!17297 dynamic_shape_pipeline

Merge pull request !17297 from wanyiming/dynamic_shape_pipeline
This commit is contained in:
i-robot 2021-06-26 02:33:10 +00:00 committed by Gitee
commit 311e59c190
13 changed files with 271 additions and 32 deletions

View File

@ -411,6 +411,11 @@ void AscendBackendUBFusionOptimization(const std::shared_ptr<session::KernelGrap
MS_LOG(INFO) << "UBFusion is not enable, skip"; MS_LOG(INFO) << "UBFusion is not enable, skip";
return; return;
} }
if (kernel_graph->is_dynamic_shape()) {
MS_LOG(WARNING) << "Dynamic shape skip fusion";
return;
}
bool save_graphs = context_ptr->get_param<bool>(MS_CTX_SAVE_GRAPHS_FLAG); bool save_graphs = context_ptr->get_param<bool>(MS_CTX_SAVE_GRAPHS_FLAG);
if (save_graphs) { if (save_graphs) {
std::string file_name = "hwopt_d_ub_fusion_before_graph_" + std::to_string(kernel_graph->graph_id()) + ".ir"; std::string file_name = "hwopt_d_ub_fusion_before_graph_" + std::to_string(kernel_graph->graph_id()) + ".ir";

View File

@ -54,7 +54,11 @@ AnfNodePtr InsertCastForMultipleOutput(const FuncGraphPtr &func_graph, const CNo
auto imm = std::make_shared<Int64Imm>(output_idx); auto imm = std::make_shared<Int64Imm>(output_idx);
idx->set_abstract(std::make_shared<abstract::AbstractScalar>(imm)); idx->set_abstract(std::make_shared<abstract::AbstractScalar>(imm));
auto getitem = func_graph->NewCNode({NewValueNode(prim::kPrimTupleGetItem), cnode, idx}); auto getitem = func_graph->NewCNode({NewValueNode(prim::kPrimTupleGetItem), cnode, idx});
AnfAlgo::SetOutputTypeAndDetailShape({origin_type}, {origin_shape}, getitem.get()); auto abs = cnode->abstract()->cast<abstract::AbstractTuplePtr>();
MS_EXCEPTION_IF_NULL(abs);
auto abs_i = abs->elements()[output_idx];
MS_EXCEPTION_IF_NULL(abs_i);
getitem->set_abstract(abs_i);
const auto dev_fmt = AnfAlgo::GetOutputFormat(cnode, output_idx); const auto dev_fmt = AnfAlgo::GetOutputFormat(cnode, output_idx);
const auto device_type = AnfAlgo::GetOutputDeviceDataType(cnode, output_idx); const auto device_type = AnfAlgo::GetOutputDeviceDataType(cnode, output_idx);
if (origin_type != device_type) { if (origin_type != device_type) {

View File

@ -492,9 +492,11 @@ CNodePtr CreatTupleGetItemNode(const FuncGraphPtr &func_graph, const AnfNodePtr
CNodePtr tuple_getitem = func_graph->NewCNode({NewValueNode(prim::kPrimTupleGetItem), node, idx}); CNodePtr tuple_getitem = func_graph->NewCNode({NewValueNode(prim::kPrimTupleGetItem), node, idx});
MS_EXCEPTION_IF_NULL(tuple_getitem); MS_EXCEPTION_IF_NULL(tuple_getitem);
tuple_getitem->set_scope(node->scope()); tuple_getitem->set_scope(node->scope());
auto origin_shape = AnfAlgo::GetOutputDetailShape(node, output_idx); auto abs = node->abstract()->cast<abstract::AbstractTuplePtr>();
TypeId origin_type = AnfAlgo::GetOutputInferDataType(node, output_idx); MS_EXCEPTION_IF_NULL(abs);
AnfAlgo::SetOutputTypeAndDetailShape({origin_type}, {origin_shape}, tuple_getitem.get()); auto abs_i = abs->elements()[output_idx];
MS_EXCEPTION_IF_NULL(abs_i);
tuple_getitem->set_abstract(abs_i);
return tuple_getitem; return tuple_getitem;
} }

