forked from mindspore-Ecosystem/mindspore
support arcsinh arctanh
This commit is contained in:
parent
d8463c0547
commit
3240bb2b74
|
@ -0,0 +1,6 @@
|
|||
mindspore.Tensor.arcsinh
|
||||
=========================
|
||||
|
||||
.. py:method:: mindspore.Tensor.arcsinh()
|
||||
|
||||
参考 `Tensor.asinh() <https://www.mindspore.cn/docs/zh-CN/master/api_python/mindspore/Tensor/mindspore.Tensor.asinh.html>`_。
|
|
@ -0,0 +1,6 @@
|
|||
mindspore.Tensor.arctanh
|
||||
=========================
|
||||
|
||||
.. py:method:: mindspore.Tensor.arctanh()
|
||||
|
||||
参考 `Tensor.atanh() <https://www.mindspore.cn/docs/zh-CN/master/api_python/mindspore/Tensor/mindspore.Tensor.atanh.html>`_。
|
|
@ -71,8 +71,10 @@ mindspore.Tensor
|
|||
mindspore.Tensor.asin
|
||||
mindspore.Tensor.addmv
|
||||
mindspore.Tensor.asinh
|
||||
mindspore.Tensor.arcsinh
|
||||
mindspore.Tensor.atan
|
||||
mindspore.Tensor.atanh
|
||||
mindspore.Tensor.arctanh
|
||||
mindspore.Tensor.atan2
|
||||
mindspore.Tensor.bernoulli
|
||||
mindspore.Tensor.bitwise_and
|
||||
|
|
|
@ -311,8 +311,10 @@ BuiltInTypeMap &GetMethodMap() {
|
|||
{"asin", std::string("asin")}, // asin()
|
||||
{"addmv", std::string("addmv")}, // addmv()
|
||||
{"asinh", std::string("asinh")}, // asinh()
|
||||
{"arcsinh", std::string("asinh")}, // arcsinh()
|
||||
{"atan", std::string("atan")}, // atan()
|
||||
{"atanh", std::string("atanh")}, // atanh()
|
||||
{"arctanh", std::string("atanh")}, // arctanh()
|
||||
{"bmm", std::string("bmm")}, // bmm()
|
||||
{"value", std::string("value_")}, // P.Load(param, U)
|
||||
{"to", std::string("to")}, // to()
|
||||
|
|
|
@ -3226,6 +3226,13 @@ def asinh(x):
|
|||
return F.asinh(x)
|
||||
|
||||
|
||||
def arcsinh(x):
|
||||
r"""
|
||||
Computes inverse hyperbolic sine of the input element-wise.
|
||||
"""
|
||||
return F.asinh(x)
|
||||
|
||||
|
||||
def atan(x):
|
||||
r"""
|
||||
Computes inverse tangent of the input element-wise.
|
||||
|
@ -3240,6 +3247,13 @@ def atanh(x):
|
|||
return F.atanh(x)
|
||||
|
||||
|
||||
def arctanh(x):
|
||||
r"""
|
||||
Computes inverse hyperbolic tangent of the input element-wise.
|
||||
"""
|
||||
return F.atanh(x)
|
||||
|
||||
|
||||
def bmm(input_x, mat2):
|
||||
r"""
|
||||
Computes matrix multiplication between two tensors by batch.
|
||||
|
|
|
@ -5847,6 +5847,14 @@ class Tensor(Tensor_):
|
|||
self._init_check()
|
||||
return tensor_operator_registry.get('asinh')(self)
|
||||
|
||||
def arcsinh(self):
|
||||
r"""
|
||||
See `Tensor.asinh()
|
||||
<https://www.mindspore.cn/docs/zh-CN/master/api_python/mindspore/Tensor/mindspore.Tensor.asinh.html>`_.
|
||||
"""
|
||||
self._init_check()
|
||||
return tensor_operator_registry.get('asinh')(self)
|
||||
|
||||
def atan(self):
|
||||
r"""
|
||||
Computes the trigonometric inverse tangent of the input element-wise.
|
||||
|
@ -5902,6 +5910,14 @@ class Tensor(Tensor_):
|
|||
self._init_check()
|
||||
return tensor_operator_registry.get('atanh')(self)
|
||||
|
||||
def arctanh(self):
|
||||
r"""
|
||||
See `Tensor.atanh()
|
||||
<https://www.mindspore.cn/docs/zh-CN/master/api_python/mindspore/Tensor/mindspore.Tensor.atanh.html>`_.
|
||||
"""
|
||||
self._init_check()
|
||||
return tensor_operator_registry.get('atanh')(self)
|
||||
|
||||
def bmm(self, mat2):
|
||||
r"""
|
||||
Computes matrix multiplication between two tensors by batch.
|
||||
|
|
|
@ -0,0 +1,46 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
class Arcsinh(nn.Cell):
|
||||
def construct(self, x):
|
||||
return x.arcsinh()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_tensor_arcsinh(mode):
|
||||
"""
|
||||
Feature: tensor.arcsinh
|
||||
Description: Verify the result of arcsinh
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor(np.array([-5.0, 1.5, 3.0, 100.0]), ms.float32)
|
||||
net = Arcsinh()
|
||||
output = net(x)
|
||||
expect_output = [-2.3124382, 1.1947632, 1.8184465, 5.298342]
|
||||
assert np.allclose(output.asnumpy(), expect_output)
|
|
@ -0,0 +1,46 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
class Arctanh(nn.Cell):
|
||||
def construct(self, x):
|
||||
return x.arctanh()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_tensor_arctanh(mode):
|
||||
"""
|
||||
Feature: tensor.arctanh
|
||||
Description: Verify the result of arctanh
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor(np.array([0, -0.5]), ms.float32)
|
||||
net = Arctanh()
|
||||
output = net(x)
|
||||
expect_output = [0., -0.54930615]
|
||||
assert np.allclose(output.asnumpy(), expect_output)
|
Loading…
Reference in New Issue