch_size)
bert_config = BertConfig()
return bert_config
@ -186,8 +180,7 @@ def test_bert_performance():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False)
ds, new_repeat_count, sink_size = me_de_train_dataset(sink_mode=True)
version = os.getenv('VERSION', 'large')
batch_size = 16
config = get_config(version=version, batch_size=batch_size)
config = get_config(version=version)
netwithloss = BertNetworkWithLoss(config, True)
lr = BertLearningRate(decay_steps=sink_size * new_repeat_count,

View File

@ -41,11 +41,10 @@ DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"]
SCHEMA_DIR = "/home/workspace/mindspore_dataset/bert/example/datasetSchema.json"
def get_config(version='base', batch_size=1):
def get_config(version='base'):
"""get config"""
if version == 'base':
bert_config = BertConfig(
batch_size=batch_size,
seq_length=128,
vocab_size=21136,
hidden_size=768,
@ -59,13 +58,10 @@ def get_config(version='base', batch_size=1):
type_vocab_size=2,
initializer_range=0.02,
use_relative_positions=True,
input_mask_from_dataset=True,
token_type_ids_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float32)
elif version == 'large':
bert_config = BertConfig(
batch_size=batch_size,
seq_length=128,
vocab_size=21136,
hidden_size=1024,
@ -79,12 +75,10 @@ def get_config(version='base', batch_size=1):
type_vocab_size=2,
initializer_range=0.02,
use_relative_positions=False,
input_mask_from_dataset=True,
token_type_ids_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float16)
else:
bert_config = BertConfig(batch_size=batch_size)
bert_config = BertConfig()
return bert_config
@ -185,8 +179,7 @@ def test_bert_percision():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False)
ds, new_repeat_count, _ = me_de_train_dataset()
version = os.getenv('VERSION', 'large')
batch_size = 16
config = get_config(version=version, batch_size=batch_size)
config = get_config(version=version)
netwithloss = BertNetworkWithLoss(config, True)
lr = BertLearningRate(decay_steps=ds.get_dataset_size()*new_repeat_count,
learning_rate=5e-5, end_learning_rate=1e-9,