View File

@ -165,10 +165,6 @@ bool AiCpuDynamicKernel::UpdateExtInfo() {
} }
bool AiCpuDynamicKernel::UpdateOutputShapeFromExtInfo() { bool AiCpuDynamicKernel::UpdateOutputShapeFromExtInfo() {
if (input_num_ == 0) {
MS_LOG(WARNING) << "input num is 0";
return true;
}
MS_LOG(INFO) << "UpdateOutputShapeFromExtInfo start"; MS_LOG(INFO) << "UpdateOutputShapeFromExtInfo start";
auto ret = rtMemcpy(ext_info_handler_->GetExtInfo(), ext_info_handler_->GetExtInfoLen(), ext_info_addr_dev_, auto ret = rtMemcpy(ext_info_handler_->GetExtInfo(), ext_info_handler_->GetExtInfoLen(), ext_info_addr_dev_,
ext_info_size_, RT_MEMCPY_DEVICE_TO_HOST); ext_info_size_, RT_MEMCPY_DEVICE_TO_HOST);

View File

@ -73,9 +73,6 @@ void DynamicKernel::RebuildDependTensor() {
} }
void DynamicKernel::InferShape() { void DynamicKernel::InferShape() {
if (!is_input_dynamic_shape_ && is_output_dynamic_shape_ && !have_depends()) {
return;
}
auto cnode = cnode_ptr_.lock(); auto cnode = cnode_ptr_.lock();
MS_EXCEPTION_IF_NULL(cnode); MS_EXCEPTION_IF_NULL(cnode);
MS_LOG(INFO) << "InferShape start, node:" << cnode->fullname_with_scope(); MS_LOG(INFO) << "InferShape start, node:" << cnode->fullname_with_scope();

View File

@ -602,7 +602,7 @@ const std::set<TypeId> kFloatDataTypeSet = {kNumberTypeFloat16, kNumberTypeFloat
const std::set<std::string> kComputeDepend = {kUniqueOpName, kComputeAccidentalHitsOpName, kSubAndFilterOpName, const std::set<std::string> kComputeDepend = {kUniqueOpName, kComputeAccidentalHitsOpName, kSubAndFilterOpName,
kPadAndShiftOpName, kCTCGreedyDecoderOpName, kDropoutGenMaskOpName, kPadAndShiftOpName, kCTCGreedyDecoderOpName, kDropoutGenMaskOpName,
kMaskedSelectOpName, kDynamicStitchOpName}; kMaskedSelectOpName, kDynamicStitchOpName, kGetNextOpName};
const std::set<std::string> k3DFormatSet = {kOpFormat_NCDHW, kOpFormat_NDC1HWC0, kOpFormat_FRACTAL_Z_3D, const std::set<std::string> k3DFormatSet = {kOpFormat_NCDHW, kOpFormat_NDC1HWC0, kOpFormat_FRACTAL_Z_3D,
kOpFormat_NDHWC, kOpFormat_DHWCN, kOpFormat_DHWNC}; kOpFormat_NDHWC, kOpFormat_DHWCN, kOpFormat_DHWNC};

View File

@ -361,14 +361,12 @@ AbstractBasePtr MakeAbstractTensor(const ShapePtr &shape, const TypePtr &type) {
ShapeVector min_shape_vec; ShapeVector min_shape_vec;
ShapeVector max_shape_vec; ShapeVector max_shape_vec;
if (shape->IsDynamic()) {
if (!shape->min_shape().empty()) { if (!shape->min_shape().empty()) {
min_shape_vec = shape->min_shape(); min_shape_vec = shape->min_shape();
} }
if (!shape->max_shape().empty()) { if (!shape->max_shape().empty()) {
max_shape_vec = shape->max_shape(); max_shape_vec = shape->max_shape();
} }
}
auto ret_shape = std::make_shared<abstract::Shape>(ret_vec, min_shape_vec, max_shape_vec); auto ret_shape = std::make_shared<abstract::Shape>(ret_vec, min_shape_vec, max_shape_vec);
if (type->isa<TensorType>()) { if (type->isa<TensorType>()) {

