forked from mindspore-Ecosystem/mindspore
!14805 [ME][ControlFlow] Add some control sink testcases
From: @Margaret_wangrui Reviewed-by: @ginfung,@zh_qh Signed-off-by: @zh_qh
This commit is contained in:
commit
32f92eecbd
|
@ -0,0 +1,65 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
from mindspore import context
|
||||
from mindspore import Tensor, nn
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
def test_signle_for():
|
||||
class SignleForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.add = P.Add()
|
||||
self.mul = P.Mul()
|
||||
|
||||
def construct(self, x, y, z):
|
||||
x = self.add(x, y)
|
||||
for _ in range(0, 3):
|
||||
z = self.add(z, x)
|
||||
y = self.mul(z, y)
|
||||
return y
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([2], mstype.int32)
|
||||
y = Tensor([5], mstype.int32)
|
||||
z = Tensor([4], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
for_net = SignleForNet()
|
||||
net = GradNet(for_net)
|
||||
graph_forward_res = for_net(x, y, z)
|
||||
graph_backward_res = net(x, y, z)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
for_net = SignleForNet()
|
||||
net = GradNet(for_net)
|
||||
pynative_forward_res = for_net(x, y, z)
|
||||
pynative_backward_res = net(x, y, z)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
|
@ -0,0 +1,70 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore import context
|
||||
from mindspore import Tensor, nn
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
def test_for_in_if():
|
||||
class ForInIfNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
param_a = np.full((1,), 5, dtype=np.float32)
|
||||
self.param_a = Parameter(Tensor(param_a), name='a')
|
||||
param_b = np.full((1,), 4, dtype=np.float32)
|
||||
self.param_b = Parameter(Tensor(param_b), name='b')
|
||||
|
||||
def construct(self, x):
|
||||
if self.param_a > self.param_b:
|
||||
x = self.mul(x, 2)
|
||||
for _ in range(0, 5):
|
||||
x = self.add(x, x)
|
||||
self.param_b += 1
|
||||
return x
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([10], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
for_in_if_net = ForInIfNet()
|
||||
net = GradNet(for_in_if_net)
|
||||
graph_forward_res = for_in_if_net(x)
|
||||
graph_backward_res = net(x)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
for_in_if_net = ForInIfNet()
|
||||
net = GradNet(for_in_if_net)
|
||||
pynative_forward_res = for_in_if_net(x)
|
||||
pynative_backward_res = net(x)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
|
@ -0,0 +1,75 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore import context
|
||||
from mindspore import Tensor, nn
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
def test_for_in_while():
|
||||
class ForInWhileNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
self.sub = P.Sub()
|
||||
self.assign = P.Assign()
|
||||
param_a = np.full((1,), 5, dtype=np.float32)
|
||||
self.param_a = Parameter(Tensor(param_a), name='a')
|
||||
param_b = np.full((1,), 2, dtype=np.float32)
|
||||
self.param_b = Parameter(Tensor(param_b), name='b')
|
||||
|
||||
def construct(self, x):
|
||||
self.assign(self.param_a, x + self.param_a)
|
||||
while self.param_a > self.param_b:
|
||||
x = self.mul(x, 2)
|
||||
for _ in range(0, 5):
|
||||
x = self.add(x, x)
|
||||
self.param_b = self.param_b + 1
|
||||
y = self.sub(x, self.param_b)
|
||||
self.assign(self.param_a, y)
|
||||
return x
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([2], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
for_in_while_net = ForInWhileNet()
|
||||
net = GradNet(for_in_while_net)
|
||||
graph_forward_res = for_in_while_net(x)
|
||||
graph_backward_res = net(x)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
for_in_while_net = ForInWhileNet()
|
||||
net = GradNet(for_in_while_net)
|
||||
pynative_forward_res = for_in_while_net(x)
|
||||
pynative_backward_res = net(x)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
|
@ -0,0 +1,75 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore import context
|
||||
from mindspore import Tensor, nn
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
def test_for_in_for():
|
||||
class ForInForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.relu = nn.ReLU()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
self.sub = P.Sub()
|
||||
self.assign = P.Assign()
|
||||
param_a = np.full((1,), 5, dtype=np.float32)
|
||||
self.param_a = Parameter(Tensor(param_a), name='a')
|
||||
param_b = np.full((1,), 2, dtype=np.float32)
|
||||
self.param_b = Parameter(Tensor(param_b), name='b')
|
||||
|
||||
def construct(self, x):
|
||||
self.assign(self.param_a, x + self.param_a)
|
||||
for _ in range(0, 10):
|
||||
x = self.mul(x, 2)
|
||||
for _ in range(0, 5):
|
||||
x = self.add(x, x)
|
||||
self.param_b += 1
|
||||
y = self.sub(x, self.param_b)
|
||||
z = self.relu(x + y)
|
||||
return z
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([2], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
for_in_for_net = ForInForNet()
|
||||
net = GradNet(for_in_for_net)
|
||||
graph_forward_res = for_in_for_net(x)
|
||||
graph_backward_res = net(x)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
for_in_for_net = ForInForNet()
|
||||
net = GradNet(for_in_for_net)
|
||||
pynative_forward_res = for_in_for_net(x)
|
||||
pynative_backward_res = net(x)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
|
@ -0,0 +1,77 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore import context
|
||||
from mindspore import Tensor, nn
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
def test_if_after_for():
|
||||
class IfAfterForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.relu = nn.ReLU()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
self.sub = P.Sub()
|
||||
self.assign = P.Assign()
|
||||
param_a = np.full((1,), 5, dtype=np.float32)
|
||||
self.param_a = Parameter(Tensor(param_a), name='a')
|
||||
param_b = np.full((1,), 2, dtype=np.float32)
|
||||
self.param_b = Parameter(Tensor(param_b), name='b')
|
||||
|
||||
def construct(self, x):
|
||||
self.assign(self.param_a, x + self.param_a)
|
||||
y = self.add(x, self.param_b)
|
||||
for _ in range(0, 2):
|
||||
x = self.sub(x, 2)
|
||||
self.param_b = self.add(self.param_b, 2)
|
||||
if x < self.param_b:
|
||||
y = self.mul(x, self.param_a)
|
||||
|
||||
z = self.relu(x + y)
|
||||
return z
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([7], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
if_after_for_net = IfAfterForNet()
|
||||
net = GradNet(if_after_for_net)
|
||||
graph_forward_res = if_after_for_net(x)
|
||||
graph_backward_res = net(x)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
if_after_for_net = IfAfterForNet()
|
||||
net = GradNet(if_after_for_net)
|
||||
pynative_forward_res = if_after_for_net(x)
|
||||
pynative_backward_res = net(x)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
|
@ -0,0 +1,79 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore import context
|
||||
from mindspore import Tensor, nn
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
def test_for_after_for():
|
||||
class ForAfterForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.relu = nn.ReLU()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
self.sub = P.Sub()
|
||||
self.div = P.Div()
|
||||
self.assign = P.Assign()
|
||||
param_a = np.full((1,), 5, dtype=np.float32)
|
||||
self.param_a = Parameter(Tensor(param_a), name='a')
|
||||
param_b = np.full((1,), 2, dtype=np.float32)
|
||||
self.param_b = Parameter(Tensor(param_b), name='b')
|
||||
|
||||
def construct(self, x):
|
||||
self.assign(self.param_a, x + self.param_a)
|
||||
y = self.add(x, self.param_b)
|
||||
for _ in range(0, 2):
|
||||
x = self.sub(x, 3)
|
||||
y = x + self.param_b
|
||||
self.param_a = x + y
|
||||
for _ in range(0, 5):
|
||||
y = self.mul(x, self.param_a)
|
||||
|
||||
z = self.relu(y + self.param_a)
|
||||
return z
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([7], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
for_after_for_net = ForAfterForNet()
|
||||
net = GradNet(for_after_for_net)
|
||||
graph_forward_res = for_after_for_net(x)
|
||||
graph_backward_res = net(x)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
for_after_for_net = ForAfterForNet()
|
||||
net = GradNet(for_after_for_net)
|
||||
pynative_forward_res = for_after_for_net(x)
