modify Gelu、FastGelu to GeLU and FastGeLU

This commit is contained in:
jinyaohui 2021-02-05 17:19:52 +08:00
parent 408159e301
commit 30a27b2adb
44 changed files with 709 additions and 143 deletions

View File

@ -150,10 +150,10 @@
{"op_name": "Conv2DBackpropInput", "inputs": [{"index": 0, "name": "out_backprop", "need_compile": false, "param_type": "required", "shape": "all"}, {"index": 1, "name": "filter", "need_compile": false, "param_type": "required", "shape": "all"}], "outputs": [{"index": 0, "name": "y", "need_compile": true, "param_type": "required", "shape": "all"}], "attr": [{"name": "input_sizes", "param_type": "required", "type": "listInt", "value": "all"}, {"name": "stride", "param_type": "required", "type": "listInt", "value": "all"}, {"name": "pad_list", "param_type": "required", "type": "listInt", "value": "all"}, {"name": "dilation", "param_type": "required", "type": "listInt", "value": "all"}, {"name": "groups", "param_type": "optional", "type": "int", "value": "all"}, {"name": "format", "param_type": "optional", "type": "str", "value": "all"}], "fusion_type": "CONVLUTION", "dtype_format": [[["float16", "NC1HWC0"], ["float16", "FracZ"], ["float16", "NC1HWC0"]]], "imply_type": "TBE", "async_flag": false, "binfile_name": "conv2d_backprop_input_d.so", "compute_cost": 10, "kernel_name": "conv2d_backprop_input_d", "partial_flag": true, "reshape_type": "", "dynamic_format": false, "dynamic_shape": false, "need_check_supported": false, "op_pattern": ""}
{"op_name": "ConfusionMulGrad", "inputs": [{"index": 0, "name": "input0", "need_compile": false, "param_type": "required", "shape": "all"}, {"index": 1, "name": "input1", "need_compile": false, "param_type": "required", "shape": "all"}, {"index": 2, "name": "input2", "need_compile": false, "param_type": "required", "shape": "all"}], "outputs": [{"index": 0, "name": "output0", "need_compile": false, "param_type": "required", "shape": "all"}, {"index": 1, "name": "output1", "need_compile": false, "param_type": "required", "shape": "all"}], "attr": [{"name": "axis", "param_type": "required", "type": "listInt", "value": "all"}, {"name": "keep_dims", "param_type": "required", "type": "bool", "value": "all"}], "fusion_type": "OPAQUE", "dtype_format": [[["float16", "DefaultFormat"], ["float16", "DefaultFormat"], ["float16", "DefaultFormat"], ["float16", "DefaultFormat"], ["float16", "DefaultFormat"]], [["float32", "DefaultFormat"], ["float32", "DefaultFormat"], ["float32", "DefaultFormat"], ["float32", "DefaultFormat"], ["float32", "DefaultFormat"]]], "imply_type": "TBE", "async_flag": false, "binfile_name": "confusion_mul_grad.so", "compute_cost": 10, "kernel_name": "confusion_mul_grad", "partial_flag": false, "reshape_type": "", "dynamic_format": false, "dynamic_shape": false, "need_check_supported": false, "op_pattern": ""}
{"op_name": "DropoutDoMask", "inputs": [{"index": 0, "name": "x", "need_compile": false, "param_type": "required", "shape": "all"}, {"index": 1, "name": "mask", "need_compile": false, "param_type": "required", "shape": "all"}, {"index": 2, "name": "keep_prob", "need_compile": false, "param_type": "required", "shape": "all"}], "outputs": [{"index": 0, "name": "y", "need_compile": false, "param_type": "required", "shape": "all"}], "attr": [], "fusion_type": "OPAQUE", "dtype_format": [[["", ""], ["", ""], ["", ""], ["", ""]]], "imply_type": "TBE", "async_flag": false, "binfile_name": "drop_out_do_mask.so", "compute_cost": 10, "kernel_name": "drop_out_do_mask", "partial_flag": true, "reshape_type": "", "dynamic_format": false, "dynamic_shape": false, "need_check_supported": false, "op_pattern": "dynamicFormat"}
{"op_name": "Gelu", "inputs": [{"index": 0, "name": "x", "need_compile": false, "param_type": "required", "shape": "all"}], "outputs": [{"index": 0, "name": "y", "need_compile": false, "param_type": "required", "shape": "all"}], "attr": [], "fusion_type": "ELEMWISE", "dtype_format": [[["float16", ""], ["float16", ""]], [["float32", ""], ["float32", ""]]], "imply_type": "TBE", "async_flag": false, "binfile_name": "gelu.so", "compute_cost": 10, "kernel_name": "gelu", "partial_flag": true, "reshape_type": "", "dynamic_format": false, "dynamic_shape": false, "need_check_supported": false, "op_pattern": "formatAgnostic"}
{"op_name": "GeluGrad", "inputs": [{"index": 0, "name": "dy", "need_compile": false, "param_type": "required", "shape": "all"}, {"index": 1, "name": "x", "need_compile": false, "param_type": "required", "shape": "all"}, {"index": 2, "name": "y", "need_compile": false, "param_type": "required", "shape": "all"}], "outputs": [{"index": 0, "name": "z", "need_compile": true, "param_type": "required", "shape": "all"}], "attr": [], "fusion_type": "ELEMWISE", "dtype_format": [[["float16", "DefaultFormat"], ["float16", "DefaultFormat"], ["float16", "DefaultFormat"], ["float16", "DefaultFormat"]], [["float16", "NC1HWC0"], ["float16", "NC1HWC0"], ["float16", "NC1HWC0"], ["float16", "NC1HWC0"]], [["float16", "FRACTAL_NZ"], ["float16", "FRACTAL_NZ"], ["float16", "FRACTAL_NZ"], ["float16", "FRACTAL_NZ"]], [["float32", "DefaultFormat"], ["float32", "DefaultFormat"], ["float32", "DefaultFormat"], ["float32", "DefaultFormat"]], [["float32", "NC1HWC0"], ["float32", "NC1HWC0"], ["float32", "NC1HWC0"], ["float32", "NC1HWC0"]], [["float32", "FRACTAL_NZ"], ["float32", "FRACTAL_NZ"], ["float32", "FRACTAL_NZ"], ["float32", "FRACTAL_NZ"]]], "imply_type": "TBE", "async_flag": false, "binfile_name": "gelu_grad.so", "compute_cost": 10, "kernel_name": "gelu_grad", "partial_flag": true, "reshape_type": "", "dynamic_format": false, "dynamic_shape": false, "need_check_supported": false, "op_pattern": ""}
{"op_name": "FastGelu", "inputs": [{"index": 0, "name": "x", "need_compile": false, "param_type": "required", "shape": "all"}], "outputs": [{"index": 0, "name": "y", "need_compile": false, "param_type": "required", "shape": "all"}], "attr": [], "fusion_type": "ELEMWISE", "dtype_format": [[["float16", ""], ["float16", ""]], [["float32", ""], ["float32", ""]]], "imply_type": "TBE", "async_flag": false, "binfile_name": "fast_gelu.so", "compute_cost": 10, "kernel_name": "fast_gelu", "partial_flag": true, "reshape_type": "", "dynamic_format": false, "dynamic_shape": false, "need_check_supported": false, "op_pattern": "formatAgnostic"}
{"op_name": "FastGeluGrad", "inputs": [{"index": 0, "name": "dy", "need_compile": false, "param_type": "required", "shape": "all"}, {"index": 1, "name": "x", "need_compile": false, "param_type": "required", "shape": "all"}], "outputs": [{"index": 0, "name": "z", "need_compile": true, "param_type": "required", "shape": "all"}], "attr": [], "fusion_type": "ELEMWISE", "dtype_format": [[["float16", "DefaultFormat"], ["float16", "DefaultFormat"], ["float16", "DefaultFormat"]], [["float16", "NC1HWC0"], ["float16", "NC1HWC0"], ["float16", "NC1HWC0"]], [["float16", "FRACTAL_NZ"], ["float16", "FRACTAL_NZ"], ["float16", "FRACTAL_NZ"]], [["float32", "DefaultFormat"], ["float32", "DefaultFormat"], ["float32", "DefaultFormat"]], [["float32", "NC1HWC0"], ["float32", "NC1HWC0"], ["float32", "NC1HWC0"]], [["float32", "FRACTAL_NZ"], ["float32", "FRACTAL_NZ"], ["float32", "FRACTAL_NZ"]]], "imply_type": "TBE", "async_flag": false, "binfile_name": "fast_gelu_grad.so", "compute_cost": 10, "kernel_name": "fast_gelu_grad", "partial_flag": true, "reshape_type": "", "dynamic_format": false, "dynamic_shape": false, "need_check_supported": false, "op_pattern": ""}