View File

@ -32,6 +32,7 @@ inline const std::unordered_map<std::string, ValuePtr> kSideEffectPropagate = {
{mindspore::GRAPH_FLAG_SIDE_EFFECT_PROPAGATE, kValueOne}, {mindspore::GRAPH_FLAG_SIDE_EFFECT_PROPAGATE, kValueOne},
}; };
constexpr auto kGetNext = "GetNext";
constexpr auto kGather = "Gather"; constexpr auto kGather = "Gather";
// Arithmetic // Arithmetic
constexpr auto kScalarAdd = "ScalarAdd"; constexpr auto kScalarAdd = "ScalarAdd";
@ -92,6 +93,9 @@ constexpr auto kDropoutGrad = "DropoutGrad";
constexpr auto kConv2DTranspose = "Conv2DTranspose"; constexpr auto kConv2DTranspose = "Conv2DTranspose";
// Here list all primitives used in backend or some special primitives used by core. // Here list all primitives used in backend or some special primitives used by core.
// GetNext
inline const PrimitivePtr kPrimGetNext = std::make_shared<Primitive>(kGetNext);
// Arithmetic // Arithmetic
inline const PrimitivePtr kPrimScalarAdd = std::make_shared<Primitive>(kScalarAdd); inline const PrimitivePtr kPrimScalarAdd = std::make_shared<Primitive>(kScalarAdd);
inline const PrimitivePtr kPrimScalarSub = std::make_shared<Primitive>(kScalarSub); inline const PrimitivePtr kPrimScalarSub = std::make_shared<Primitive>(kScalarSub);

View File

@ -0,0 +1,96 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <set>
#include <string>
#include <vector>
#include <memory>
#include <algorithm>
#include "ops/getnext.h"
#include "ops/op_utils.h"
#include "utils/check_convert_utils.h"
#include "utils/tensor_construct_utils.h"
#include "abstract/primitive_infer_map.h"
namespace mindspore {
namespace ops {
namespace {
void GetShapeVector(const ValuePtr &shape_attr, std::vector<std::vector<int64_t>> *shape_vec) {
if (shape_attr == nullptr) {
return;
}
std::vector<ValuePtr> shape = shape_attr->isa<ValueTuple>() ? shape_attr->cast<ValueTuplePtr>()->value()
: shape_attr->cast<ValueListPtr>()->value();
for (ValuePtr shape_elements : shape) {
std::vector<ValuePtr> shape_elements_list = shape_elements->isa<ValueTuple>()
? shape_elements->cast<ValueTuplePtr>()->value()
: shape_elements->cast<ValueListPtr>()->value();
std::vector<int64_t> shape_vec_item;
(void)std::transform(std::begin(shape_elements_list), std::end(shape_elements_list),
std::back_inserter(shape_vec_item),
[](const ValuePtr &e) -> int64_t { return GetValue<int64_t>(e); });
shape_vec->push_back(shape_vec_item);
}
}
bool IsDynamic(const std::vector<ShapeVector> &shape) {
for (auto shape_vec : shape) {
if (std::find(shape_vec.begin(), shape_vec.end(), -1) != shape_vec.end()) {
return true;
}
}
return false;
}
abstract::AbstractBasePtr GetnextInferShape(const PrimitivePtr &primitive,
const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(primitive);
auto types = GetValue<std::vector<TypePtr>>(primitive->GetAttr("types"));
ValuePtr shape_attr = primitive->GetAttr("shapes");
ValuePtr min_shape_attr = primitive->GetAttr("min_shapes");
ValuePtr max_shape_attr = primitive->GetAttr("max_shapes");
std::vector<ShapeVector> shape;
std::vector<ShapeVector> min_shape;
std::vector<ShapeVector> max_shape;
GetShapeVector(shape_attr, &shape);
GetShapeVector(min_shape_attr, &min_shape);
GetShapeVector(max_shape_attr, &max_shape);
bool is_dynamic = IsDynamic(shape);
AbstractBasePtrList output;
for (size_t i = 0; i < shape.size(); ++i) {
auto ret_shape = !min_shape.empty() && !max_shape.empty() && is_dynamic
? std::make_shared<abstract::Shape>(shape[i], min_shape[i], max_shape[i])
: std::make_shared<abstract::Shape>(shape[i]);
auto element = std::make_shared<abstract::AbstractScalar>(kAnyValue, types[i]);
auto tensor = std::make_shared<abstract::AbstractTensor>(element, ret_shape);
output.push_back(tensor);
}
return std::make_shared<abstract::AbstractTuple>(output);
}
} // namespace
AbstractBasePtr GetNextInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
const std::vector<AbstractBasePtr> &input_args) {
return GetnextInferShape(primitive, input_args);
}
REGISTER_PRIMITIVE_EVAL_IMPL(GetNext, prim::kPrimGetNext, GetNextInfer, nullptr, true);
} // namespace ops
} // namespace mindspore