|
||||
pynative_backward_res = net(x)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
|
@ -0,0 +1,92 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore import context
|
||||
from mindspore import Tensor, nn
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
def test_for_after_while_in_if():
|
||||
class ForAfterWhileInIfNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.relu = nn.ReLU()
|
||||
self.softmax = nn.Softmax()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
self.sub = P.Sub()
|
||||
self.div = P.Div()
|
||||
self.assign = P.Assign()
|
||||
param_a = np.full((1,), 5, dtype=np.float32)
|
||||
self.param_a = Parameter(Tensor(param_a), name='a')
|
||||
param_b = np.full((1,), 2, dtype=np.float32)
|
||||
self.param_b = Parameter(Tensor(param_b), name='b')
|
||||
param_c = np.full((1,), 16, dtype=np.float32)
|
||||
self.param_c = Parameter(Tensor(param_c), name='c')
|
||||
|
||||
def construct(self, x, y):
|
||||
self.assign(self.param_a, x + self.param_a)
|
||||
y = self.add(y, self.param_b)
|
||||
|
||||
if self.param_b == y - self.param_a:
|
||||
self.param_c = self.div(self.param_c, self.param_b)
|
||||
while self.param_a > x:
|
||||
self.param_c = self.param_a + 2
|
||||
x = x + 1
|
||||
y = self.softmax(self.param_c)
|
||||
self.param_b = self.sub(y, self.param_b)
|
||||
|
||||
x = self.mul(self.param_b, self.param_c)
|
||||
|
||||
for _ in range(0, 4):
|
||||
x = self.sub(x, 3)
|
||||
y = y + self.param_b
|
||||
|
||||
self.param_a = x + y
|
||||
z = self.relu(y + self.param_a)
|
||||
return z
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([11], mstype.int32)
|
||||
y = Tensor([7], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
for_after_while_in_if_net = ForAfterWhileInIfNet()
|
||||
net = GradNet(for_after_while_in_if_net)
|
||||
graph_forward_res = for_after_while_in_if_net(x, y)
|
||||
graph_backward_res = net(x, y)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
for_after_while_in_if_net = ForAfterWhileInIfNet()
|
||||
net = GradNet(for_after_while_in_if_net)
|
||||
pynative_forward_res = for_after_while_in_if_net(x, y)
|
||||
pynative_backward_res = net(x, y)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
|
@ -0,0 +1,93 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore import context
|
||||
from mindspore import Tensor, nn
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
def test_for_after_while_in_for():
|
||||
class ForAfterWhileInForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.relu = nn.ReLU()
|
||||
self.softmax = nn.Softmax()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
self.sub = P.Sub()
|
||||
self.div = P.Div()
|
||||
self.assign = P.Assign()
|
||||
param_a = np.full((1,), 5, dtype=np.float32)
|
||||
self.param_a = Parameter(Tensor(param_a), name='a')
|
||||
param_b = np.full((1,), 2, dtype=np.float32)
|
||||
self.param_b = Parameter(Tensor(param_b), name='b')
|
||||
param_c = np.full((1,), 16, dtype=np.float32)
|
||||
self.param_c = Parameter(Tensor(param_c), name='c')
|
||||
|
||||
def construct(self, x, y):
|
||||
self.assign(self.param_a, x + self.param_a)
|
||||
y = self.add(y, self.param_b)
|
||||
|
||||
for _ in range(0, 3):
|
||||
self.param_b = self.add(self.param_c, self.param_b)
|
||||
while self.param_c > x:
|
||||
self.param_b = self.param_a + 2
|
||||
x = x + 1
|
||||
y = self.softmax(self.param_c) + self.param_a
|
||||
self.param_b = self.sub(y, self.param_b)
|
||||
|
||||
x = self.mul(self.param_b, self.param_c)
|
||||
|
||||
for _ in range(0, 4):
|
||||
x = self.mul(x, 3)
|
||||
y = y + self.param_b
|
||||
x = self.relu(self.param_c)
|
||||
|
||||
self.param_a = x - y
|
||||
z = y + self.param_b
|
||||
return z
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([11], mstype.int32)
|
||||
y = Tensor([7], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
for_after_while_in_for_net = ForAfterWhileInForNet()
|
||||
net = GradNet(for_after_while_in_for_net)
|
||||
graph_forward_res = for_after_while_in_for_net(x, y)
|
||||
graph_backward_res = net(x, y)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
for_after_while_in_for_net = ForAfterWhileInForNet()
|
||||