{"op_name": "GeLU", "inputs": [{"index": 0, "name": "x", "need_compile": false, "param_type": "required", "shape": "all"}], "outputs": [{"index": 0, "name": "y", "need_compile": false, "param_type": "required", "shape": "all"}], "attr": [], "fusion_type": "ELEMWISE", "dtype_format": [[["float16", ""], ["float16", ""]], [["float32", ""], ["float32", ""]]], "imply_type": "TBE", "async_flag": false, "binfile_name": "gelu.so", "compute_cost": 10, "kernel_name": "gelu", "partial_flag": true, "reshape_type": "", "dynamic_format": false, "dynamic_shape": false, "need_check_supported": false, "op_pattern": "formatAgnostic"}
{"op_name": "GeLUGrad", "inputs": [{"index": 0, "name": "dy", "need_compile": false, "param_type": "required", "shape": "all"}, {"index": 1, "name": "x", "need_compile": false, "param_type": "required", "shape": "all"}, {"index": 2, "name": "y", "need_compile": false, "param_type": "required", "shape": "all"}], "outputs": [{"index": 0, "name": "z", "need_compile": true, "param_type": "required", "shape": "all"}], "attr": [], "fusion_type": "ELEMWISE", "dtype_format": [[["float16", "DefaultFormat"], ["float16", "DefaultFormat"], ["float16", "DefaultFormat"], ["float16", "DefaultFormat"]], [["float16", "NC1HWC0"], ["float16", "NC1HWC0"], ["float16", "NC1HWC0"], ["float16", "NC1HWC0"]], [["float16", "FRACTAL_NZ"], ["float16", "FRACTAL_NZ"], ["float16", "FRACTAL_NZ"], ["float16", "FRACTAL_NZ"]], [["float32", "DefaultFormat"], ["float32", "DefaultFormat"], ["float32", "DefaultFormat"], ["float32", "DefaultFormat"]], [["float32", "NC1HWC0"], ["float32", "NC1HWC0"], ["float32", "NC1HWC0"], ["float32", "NC1HWC0"]], [["float32", "FRACTAL_NZ"], ["float32", "FRACTAL_NZ"], ["float32", "FRACTAL_NZ"], ["float32", "FRACTAL_NZ"]]], "imply_type": "TBE", "async_flag": false, "binfile_name": "gelu_grad.so", "compute_cost": 10, "kernel_name": "gelu_grad", "partial_flag": true, "reshape_type": "", "dynamic_format": false, "dynamic_shape": false, "need_check_supported": false, "op_pattern": ""}
{"op_name": "FastGeLU", "inputs": [{"index": 0, "name": "x", "need_compile": false, "param_type": "required", "shape": "all"}], "outputs": [{"index": 0, "name": "y", "need_compile": false, "param_type": "required", "shape": "all"}], "attr": [], "fusion_type": "ELEMWISE", "dtype_format": [[["float16", ""], ["float16", ""]], [["float32", ""], ["float32", ""]]], "imply_type": "TBE", "async_flag": false, "binfile_name": "fast_gelu.so", "compute_cost": 10, "kernel_name": "fast_gelu", "partial_flag": true, "reshape_type": "", "dynamic_format": false, "dynamic_shape": false, "need_check_supported": false, "op_pattern": "formatAgnostic"}
{"op_name": "FastGeLUGrad", "inputs": [{"index": 0, "name": "dy", "need_compile": false, "param_type": "required", "shape": "all"}, {"index": 1, "name": "x", "need_compile": false, "param_type": "required", "shape": "all"}], "outputs": [{"index": 0, "name": "z", "need_compile": true, "param_type": "required", "shape": "all"}], "attr": [], "fusion_type": "ELEMWISE", "dtype_format": [[["float16", "DefaultFormat"], ["float16", "DefaultFormat"], ["float16", "DefaultFormat"]], [["float16", "NC1HWC0"], ["float16", "NC1HWC0"], ["float16", "NC1HWC0"]], [["float16", "FRACTAL_NZ"], ["float16", "FRACTAL_NZ"], ["float16", "FRACTAL_NZ"]], [["float32", "DefaultFormat"], ["float32", "DefaultFormat"], ["float32", "DefaultFormat"]], [["float32", "NC1HWC0"], ["float32", "NC1HWC0"], ["float32", "NC1HWC0"]], [["float32", "FRACTAL_NZ"], ["float32", "FRACTAL_NZ"], ["float32", "FRACTAL_NZ"]]], "imply_type": "TBE", "async_flag": false, "binfile_name": "fast_gelu_grad.so", "compute_cost": 10, "kernel_name": "fast_gelu_grad", "partial_flag": true, "reshape_type": "", "dynamic_format": false, "dynamic_shape": false, "need_check_supported": false, "op_pattern": ""}
{"op_name": "MaxPool", "inputs": [{"index": 0, "name": "input_data", "need_compile": false, "param_type": "required", "shape": "all"}], "outputs": [{"index": 0, "name": "output_data", "need_compile": false, "param_type": "required", "shape": "all"}], "attr": [{"name": "kernel_size", "param_type": "required", "type": "listInt", "value": "all"}, {"name": "strides", "param_type": "required", "type": "listInt", "value": "all"}, {"name": "pad_mode", "param_type": "required", "type": "str", "value": "all"}, {"name": "format", "param_type": "required", "type": "str", "value": "all"}], "fusion_type": "OPAQUE", "dtype_format": [[["float16", "NC1HWC0"], ["float16", "NC1HWC0"]]], "imply_type": "TBE", "async_flag": false, "binfile_name": "max_pool.so", "compute_cost": 10, "kernel_name": "max_pool", "partial_flag": true, "reshape_type": "", "dynamic_format": false, "dynamic_shape": false, "need_check_supported": false, "op_pattern": ""}
{"op_name": "MaxPoolGrad", "inputs": [{"index": 0, "name": "x1", "need_compile": false, "param_type": "required", "shape": "all"}, {"index": 1, "name": "x2", "need_compile": false, "param_type": "required", "shape": "all"}, {"index": 2, "name": "grad", "need_compile": false, "param_type": "required", "shape": "all"}], "outputs": [{"index": 0, "name": "y", "need_compile": false, "param_type": "required", "shape": "all"}], "attr": [{"name": "kernel_size", "param_type": "required", "type": "listInt", "value": "all"}, {"name": "strides", "param_type": "required", "type": "listInt", "value": "all"}, {"name": "pad_mode", "param_type": "required", "type": "str", "value": "all"}], "fusion_type": "OPAQUE", "dtype_format": [[["float16", "NC1HWC0"], ["float16", "NC1HWC0"], ["float16", "NC1HWC0"], ["float16", "NC1HWC0"]]], "imply_type": "TBE", "async_flag": false, "binfile_name": "max_pool_grad.so", "compute_cost": 10, "kernel_name": "max_pool_grad", "partial_flag": true, "reshape_type": "", "dynamic_format": false, "dynamic_shape": false, "need_check_supported": false, "op_pattern": ""}
{"op_name": "MaxPoolGradWithArgmax", "inputs": [{"index": 0, "name": "x", "need_compile": false, "param_type": "required", "shape": "all"}, {"index": 1, "name": "grad", "need_compile": false, "param_type": "required", "shape": "all"}, {"index": 2, "name": "argmax", "need_compile": false, "param_type": "optional", "shape": "all"}], "outputs": [{"index": 0, "name": "y", "need_compile": false, "param_type": "required", "shape": "all"}], "attr": [{"name": "kernel_size", "param_type": "required", "type": "listInt", "value": "all"}, {"name": "strides", "param_type": "required", "type": "listInt", "value": "all"}, {"name": "pad_mode", "param_type": "required", "type": "str", "value": "all"}], "fusion_type": "OPAQUE", "dtype_format": [[["float16", "NC1HWC0"], ["float16", "NC1HWC0"], ["uint16", "NC1HWC0"], ["float16", "NC1HWC0"]], [["float16", "NC1HWC0"], ["float16", "NC1HWC0"], ["int64", "NC1HWC0"], ["float16", "NC1HWC0"]]], "imply_type": "TBE", "async_flag": false, "binfile_name": "max_pool_grad_with_argmax.so", "compute_cost": 10, "kernel_name": "max_pool_grad_with_argmax", "partial_flag": true, "reshape_type": "", "dynamic_format": false, "dynamic_shape": false, "need_check_supported": false, "op_pattern": ""}