View File

@ -0,0 +1,43 @@
/**
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CORE_OPS_GETNEXT_H_
#define MINDSPORE_CORE_OPS_GETNEXT_H_
#include <map>
#include <vector>
#include <string>
#include <memory>
#include "ops/primitive_c.h"
#include "abstract/abstract_value.h"
#include "utils/check_convert_utils.h"
namespace mindspore {
namespace ops {
constexpr auto kNameGetNext = prim::kGetNext;
class GetNext : public PrimitiveC {
public:
GetNext() : PrimitiveC(prim::kPrimGetNext->name()) {}
~GetNext() = default;
MS_DECLARE_PARENT(GetNext, PrimitiveC);
void Init() {}
};
AbstractBasePtr GetNextInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
const std::vector<AbstractBasePtr> &input_args);
using PrimMulPtr = std::shared_ptr<GetNext>;
} // namespace ops
} // namespace mindspore
#endif // MINDSPORE_CORE_OPS_GETNEXT_H_

View File

@ -3498,7 +3498,7 @@ class FastGeLU(PrimitiveWithInfer):
return input_x return input_x
class GetNext(PrimitiveWithInfer): class GetNext(Primitive):
""" """
Returns the next element in the dataset queue. Returns the next element in the dataset queue.
@ -3545,12 +3545,6 @@ class GetNext(PrimitiveWithInfer):
validator.check("types length", len(types), "shapes length", len(shapes), Rel.EQ, self.name) validator.check("types length", len(types), "shapes length", len(shapes), Rel.EQ, self.name)
validator.check_value_type("output_num", output_num, [int], self.name) validator.check_value_type("output_num", output_num, [int], self.name)
def infer_shape(self):
return tuple(self.shapes)
def infer_dtype(self):
return tuple(self.types)
class PReLU(PrimitiveWithInfer): class PReLU(PrimitiveWithInfer):
r""" r"""

View File

@ -60,13 +60,18 @@ class _DataWrapper(nn.Cell):
dataset channel 'queue_name' and performs the forward computation. dataset channel 'queue_name' and performs the forward computation.
""" """
def __init__(self, network, dataset_types, dataset_shapes, queue_name): def __init__(self, network, dataset_types, dataset_shapes, queue_name, min_shapes=None, max_shapes=None):
super(_DataWrapper, self).__init__(auto_prefix=False, flags=network.get_flags()) super(_DataWrapper, self).__init__(auto_prefix=False, flags=network.get_flags())
# Also copy the flag in `network` construct # Also copy the flag in `network` construct
flags = getattr(network.__class__.construct, "_mindspore_flags", {}) flags = getattr(network.__class__.construct, "_mindspore_flags", {})
self.info = (dataset_types, dataset_shapes) self.info = (dataset_types, dataset_shapes)
self.add_flags(**flags) self.add_flags(**flags)
self.get_next = P.GetNext(dataset_types, dataset_shapes, len(dataset_types), queue_name) self.get_next = P.GetNext(dataset_types, dataset_shapes, len(dataset_types), queue_name)
if min_shapes is not None and max_shapes is not None:
Validator.check_value_type("min_shapes", min_shapes, [list, tuple])
Validator.check_value_type("max_shapes", max_shapes, [list, tuple])
self.get_next.add_prim_attr("min_shapes", min_shapes)
self.get_next.add_prim_attr("max_shapes", max_shapes)
self.network = network self.network = network
def construct(self): def construct(self):
@ -74,9 +79,24 @@ class _DataWrapper(nn.Cell):
return self.network(*outputs) return self.network(*outputs)
def _generate_dataset_sink_mode_net(network, dataset_shapes, dataset_types, queue_name): def _generate_dataset_sink_mode_net(network, dataset_shapes, dataset_types, queue_name,
min_shapes=None, max_shapes=None):
if not isinstance(network, _DataWrapper): if not isinstance(network, _DataWrapper):
network = _DataWrapper(network, dataset_types, dataset_shapes, queue_name) network = _DataWrapper(network, dataset_types, dataset_shapes, queue_name, min_shapes, max_shapes)
return network
def has_dynamic_shape(dataset_shapes):
for shape in dataset_shapes:
if -1 in shape:
return True
return False
def _generate_network_with_dataset(network, dataset_helper, queue_name):
dataset_types, dataset_shapes = dataset_helper.types_shapes()
(min_shapes, max_shapes) = (None, None) if not has_dynamic_shape(dataset_shapes) \
else dataset_helper.dynamic_min_max_shapes()
network = _generate_dataset_sink_mode_net(network, dataset_shapes, dataset_types,
queue_name, min_shapes, max_shapes)
return network return network
@ -151,8 +171,7 @@ def connect_network_with_dataset(network, dataset_helper):
not context.get_context("enable_ge") and \ not context.get_context("enable_ge") and \
context.get_context("device_target") in ("Ascend", "GPU"): context.get_context("device_target") in ("Ascend", "GPU"):
dataset.__me_inited__ = True dataset.__me_inited__ = True
dataset_types, dataset_shapes = dataset_helper.types_shapes() network = _generate_network_with_dataset(network, dataset_helper, queue_name)
network = _generate_dataset_sink_mode_net(network, dataset_shapes, dataset_types, queue_name)
if hasattr(dataset_iter, "sink_size") and \ if hasattr(dataset_iter, "sink_size") and \
dataset_iter.sink_size == 1 and \ dataset_iter.sink_size == 1 and \
@ -286,7 +305,7 @@ class _DatasetIter:
self.release = dataset.__transfer_dataset__.release self.release = dataset.__transfer_dataset__.release
self.continue_send = dataset.__transfer_dataset__.continue_send self.continue_send = dataset.__transfer_dataset__.continue_send
self.get_data_info = dataset.__transfer_dataset__.get_data_info self.get_data_info = dataset.__transfer_dataset__.get_data_info
self.dynamic_min_max_shapes = dataset.__transfer_dataset__.dynamic_min_max_shapes self.dynamic_min_max_shapes = dataset.dynamic_min_max_shapes
self.dataset_types, self.dataset_shapes = _get_types_and_shapes(dataset) self.dataset_types, self.dataset_shapes = _get_types_and_shapes(dataset)
def __iter__(self): def __iter__(self):

