forked from mindspore-Ecosystem/mindspore
modify the documentation of the scatter_div operator
This commit is contained in:
parent
3b3109e8e1
commit
349e41e64a
|
@ -15,7 +15,7 @@ mindspore.ops.scatter_div
|
|||
参数:
|
||||
- **input_x** (Parameter) - scatter_div的输入,任意维度的Parameter。
|
||||
- **indices** (Tensor) - 指定相除操作的索引,数据类型必须为mindspore.int32或者mindspore.int64。
|
||||
- **updates** (Tensor) - 指定与 `input_x` 取最小值操作的Tensor,数据类型与 `input_x` 相同,shape为 `indices.shape + input_x.shape[1:]` 。
|
||||
- **updates** (Tensor) - 指定与 `input_x` 相除的Tensor,数据类型与 `input_x` 相同,shape为 `indices.shape + input_x.shape[1:]` 。
|
||||
|
||||
输出:
|
||||
Tensor,更新后的 `input_x` ,shape和类型与 `input_x` 相同。
|
||||
|
|
|
@ -1560,9 +1560,9 @@ def scatter_div(input_x, indices, updates):
|
|||
Args:
|
||||
input_x (Parameter): The target tensor, with data type of Parameter.
|
||||
The shape is :math:`(N,*)` where :math:`*` means,any number of additional dimensions.
|
||||
indices (Tensor): The index to do min operation whose data type must be mindspore.int32 or
|
||||
indices (Tensor): The index to do divide operation whose data type must be mindspore.int32 or
|
||||
mindspore.int64.
|
||||
updates (Tensor): The tensor doing the min operation with `input_x`,
|
||||
updates (Tensor): The tensor doing the divide operation with `input_x`,
|
||||
the data type is same as `input_x`, the shape is `indices.shape + input_x.shape[1:]`.
|
||||
|
||||
Outputs:
|
||||
|
|
|
@ -4785,9 +4785,9 @@ class ScatterDiv(_ScatterOpDynamic):
|
|||
Inputs:
|
||||
- **input_x** (Parameter) - The target tensor, with data type of Parameter.
|
||||
The shape is :math:`(N,*)` where :math:`*` means,any number of additional dimensions.
|
||||
- **indices** (Tensor) - The index to do min operation whose data type must be mindspore.int32 or
|
||||
- **indices** (Tensor) - The index to do divide operation whose data type must be mindspore.int32 or
|
||||
mindspore.int64.
|
||||
- **updates** (Tensor) - The tensor doing the min operation with `input_x`,
|
||||
- **updates** (Tensor) - The tensor doing the divide operation with `input_x`,
|
||||
the data type is same as `input_x`, the shape is `indices.shape + input_x.shape[1:]`.
|
||||
|
||||
Outputs:
|
||||
|
|
Loading…
Reference in New Issue