View File

@ -22,7 +22,7 @@ HALF = 0.5
def expand_gelu(expand_info):
"""Gelu expander"""
"""GeLU expander"""
# cal formula are:
# gelu(x) is 0.5 * x * (1.0 + tanh(y))
# y is sqrt(2.0 / pi) * (x + 0.044715 * x * x * x)

View File

@ -23,7 +23,7 @@ HALF = 0.5
def expand_gelugrad(expand_info):
"""GeluGrad expander"""
"""GeLUGrad expander"""
# cal formula are:
# gelu_grad(dy, x) is dy * y'
# y' is 0.5 * (1.0 + tanh(tanh_para)) + 0.5 * x * (1.0 - tanh(tanh_para) * tanh(para)) * mul_right

View File

@ -128,7 +128,7 @@ void ArithmeticSelfCPUKernel::InitKernel(const CNodePtr &kernel_node) {
operate_type_ = FLOOR;
} else if (kernel_name == prim::kPrimReciprocal->name()) {
operate_type_ = RECIPROCAL;
} else if (kernel_name == prim::kPrimGelu->name()) {
} else if (kernel_name == prim::kPrimGeLU->name()) {
operate_type_ = GELU;
} else if (kernel_name == prim::kPrimAsin->name()) {
operate_type_ = ASIN;

View File

@ -66,7 +66,7 @@ MS_REG_CPU_KERNEL(Floor, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutput
ArithmeticSelfCPUKernel);
MS_REG_CPU_KERNEL(Reciprocal, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
ArithmeticSelfCPUKernel);
MS_REG_CPU_KERNEL(Gelu, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
MS_REG_CPU_KERNEL(GeLU, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
ArithmeticSelfCPUKernel);
MS_REG_CPU_KERNEL(LogicalNot, KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool),
ArithmeticSelfCPUKernel);

View File

@ -147,7 +147,7 @@ void EltWiseGradCPUKernel::InitKernel(const CNodePtr &kernel_node) {
operate_type_ = TANHGRAD;
} else if (kernel_name == "SqrtGrad") {
operate_type_ = SQRTGRAD;
} else if (kernel_name == "GeluGrad") {
} else if (kernel_name == "GeLUGrad") {
operate_type_ = GELUGRAD;
} else if (kernel_name == "AsinGrad") {
operate_type_ = ASINGRAD;

View File

@ -88,7 +88,7 @@ MS_REG_CPU_KERNEL(
TanhGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
EltWiseGradCPUKernel);
MS_REG_CPU_KERNEL(GeluGrad,
MS_REG_CPU_KERNEL(GeLUGrad,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)

View File

@ -18,14 +18,14 @@
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(GeluGrad,
MS_REG_GPU_KERNEL_ONE(GeLUGrad,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
GeLUGpuGradKernel, float)
MS_REG_GPU_KERNEL_ONE(GeluGrad,
MS_REG_GPU_KERNEL_ONE(GeLUGrad,
KernelAttr()
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeFloat16)

View File

@ -18,9 +18,9 @@
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(Gelu, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
MS_REG_GPU_KERNEL_ONE(GeLU, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
GeluGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(Gelu, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
MS_REG_GPU_KERNEL_ONE(GeLU, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
GeluGpuKernel, half)
} // namespace kernel
} // namespace mindspore

View File

@ -701,7 +701,7 @@ FuncGraphPtr JsonDescToAnf(const std::string &json_desc, const std::vector<AnfNo
std::unordered_set<PrimitivePtr> GetExpandOps() {
std::unordered_set<PrimitivePtr> expand_ops = {
prim::kPrimSquare,
prim::kPrimGeluGrad,
prim::kPrimGeLUGrad,
#if ENABLE_D
prim::kPrimTile,
prim::kPrimSqrtGrad,
@ -709,7 +709,7 @@ std::unordered_set<PrimitivePtr> GetExpandOps() {
#elif ENABLE_GPU
prim::kPrimBiasAdd,
prim::kPrimBiasAddGrad,
prim::kPrimGelu,
prim::kPrimGeLU,
prim::kPrimFusedAdam,
prim::kPrimFusedAdamWeightDecay,
prim::kPrimReduceMean,

View File

@ -77,7 +77,7 @@ class RegisterAction {
// operator register
REGISTER(MatMulInfo);
REGISTER(GeluInfo);
REGISTER(GeLUInfo);
REGISTER(VirtualDatasetInfo);
REGISTER(BatchParallelInfo);
REGISTER(TanhInfo);

View File

@ -82,12 +82,12 @@ class ActivationOther : public Activation {
Status GetAttrs() override;
};
class GeluInfo : public ActivationOther {
class GeLUInfo : public ActivationOther {
public:
GeluInfo(const std::string &name, const Shapes &inputs_shape, const Shapes &outputs_shape,
GeLUInfo(const std::string &name, const Shapes &inputs_shape, const Shapes &outputs_shape,
const PrimitiveAttrs &attrs)
: ActivationOther(name, inputs_shape, outputs_shape, attrs, std::make_shared<GeLUCost>()) {}
~GeluInfo() override = default;
~GeLUInfo() override = default;
};
class TanhInfo : public ActivationOther {

View File

@ -187,7 +187,7 @@ constexpr char CONCAT[] = "Concat";
constexpr char SOFTMAX_CROSS_ENTROPY_WITH_LOGITS[] = "SoftmaxCrossEntropyWithLogits";
constexpr char SIGMOID_CROSS_ENTROPY_WITH_LOGITS[] = "SigmoidCrossEntropyWithLogits";
constexpr char MATMUL[] = "MatMul";
constexpr char GELU[] = "Gelu";
constexpr char GELU[] = "GeLU";
constexpr char TANH[] = "Tanh";
constexpr char RECEIVE[] = "Receive";
constexpr char SEND[] = "Send";

View File

@ -459,7 +459,6 @@ void ConstructInputTensor(const OpExecInfoPtr &op_run_info, std::vector<int64_t>
op_prim->EndRecordAddAttr();
}
void ConvertAttrToUnifyMindIR(const OpExecInfoPtr &op_run_info) {
MS_EXCEPTION_IF_NULL(op_run_info);
PrimitivePtr op_prim = op_run_info->py_primitive;
@ -479,7 +478,6 @@ void ConvertAttrToUnifyMindIR(const OpExecInfoPtr &op_run_info) {
}
}
BaseRef TransformBaseRefListToTuple(const BaseRef &base_ref) {
if (utils::isa<VectorRef>(base_ref)) {
auto ref_list = utils::cast<VectorRef>(base_ref);