View File

@ -0,0 +1,81 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
import pytest
from mindspore import nn, context
from mindspore import ops as P
from mindspore.train import DatasetHelper, connect_network_with_dataset
import mindspore.dataset as ds
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
def _exec_preprocess(network, is_train, dataset, dataset_sink_mode, sink_size=-1, epoch_num=1, dataset_helper=None):
if dataset_sink_mode and not is_train:
dataset.__loop_size__ = 1
if dataset_helper is None:
dataset_helper = DatasetHelper(dataset, dataset_sink_mode, sink_size, epoch_num)
if dataset_sink_mode:
network = connect_network_with_dataset(network, dataset_helper)
network.set_train(is_train)
return dataset_helper, network
def _eval_dataset_sink_process(network, valid_dataset):
dataset_helper, eval_network = _exec_preprocess(network, is_train=False, dataset=valid_dataset,
dataset_sink_mode=True)
for inputs1, inputs2 in zip(dataset_helper, valid_dataset.create_dict_iterator()):
outputs = eval_network(*inputs1)
for elem1, (_, elem2) in zip(outputs, inputs2.items()):
assert elem1.shape == elem2.shape
def dataset_generator():
for i in range(1, 10):
yield (
np.ones((32, i), dtype=np.float32), np.zeros((32, i, i, 3), dtype=np.int32),
np.ones((32,), dtype=np.float32),
np.ones((32, i, 8), dtype=np.float32), np.ones((32, 8, 8), dtype=np.float32))
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.relu = P.ReLU()
def construct(self, x1, x2, x3, x4, x5):
x1 = self.relu(x1)
x1 = self.relu(x1)
x2 = self.relu(x2)
x3 = self.relu(x3)
x3 = self.relu(x3)
x4 = self.relu(x4)
x5 = self.relu(x5)
return x1, x2, x3, x4, x5
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_getnext_dynamic_pipeline():
network = Net()
dataset = ds.GeneratorDataset(dataset_generator, ["data1", "data2", "data3", "data4", "data5"])
dataset.set_dynamic_columns(columns={"data1": [32, None], "data2": [32, None, None, 3],
"data3": [32], "data4": [32, None, 8], "data5": [32, 8, 8]})
_eval_dataset_sink_process(network, dataset)