net = GradNet(for_after_while_in_for_net)
|
||||
pynative_forward_res = for_after_while_in_for_net(x, y)
|
||||
pynative_backward_res = net(x, y)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
|
@ -0,0 +1,88 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore import context
|
||||
from mindspore import Tensor, nn
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
def test_for_after_for_in_while():
|
||||
class ForAfterForInWhileNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.relu = nn.ReLU()
|
||||
self.softmax = nn.Softmax()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
self.sub = P.Sub()
|
||||
self.div = P.Div()
|
||||
self.assign = P.Assign()
|
||||
param_a = np.full((1,), 5, dtype=np.float32)
|
||||
self.param_a = Parameter(Tensor(param_a), name='a')
|
||||
param_b = np.full((1,), 2, dtype=np.float32)
|
||||
self.param_b = Parameter(Tensor(param_b), name='b')
|
||||
param_c = np.full((1,), 16, dtype=np.float32)
|
||||
self.param_c = Parameter(Tensor(param_c), name='c')
|
||||
|
||||
def construct(self, x, y):
|
||||
while self.param_c > x:
|
||||
self.param_b = self.add(self.param_c, self.param_b)
|
||||
for _ in range(0, 20):
|
||||
self.param_b = self.param_a + 2
|
||||
self.param_c = self.param_c - 1
|
||||
x = x + 2
|
||||
y = self.softmax(self.param_c) + self.param_a
|
||||
self.param_b = self.sub(y, self.param_b)
|
||||
x = self.mul(self.param_b, self.param_a)
|
||||
for _ in range(0, 4):
|
||||
x = self.mul(x, 3)
|
||||
y = y + self.param_b
|
||||
x = self.relu(self.param_c)
|
||||
self.param_a = x - y
|
||||
z = y + self.param_b
|
||||
return z
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([11], mstype.int32)
|
||||
y = Tensor([7], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
for_after_for_in_while_net = ForAfterForInWhileNet()
|
||||
net = GradNet(for_after_for_in_while_net)
|
||||
graph_forward_res = for_after_for_in_while_net(x, y)
|
||||
graph_backward_res = net(x, y)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
for_after_for_in_while_net = ForAfterForInWhileNet()
|
||||
net = GradNet(for_after_for_in_while_net)
|
||||
pynative_forward_res = for_after_for_in_while_net(x, y)
|
||||
pynative_backward_res = net(x, y)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
|
@ -0,0 +1,84 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore import context
|
||||
from mindspore import Tensor, nn
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
def test_for_after_for_in_for():
|
||||
class ForAfterForInForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.relu = nn.ReLU()
|
||||
self.softmax = nn.Softmax()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
self.sub = P.Sub()
|
||||
self.div = P.Div()
|
||||
self.assign = P.Assign()
|
||||
param_a = np.full((1,), 5, dtype=np.float32)
|
||||
self.param_a = Parameter(Tensor(param_a), name='a')
|
||||
param_b = np.full((1,), 2, dtype=np.float32)
|
||||
self.param_b = Parameter(Tensor(param_b), name='b')
|
||||
param_c = np.full((1,), 20, dtype=np.float32)
|
||||
self.param_c = Parameter(Tensor(param_c), name='c')
|
||||
|
||||
def construct(self, x, y):
|
||||
for _ in range(0, 4):
|
||||
self.param_b = self.add(self.param_c, self.param_b)
|
||||
for _ in range(0, 8):
|
||||
self.param_b = self.param_a + j
|
||||
self.param_c = self.param_a * self.param_b
|
||||
|
||||
for _ in range(0, 3):
|
||||
y = y + self.param_b
|
||||
x = self.relu(self.param_c * 3)
|
||||
self.param_a = x - y
|
||||
z = y + self.param_b
|
||||
return z
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([11], mstype.int32)
|
||||
y = Tensor([7], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
for_after_for_in_for_net = ForAfterForInForNet()
|
||||
net = GradNet(for_after_for_in_for_net)
|
||||
graph_forward_res = for_after_for_in_for_net(x, y)
|
||||
graph_backward_res = net(x, y)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
for_after_for_in_for_net = ForAfterForInForNet()
|
||||
net = GradNet(for_after_for_in_for_net)
|
||||
pynative_forward_res = for_after_for_in_for_net(x, y)
|
||||
pynative_backward_res = net(x, y)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
Loading…
Reference in New Issue