View File

@ -101,27 +101,27 @@ ATTR_MAP(TanhGrad) = EMPTY_ATTR_MAP;
OUTPUT_MAP(TanhGrad) = {{0, OUTPUT_DESC(z)}};
REG_ADPT_DESC(TanhGrad, prim::kPrimTanhGrad->name(), ADPT_DESC(TanhGrad))
// Gelu
// GeLU
INPUT_MAP(Gelu) = {{1, INPUT_DESC(x)}};
ATTR_MAP(Gelu) = EMPTY_ATTR_MAP;
OUTPUT_MAP(Gelu) = {{0, OUTPUT_DESC(y)}};
REG_ADPT_DESC(Gelu, prim::kPrimGelu->name(), ADPT_DESC(Gelu))
REG_ADPT_DESC(Gelu, prim::kPrimGeLU->name(), ADPT_DESC(Gelu))
// GeluGrad
// GeLUGrad
INPUT_MAP(GeluGrad) = {{1, INPUT_DESC(dy)}, {2, INPUT_DESC(x)}, {3, INPUT_DESC(y)}};
ATTR_MAP(GeluGrad) = EMPTY_ATTR_MAP;
OUTPUT_MAP(GeluGrad) = {{0, OUTPUT_DESC(z)}};
REG_ADPT_DESC(GeluGrad, prim::kPrimGeluGrad->name(), ADPT_DESC(GeluGrad))
REG_ADPT_DESC(GeluGrad, prim::kPrimGeLUGrad->name(), ADPT_DESC(GeluGrad))
// FastGelu
// FastGeLU
INPUT_MAP(FastGelu) = {{1, INPUT_DESC(x)}};
ATTR_MAP(FastGelu) = EMPTY_ATTR_MAP;
OUTPUT_MAP(FastGelu) = {{0, OUTPUT_DESC(y)}};
REG_ADPT_DESC(FastGelu, prim::kPrimFastGelu->name(), ADPT_DESC(FastGelu))
REG_ADPT_DESC(FastGelu, prim::kPrimFastGeLU->name(), ADPT_DESC(FastGelu))
// FastGeluGrad
// FastGeLUGrad
INPUT_MAP(FastGeluGrad) = {{1, INPUT_DESC(dy)}, {2, INPUT_DESC(x)}};
ATTR_MAP(FastGeluGrad) = EMPTY_ATTR_MAP;
OUTPUT_MAP(FastGeluGrad) = {{0, OUTPUT_DESC(z)}};
REG_ADPT_DESC(FastGeluGrad, prim::kPrimFastGeluGrad->name(), ADPT_DESC(FastGeluGrad))
REG_ADPT_DESC(FastGeluGrad, prim::kPrimFastGeLUGrad->name(), ADPT_DESC(FastGeluGrad))
} // namespace mindspore::transform

View File

@ -65,13 +65,13 @@ AbstractBasePtr InferImplBiasAdd(const AnalysisEnginePtr &, const PrimitivePtr &
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplBiasAddGrad(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplGelu(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
AbstractBasePtr InferImplGeLU(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplGeluGrad(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
AbstractBasePtr InferImplGeLUGrad(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplFastGelu(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
AbstractBasePtr InferImplFastGeLU(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplFastGeluGrad(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
AbstractBasePtr InferImplFastGeLUGrad(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplRelu(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);

View File

@ -43,6 +43,10 @@ constexpr auto kScalarUsub = "ScalarUsub";
constexpr auto kStack = "Stack";
constexpr auto kUnstack = "Unstack";
constexpr auto kTupleGetItem = "TupleGetItem";
constexpr auto kGeLU = "GeLU";
constexpr auto kGeLUGrad = "GeLUGrad";
constexpr auto kFastGeLU = "FastGeLU";
constexpr auto kFastGeLUGrad = "FastGeLUGrad";
// Here list all primitives used in backend or some special primitives used by core.
// Arithmetic
@ -257,11 +261,10 @@ inline const PrimitivePtr kPrimDropout = std::make_shared<Primitive>("Dropout");
inline const PrimitivePtr kPrimUniformReal = std::make_shared<Primitive>("UniformReal");
inline const PrimitivePtr kPrimCudnnUniformReal = std::make_shared<Primitive>("CudnnUniformReal");
inline const PrimitivePtr kPrimOneHot = std::make_shared<Primitive>("OneHot");
inline const PrimitivePtr kPrimGeLU = std::make_shared<Primitive>("Gelu");
inline const PrimitivePtr kPrimGelu = std::make_shared<Primitive>("Gelu");
inline const PrimitivePtr kPrimGeluGrad = std::make_shared<Primitive>("GeluGrad");
inline const PrimitivePtr kPrimFastGelu = std::make_shared<Primitive>("FastGelu");
inline const PrimitivePtr kPrimFastGeluGrad = std::make_shared<Primitive>("FastGeluGrad");
inline const PrimitivePtr kPrimGeLU = std::make_shared<Primitive>(kGeLU);
inline const PrimitivePtr kPrimGeLUGrad = std::make_shared<Primitive>(kGeLUGrad);
inline const PrimitivePtr kPrimFastGeLU = std::make_shared<Primitive>(kFastGeLU);
inline const PrimitivePtr kPrimFastGeLUGrad = std::make_shared<Primitive>(kFastGeLUGrad);
inline const PrimitivePtr kPrimRelu = std::make_shared<Primitive>("ReLU");
inline const PrimitivePtr kPrimElu = std::make_shared<Primitive>("Elu");
inline const PrimitivePtr kPrimRelu6 = std::make_shared<Primitive>("ReLU6");

View File

@ -0,0 +1,444 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/optimizer/graph/primitive_adjust_pass.h"
#include <map>
#include <memory>
#include <set>
#include <string>
#include "ops/abs.h"
#include "ops/batch_norm.h"
#include "ops/elu.h"
#include "ops/depthwise_conv2d.h"
#include "ops/fused_batch_norm.h"
#include "ops/fusion/activation.h"
#include "ops/fusion/add_fusion.h"
#include "ops/fusion/adder_fusion.h"
#include "ops/fusion/arg_max_fusion.h"
#include "ops/fusion/arg_min_fusion.h"
#include "ops/fusion/avg_pool_fusion.h"
#include "ops/fusion/conv2d_backprop_filter_fusion.h"
#include "ops/fusion/conv2d_backprop_input_fusion.h"
#include "ops/fusion/conv2d_fusion.h"
#include "ops/fusion/conv2d_transpose_fusion.h"
#include "ops/fusion/div_fusion.h"
#include "ops/fusion/exp_fusion.h"
#include "ops/fusion/l2_normalize_fusion.h"
#include "ops/fusion/layer_norm_fusion.h"
#include "ops/fusion/max_pool_fusion.h"
#include "ops/fusion/mul_fusion.h"
#include "ops/fusion/pad_fusion.h"
#include "ops/fusion/prelu_fusion.h"
#include "ops/fusion/reduce_fusion.h"
#include "ops/fusion/scale_fusion.h"
#include "ops/fusion/sub_fusion.h"
#include "ops/fusion/tile_fusion.h"
#include "ops/fusion/topk_fusion.h"
#include "ops/gather.h"
#include "ops/gelu.h"
#include "ops/leaky_relu.h"
#include "ops/mat_mul.h"
#include "ops/reduce_all.h"
#include "ops/reduce_asum.h"
#include "ops/reduce_max.h"
#include "ops/reduce_mean.h"
#include "ops/reduce_min.h"
#include "ops/reduce_prod.h"
#include "ops/reduce_sum.h"
#include "ops/reduce_sum_square.h"
#include "ops/relu.h"
#include "ops/relu6.h"
#include "ops/resize.h"
#include "ops/resize_bilinear.h"
#include "ops/sigmoid.h"
#include "ops/tanh.h"
using mindspore::ops::kNameAbs;
using mindspore::ops::kNameAdd;
using mindspore::ops::kNameAdder;
using mindspore::ops::kNameArgMax;
using mindspore::ops::kNameArgMin;
using mindspore::ops::kNameAvgPool;
using mindspore::ops::kNameBatchNorm;
using mindspore::ops::kNameConv2D;
using mindspore::ops::kNameConv2DBackpropFilter;
using mindspore::ops::kNameConv2DBackpropInput;
using mindspore::ops::kNameConv2dTranspose;
using mindspore::ops::kNameDepthWiseConv2D;
using mindspore::ops::kNameDiv;
using mindspore::ops::kNameElu;
using mindspore::ops::kNameExp;
using mindspore::ops::kNameGeLU;
using mindspore::ops::kNameL2Normalize;
using mindspore::ops::kNameLayerNorm;
using mindspore::ops::kNameLeakyRelu;
using mindspore::ops::kNameMaxPool;
using mindspore::ops::kNameMul;
using mindspore::ops::kNamePad;
using mindspore::ops::kNamePReLU;
using mindspore::ops::kNameReduceAll;
using mindspore::ops::kNameReduceASum;
using mindspore::ops::kNameReduceMax;
using mindspore::ops::kNameReduceMean;
using mindspore::ops::kNameReduceMin;
using mindspore::ops::kNameReduceProd;
using mindspore::ops::kNameReduceSum;
using mindspore::ops::kNameReduceSumSquare;
using mindspore::ops::kNameReLU;
using mindspore::ops::kNameReLU6;
using mindspore::ops::kNameResizeBilinear;
using mindspore::ops::kNameScale;
using mindspore::ops::kNameSigmoid;
using mindspore::ops::kNameSub;
using mindspore::ops::kNameTanh;
using mindspore::ops::kNameTile;
using mindspore::ops::kNameTopK;
namespace mindspore {
namespace opt {
namespace {
constexpr auto kNameArgMaxWithValue = "ArgMaxWithValue";
constexpr auto kNameArgMinWithValue = "ArgMinWithValue";
constexpr auto kNameBatchMatMul = "BatchMatMul";
constexpr auto kNameGatherV2 = "GatherV2";
constexpr auto kNameTensorAdd = "TensorAdd";
std::map<std::string, mindspore::ActivationType> activation_map = {
{ops::kNameAbs, mindspore::ABS}, {ops::kNameElu, mindspore::ELU},
{ops::kNameGeLU, mindspore::GELU}, {ops::kNameLeakyRelu, mindspore::LEAKY_RELU},
{ops::kNameReLU, mindspore::RELU}, {ops::kNameReLU6, mindspore::RELU6},
{ops::kNameSigmoid, mindspore::SIGMOID}, {ops::kNameTanh, mindspore::TANH}};
std::map<std::string, mindspore::ReduceMode> reduce_map = {
{ops::kNameReduceAll, mindspore::Reduce_All}, {ops::kNameReduceASum, mindspore::Reduce_ASum},
{ops::kNameReduceMax, mindspore::Reduce_Max}, {ops::kNameReduceMean, mindspore::Reduce_Mean},
{ops::kNameReduceMin, mindspore::Reduce_Min}, {ops::kNameReduceProd, mindspore::Reduce_Prod},
{ops::kNameReduceSum, mindspore::Reduce_Sum}, {ops::kNameReduceSumSquare, mindspore::Reduce_Sum_Square}};
int AttrAdjust(const PrimitivePtr &prim, const std::string &name, const std::vector<int> &position) {
if (prim->GetAttr(name) == nullptr) {
return lite::RET_OK;
}
auto value_ptr = prim->GetAttr(name);
if (utils::isa<ValueSequeuePtr>(value_ptr)) {
if (value_ptr->cast<ValueSequeuePtr>()->value().front()->type()->number_type() != kNumberTypeInt64) {
MS_LOG(ERROR) << "the func is to adjust attr which is array, please check the attr.";
return lite::RET_ERROR;
}
} else if (value_ptr->type()->number_type() != kNumberTypeInt64) {
MS_LOG(ERROR) << "the func is to adjust attr which is array, please check the attr.";
return lite::RET_ERROR;
}
auto origin_value = CastToInt(prim->GetAttr(name));
std::vector<int64_t> new_value;
if (name == ops::kKernelSize && origin_value.size() == 1) {
new_value.push_back(origin_value[0]);
new_value.push_back(origin_value[0]);
} else {
for (auto index : position) {
if (index >= static_cast<int>(origin_value.size())) {
MS_LOG(ERROR) << "index is out of range.";
return lite::RET_ERROR;
}
new_value.push_back(static_cast<int64_t>(origin_value[index]));
}
}
prim->AddAttr(name, MakeValue(new_value));
return lite::RET_OK;
}
template <typename T>
int MoveAttrMapCommon(const ValueNodePtr &value_node) {
MS_ASSERT(value_node != nullptr);
auto src_prim = GetValueNode<PrimitivePtr>(value_node);
if (src_prim == nullptr) {
MS_LOG(ERROR) << "value node is invalid.";
return lite::RET_ERROR;
}
auto dst_prim = std::make_shared<T>();
MS_ASSERT(dst_prim != nullptr);
dst_prim->SetAttrs(src_prim->attrs());
value_node->set_value(dst_prim);
return lite::RET_OK;
}
int MoveAttrMapActivation(const ValueNodePtr &value_node) {
MS_ASSERT(value_node != nullptr);
auto src_prim = GetValueNode<PrimitivePtr>(value_node);
if (src_prim == nullptr) {
MS_LOG(ERROR) << "value node is invalid.";
return lite::RET_ERROR;
}
auto dst_prim = std::make_shared<ops::Activation>();
MS_ASSERT(dst_prim != nullptr);
dst_prim->SetAttrs(src_prim->attrs());
auto iter = activation_map.find(src_prim->name());
if (iter == activation_map.end()) {
MS_LOG(ERROR) << "activation mode is unsupport.";
return lite::RET_ERROR;
}
dst_prim->set_activation_type(iter->second);
value_node->set_value(dst_prim);
return lite::RET_OK;
}
int MoveAttrMapReduce(const ValueNodePtr &value_node) {
MS_ASSERT(value_node != nullptr);
auto src_prim = GetValueNode<PrimitivePtr>(value_node);
if (src_prim == nullptr) {
MS_LOG(ERROR) << "value node is invalid.";
return lite::RET_ERROR;
}
auto dst_prim = std::make_shared<ops::ReduceFusion>();
MS_ASSERT(dst_prim != nullptr);
dst_prim->SetAttrs(src_prim->attrs());
auto iter = reduce_map.find(src_prim->name());
if (iter == reduce_map.end()) {
MS_LOG(ERROR) << "reduce mode is unsupport.";
return lite::RET_ERROR;
}
dst_prim->set_mode(iter->second);
dst_prim->set_coeff(1.0f);
value_node->set_value(dst_prim);
return lite::RET_OK;
}
int MoveAttrMapConv2D(const ValueNodePtr &value_node) {
MS_ASSERT(value_node != nullptr);
auto src_prim = GetValueNode<PrimitivePtr>(value_node);
if (src_prim == nullptr) {
MS_LOG(ERROR) << "value node is invalid.";
return lite::RET_ERROR;
}
auto dst_prim = std::make_shared<ops::Conv2DFusion>();
MS_ASSERT(dst_prim != nullptr);
dst_prim->SetAttrs(src_prim->attrs());
auto status = AttrAdjust(dst_prim, ops::kStride, {2, 3});
if (status != lite::RET_OK) {
MS_LOG(ERROR) << "adjust stride failed.";
return status;
}
status = AttrAdjust(dst_prim, ops::kDilation, {2, 3});
if (status != lite::RET_OK) {
MS_LOG(ERROR) << "adjust dilation failed.";
return status;
}
status = AttrAdjust(dst_prim, ops::kKernelSize, {0, 1});
if (status != lite::RET_OK) {
MS_LOG(ERROR) << "adjust kernel size failed.";
return status;
}
int64_t group = 1;
if (dst_prim->GetAttr(ops::kGroup) != nullptr) {
group = dst_prim->get_group();
}
if (group > 1) {
dst_prim->AddAttr(ops::kIsDepthWise, MakeValue<bool>(true));
}
dst_prim->set_group(group);
value_node->set_value(dst_prim);
return lite::RET_OK;
}
int MoveAttrPool(const ValueNodePtr &value_node) {
MS_ASSERT(value_node != nullptr);
auto src_prim = GetValueNode<PrimitivePtr>(value_node);
if (src_prim == nullptr) {
MS_LOG(ERROR) << "value node is invalid.";
return lite::RET_ERROR;
}
PrimitivePtr dst_prim;
if (src_prim->name() == kNameAvgPool) {
dst_prim = std::make_shared<ops::AvgPoolFusion>();
} else if (src_prim->name() == kNameMaxPool) {
dst_prim = std::make_shared<ops::MaxPoolFusion>();
} else {
MS_LOG(ERROR) << "unsupport pooling type.";
return lite::RET_ERROR;
}
MS_ASSERT(dst_prim != nullptr);
dst_prim->SetAttrs(src_prim->attrs());
auto status = AttrAdjust(dst_prim, ops::kKernelSize, {2, 3});
if (status != lite::RET_OK) {
MS_LOG(ERROR) << "adjust ksize failed.";
return status;
}
status = AttrAdjust(dst_prim, ops::kStrides, {2, 3});
if (status != lite::RET_OK) {
MS_LOG(ERROR) << "adjust strides failed.";
return status;
}
if (dst_prim->GetAttr(ops::kPadding) != nullptr) {
dst_prim->AddAttr(ops::kPadMode, dst_prim->GetAttr(ops::kPadding));
}
value_node->set_value(dst_prim);
return lite::RET_OK;
}
int MoveAttrMapAdder(const ValueNodePtr &value_node) {
MS_ASSERT(value_node != nullptr);
auto src_prim = GetValueNode<PrimitivePtr>(value_node);
if (src_prim == nullptr) {
MS_LOG(ERROR) << "value node is invalid.";
return lite::RET_ERROR;
}
auto dst_prim = std::make_shared<ops::AdderFusion>();
MS_ASSERT(dst_prim != nullptr);
dst_prim->SetAttrs(src_prim->attrs());
auto status = AttrAdjust(dst_prim, ops::kStride, {2, 3});
if (status != lite::RET_OK) {
MS_LOG(ERROR) << "adjust stride failed.";
return status;
}
status = AttrAdjust(dst_prim, ops::kDilation, {2, 3});
if (status != lite::RET_OK) {
MS_LOG(ERROR) << "adjust dilation failed.";
return status;
}
status = AttrAdjust(dst_prim, ops::kKernelSize, {0, 1});
if (status != lite::RET_OK) {
MS_LOG(ERROR) << "adjust kernel size failed.";
return status;
}
value_node->set_value(dst_prim);
return lite::RET_OK;
}
int MoveAttrMapLayerNorm(const ValueNodePtr &value_node) {
MS_ASSERT(value_node != nullptr);
auto src_prim = GetValueNode<PrimitivePtr>(value_node);
if (src_prim == nullptr) {
MS_LOG(ERROR) << "value node is invalid.";
return lite::RET_ERROR;
}
auto dst_prim = std::make_shared<ops::LayerNormFusion>();
MS_ASSERT(dst_prim != nullptr);
dst_prim->SetAttrs(src_prim->attrs());
dst_prim->set_elementwise_affine(true);
if (dst_prim->GetAttr(ops::kEpsilon) == nullptr) {
dst_prim->set_epsilon(1e-7);
}
value_node->set_value(dst_prim);
return lite::RET_OK;
}
int MoveAttrMapResize(const ValueNodePtr &value_node) {
MS_ASSERT(value_node != nullptr);
auto src_prim = GetValueNode<PrimitivePtr>(value_node);
if (src_prim == nullptr) {
MS_LOG(ERROR) << "value node is invalid.";
return lite::RET_ERROR;
}
auto dst_prim = std::make_shared<ops::Resize>();
auto size = GetValue<std::vector<int64_t>>(src_prim->GetAttr(ops::kSize));
dst_prim->set_new_height(size[0]);
dst_prim->set_new_width(size[1]);
if (dst_prim->GetAttr(ops::kAlignCorners) != nullptr && GetValue<bool>(dst_prim->GetAttr(ops::kAlignCorners))) {
dst_prim->set_coordinate_transform_mode(mindspore::ALIGN_CORNERS);
}
if (src_prim->name() == kNameResizeBilinear) {
dst_prim->set_method(ResizeMethod::LINEAR);
} else if (src_prim->name() == "ResizeNearestNeighbor") {
dst_prim->set_method(ResizeMethod::NEAREST);
}
value_node->set_value(dst_prim);
return lite::RET_OK;
}
} // namespace
bool PrimitiveAdjustPass::Run(const FuncGraphPtr &func_graph) {
if (this->fmk_type_ != lite::converter::FmkType_MS) {
MS_LOG(INFO) << "The framework type of model should be mindir.";
return lite::RET_OK;
}
MS_ASSERT(graph != nullptr);
auto node_list = TopoSort(func_graph->get_return());
int status = lite::RET_OK;
for (auto &node : node_list) {
if (!utils::isa<CNodePtr>(node)) {
continue;
}
auto cnode = node->cast<CNodePtr>();
MS_ASSERT(cnode->size() > 0);
auto value_node = cnode->input(0)->cast<ValueNodePtr>();
if (value_node == nullptr) {
MS_LOG(ERROR) << "cnode first input is invalid.";
return false;
}
auto prim = GetValueNode<PrimitivePtr>(cnode->input(0));
MS_ASSERT(prim != nullptr);
auto name = prim->name();
auto adjust_func = PrimitiveAdjustRegistry::GetInstance()->GetPrimitiveCreator(name);
if (adjust_func == nullptr) {
MS_LOG(DEBUG) << "dont't need to adjust.";
continue;
}
status = adjust_func(value_node);
if (status != lite::RET_OK) {
MS_LOG(ERROR) << "convert primitive failed.";
return false;
}
}
return true;
}
REGIST_PRIMITIVE_ADJUST(kNameAbs, MoveAttrMapActivation)
REGIST_PRIMITIVE_ADJUST(kNameAdd, MoveAttrMapCommon<ops::AddFusion>)
REGIST_PRIMITIVE_ADJUST(kNameAdder, MoveAttrMapAdder)
REGIST_PRIMITIVE_ADJUST(kNameArgMax, MoveAttrMapCommon<ops::ArgMaxFusion>)
REGIST_PRIMITIVE_ADJUST(kNameArgMaxWithValue, MoveAttrMapCommon<ops::ArgMaxFusion>)
REGIST_PRIMITIVE_ADJUST(kNameArgMin, MoveAttrMapCommon<ops::ArgMinFusion>)
REGIST_PRIMITIVE_ADJUST(kNameArgMinWithValue, MoveAttrMapCommon<ops::ArgMinFusion>)
REGIST_PRIMITIVE_ADJUST(kNameAvgPool, MoveAttrPool)
REGIST_PRIMITIVE_ADJUST(kNameBatchMatMul, MoveAttrMapCommon<ops::MatMul>)
REGIST_PRIMITIVE_ADJUST(kNameBatchNorm, MoveAttrMapCommon<ops::FusedBatchNorm>)
REGIST_PRIMITIVE_ADJUST(kNameConv2DBackpropFilter, MoveAttrMapCommon<ops::Conv2DBackpropFilterFusion>)
REGIST_PRIMITIVE_ADJUST(kNameConv2DBackpropInput, MoveAttrMapCommon<ops::Conv2DBackpropInputFusion>)
REGIST_PRIMITIVE_ADJUST(kNameConv2D, MoveAttrMapConv2D)
REGIST_PRIMITIVE_ADJUST(kNameDepthWiseConv2D, MoveAttrMapConv2D)
REGIST_PRIMITIVE_ADJUST(kNameConv2dTranspose, MoveAttrMapCommon<ops::Conv2dTransposeFusion>)
REGIST_PRIMITIVE_ADJUST(kNameDiv, MoveAttrMapCommon<ops::DivFusion>)
REGIST_PRIMITIVE_ADJUST(kNameElu, MoveAttrMapActivation)
REGIST_PRIMITIVE_ADJUST(kNameExp, MoveAttrMapCommon<ops::ExpFusion>)
REGIST_PRIMITIVE_ADJUST(kNameGatherV2, MoveAttrMapCommon<ops::Gather>)
REGIST_PRIMITIVE_ADJUST(kNameGeLU, MoveAttrMapActivation)
REGIST_PRIMITIVE_ADJUST(kNameL2Normalize, MoveAttrMapCommon<ops::L2NormalizeFusion>)
REGIST_PRIMITIVE_ADJUST(kNameLayerNorm, MoveAttrMapLayerNorm)
REGIST_PRIMITIVE_ADJUST(kNameLeakyRelu, MoveAttrMapActivation)
REGIST_PRIMITIVE_ADJUST(kNameMaxPool, MoveAttrPool)
REGIST_PRIMITIVE_ADJUST(kNameMul, MoveAttrMapCommon<ops::MulFusion>)
REGIST_PRIMITIVE_ADJUST(kNamePad, MoveAttrMapCommon<ops::PadFusion>)
REGIST_PRIMITIVE_ADJUST(kNamePReLU, MoveAttrMapCommon<ops::PReLUFusion>)
REGIST_PRIMITIVE_ADJUST(kNameReduceAll, MoveAttrMapReduce)
REGIST_PRIMITIVE_ADJUST(kNameReduceASum, MoveAttrMapReduce)
REGIST_PRIMITIVE_ADJUST(kNameReduceMax, MoveAttrMapReduce)
REGIST_PRIMITIVE_ADJUST(kNameReduceMean, MoveAttrMapReduce)
REGIST_PRIMITIVE_ADJUST(kNameReduceMin, MoveAttrMapReduce)
REGIST_PRIMITIVE_ADJUST(kNameReduceProd, MoveAttrMapReduce)
REGIST_PRIMITIVE_ADJUST(kNameReduceSum, MoveAttrMapReduce)
REGIST_PRIMITIVE_ADJUST(kNameReduceSumSquare, MoveAttrMapReduce)
REGIST_PRIMITIVE_ADJUST(kNameReLU, MoveAttrMapActivation)
REGIST_PRIMITIVE_ADJUST(kNameReLU6, MoveAttrMapActivation)
REGIST_PRIMITIVE_ADJUST(kNameResizeBilinear, MoveAttrMapResize)
REGIST_PRIMITIVE_ADJUST(kNameScale, MoveAttrMapCommon<ops::ScaleFusion>)
REGIST_PRIMITIVE_ADJUST(kNameSigmoid, MoveAttrMapActivation)
REGIST_PRIMITIVE_ADJUST(kNameSub, MoveAttrMapCommon<ops::SubFusion>)
REGIST_PRIMITIVE_ADJUST(kNameTanh, MoveAttrMapActivation)
REGIST_PRIMITIVE_ADJUST(kNameTensorAdd, MoveAttrMapCommon<ops::AddFusion>)
REGIST_PRIMITIVE_ADJUST(kNameTile, MoveAttrMapCommon<ops::TileFusion>)
REGIST_PRIMITIVE_ADJUST(kNameTopK, MoveAttrMapCommon<ops::TopKFusion>)
} // namespace opt
} // namespace mindspore

View File

@ -31,6 +31,7 @@ from ... import context
env_force_bprop_seq = os.getenv("ENV_FORCE_BPROP_SEQ")
@bprop_getters.register(P.BiasAdd)
def get_bprop_bias_add(self):
"""Grad definition for `BiasAdd` operation."""
@ -313,7 +314,7 @@ def _get_mean_matrix(x_shape, ksize, stride, pad_mode, x_dtype):
for h in range(h_output):
for w in range(w_output):
curr_input = assist_input_matrix[h*h_stride : h*h_stride + h_ksize, w*w_stride : w*w_stride + w_ksize]
curr_input = assist_input_matrix[h * h_stride: h * h_stride + h_ksize, w * w_stride: w * w_stride + w_ksize]
curr_sum = np.sum(curr_input)
if curr_sum > 0:
output[:, :, h, w] = 1. / curr_sum
@ -333,10 +334,10 @@ def get_bprop_avg_pool_grad(self):
# the parameter of AvgPoolGrad in GPU and TBE/CPU is not same
if self.target == "GPU":
avgpool_grad_gpu = G.AvgPoolGradGpu(
kernel_size=self.kernel_size,
strides=self.strides,
pad_mode=self.pad_mode,
data_format=self.format)
kernel_size=self.kernel_size,
strides=self.strides,
pad_mode=self.pad_mode,
data_format=self.format)
def bprop_gpu(x, out, dout):
dx = avgpool_grad_gpu(x, out, dout)
@ -359,9 +360,9 @@ def get_bprop_avg_pool_grad(self):
elif self.target == "GE":
avgpool_grad_ge = G.AvgPoolGrad(
kernel_size=self.kernel_size,
strides=self.strides,
pad_mode=self.pad_mode)
kernel_size=self.kernel_size,
strides=self.strides,
pad_mode=self.pad_mode)
shape_op = P.Shape()
def bprop_ge(x, out, dout):
@ -372,9 +373,9 @@ def get_bprop_avg_pool_grad(self):
else:
avgpool_grad_vm = G.AvgPoolGradVm(
kernel_size=self.kernel_size,
strides=self.strides,
pad_mode=self.pad_mode)
kernel_size=self.kernel_size,
strides=self.strides,
pad_mode=self.pad_mode)
k_size_nchw = avgpool_grad_vm.kernel_size
stride_nchw = avgpool_grad_vm.strides
pad_mode = self.pad_mode
@ -681,10 +682,10 @@ def get_bprop_tanh_grad(self):
return bprop
@bprop_getters.register(P.Gelu)
@bprop_getters.register(P.GeLU)
def get_bprop_gelu(self):
"""Grad definition for `Gelu` operation."""
input_grad = G.GeluGrad()
"""Grad definition for `GeLU` operation."""
input_grad = G.GeLUGrad()
def bprop(x, out, dout):
dx = input_grad(dout, x, out)
@ -693,10 +694,34 @@ def get_bprop_gelu(self):
return bprop
@bprop_getters.register(P.FastGelu)
@bprop_getters.register(P.Gelu)
def get_bprop_gelu_2(self):
"""Grad definition for `GeLU` operation."""
input_grad = G.GeLUGrad()
def bprop(x, out, dout):
dx = input_grad(dout, x, out)
return (dx,)
return bprop
@bprop_getters.register(P.FastGeLU)
def get_bprop_fast_gelu(self):
"""Grad definition for `FastGelu` operation."""
input_grad = G.FastGeluGrad()
"""Grad definition for `FastGeLU` operation."""
input_grad = G.FastGeLUGrad()
def bprop(x, out, dout):
dx = input_grad(dout, x)
return (dx,)
return bprop
@bprop_getters.register(P.FastGelu)
def get_bprop_fast_gelu_2(self):
"""Grad definition for `FastGeLU` operation."""
input_grad = G.FastGeLUGrad()
def bprop(x, out, dout):
dx = input_grad(dout, x)
@ -713,6 +738,7 @@ def get_bprop_fused_batch_norm(self):
if self.target == "CPU":
input_grad = G.FusedBatchNormGradCPU(self.epsilon, self.momentum)
target_cpu = True
def bprop(x, scale, b, mean, variance, out, dout):
saved_mean = out[3]
saved_variance = out[4]
@ -897,6 +923,7 @@ def _range_op(start, limit, delta, dtype):
output_tensor = Tensor(list(range(start, limit, delta)), dtype)
return output_tensor
@constexpr
def _get_1d_shape(in_shape):
"""helper function for Grad TopK"""
@ -905,6 +932,7 @@ def _get_1d_shape(in_shape):
out_shape *= i
return (out_shape,)
@bprop_getters.register(P.TopK)
def get_bprop_top_kv2(self):
"""Grad definition for `TopK` operation."""
@ -915,7 +943,6 @@ def get_bprop_top_kv2(self):
dtype = P.DType()
def bprop(input_x, k, out, dout):
in_shape = shape_op(input_x)
in_lastdim = in_shape[-1]
@ -976,6 +1003,7 @@ def get_bprop_rnnt_loss(self):
def bprop(acts, labels, act_lens, label_lens, out, dout):
grad = out[1]
return grad, zeros_like(labels), zeros_like(act_lens), zeros_like(label_lens)
return bprop
@ -1064,6 +1092,7 @@ def get_bprop_dynamic_rnn(self):
dh_prev = expand_dims(dh_prev, 0)
dc_prev = expand_dims(dc_prev, 0)
return dx, dw, db, (0), dh_prev, dc_prev
return bprop
@ -1082,6 +1111,7 @@ def get_bprop_dynamic_gru_v2(self):
out_h, dy, dout_h[-1], update,
reset, new, hidden_new, None, None)
return dx, dw_input, dw_hidden, db_input, db_hidden, (0), dh_prev
return bprop
@ -1181,6 +1211,7 @@ def get_bprop_binary_cross_entropy(self):
return bprop
@bprop_getters.register(P.KLDivLoss)
def get_bprop_kl_div_loss(self):
"""Grad definition for `KLDivLoss` operation."""
@ -1239,6 +1270,7 @@ def get_bprop_basic_lstm_cell(self):
dxt, dht = basic_lstm_cell_input_grad(dgate, w)
dw, db = basic_lstm_cell_weight_grad(F.depend(x, dxt), h, dgate)
return dxt, dht, dct_1, dw, db
return bprop

View File

@ -13,10 +13,10 @@
# limitations under the License.
# ============================================================================
"""FastGelu op"""
"""FastGeLU op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
fast_gelu_op_info = TBERegOp("FastGelu") \
fast_gelu_op_info = TBERegOp("FastGeLU") \
.fusion_type("ELEMWISE") \
.async_flag(False) \
.binfile_name("fast_gelu.so") \
@ -33,5 +33,5 @@ fast_gelu_op_info = TBERegOp("FastGelu") \
@op_info_register(fast_gelu_op_info)
def _fast_gelu_tbe():
"""FastGelu TBE register"""
"""FastGeLU TBE register"""
return

View File

@ -13,10 +13,10 @@
# limitations under the License.
# ============================================================================
"""FastGeluGrad op"""
"""FastGeLUGrad op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
fast_gelu_grad_op_info = TBERegOp("FastGeluGrad") \
fast_gelu_grad_op_info = TBERegOp("FastGeLUGrad") \
.fusion_type("ELEMWISE") \
.async_flag(False) \
.binfile_name("fast_gelu_grad.so") \
@ -37,5 +37,5 @@ fast_gelu_grad_op_info = TBERegOp("FastGeluGrad") \
@op_info_register(fast_gelu_grad_op_info)
def _fast_gelu_grad_tbe():
"""FastGeluGrad TBE register"""
"""FastGeLUGrad TBE register"""
return

View File

@ -13,10 +13,10 @@
# limitations under the License.
# ============================================================================
"""Gelu op"""
"""GeLU op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
gelu_op_info = TBERegOp("Gelu") \
gelu_op_info = TBERegOp("GeLU") \
.fusion_type("ELEMWISE") \
.async_flag(False) \
.binfile_name("gelu.so") \
@ -33,5 +33,5 @@ gelu_op_info = TBERegOp("Gelu") \
@op_info_register(gelu_op_info)
def _gelu_tbe():
"""Gelu TBE register"""
"""GeLU TBE register"""
return

View File

@ -13,10 +13,10 @@
# limitations under the License.
# ============================================================================
"""GeluGrad op"""
"""GeLUGrad op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
gelu_grad_op_info = TBERegOp("GeluGrad") \
gelu_grad_op_info = TBERegOp("GeLUGrad") \
.fusion_type("ELEMWISE") \
.async_flag(False) \
.binfile_name("gelu_grad.so") \
@ -38,5 +38,5 @@ gelu_grad_op_info = TBERegOp("GeluGrad") \
@op_info_register(gelu_grad_op_info)
def _gelu_grad_tbe():
"""GeluGrad TBE register"""
"""GeLUGrad TBE register"""
return

View File

@ -43,7 +43,8 @@ from .debug_ops import (ImageSummary, InsertGradientOf, HookBackward, ScalarSumm
from .control_ops import ControlDepend, GeSwitch, Merge
from .inner_ops import ScalarCast, Randperm, NoRepeatNGram, LambApplyOptimizerAssign, LambApplyWeightAssign, MakeRefKey
from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, AssignSub, Atan2, BatchMatMul, BitwiseAnd, BitwiseOr,
from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, AssignSub, Atan2, BatchMatMul,
BitwiseAnd, BitwiseOr,
BitwiseXor, Inv, Invert, ApproximateEqual, InplaceAdd, InplaceSub,
ReduceMax, ReduceMin, ReduceMean, ReduceSum, ReduceAll, ReduceProd, CumProd, ReduceAny,
Cos, Div, DivNoNan, Equal, EqualCount, Exp, Expm1, Erf, Erfc, Floor, FloorDiv, FloorMod, Ceil,
@ -65,7 +66,8 @@ from .nn_ops import (LSTM, SGD, Adam, FusedSparseAdam, FusedSparseLazyAdam, Adam
DepthwiseConv2dNative,
DropoutDoMask, Dropout, Dropout3d, DropoutGenMask, Flatten,
FusedBatchNorm, FusedBatchNormEx, InstanceNorm, BNTrainingReduce, BNTrainingUpdate,
Gelu, FastGelu, Elu,
GeLU, Gelu, FastGeLU, FastGelu, Elu,
GetNext, L2Normalize, LayerNorm, L2Loss, CTCLoss, CTCGreedyDecoder,
LogSoftmax,
MaxPool, DataFormatDimMap,
@ -93,7 +95,8 @@ from ._thor_ops import (CusBatchMatMul, CusCholeskyTrsm, CusFusedAbsMax1, CusImg
CusMatMulCubeFraczLeftCast, Im2Col, UpdateThorGradient, Cholesky, CholeskyTrsm, DetTriangle,
ProdForceSeA)
from .sparse_ops import SparseToDense
from ._embedding_cache_ops import (CacheSwapHashmap, SearchCacheIdx, CacheSwapTable, UpdateCache, MapCacheIdx, SubAndFilter,
from ._embedding_cache_ops import (CacheSwapHashmap, SearchCacheIdx, CacheSwapTable, UpdateCache, MapCacheIdx,
SubAndFilter,
MapUniform, DynamicAssign, PadAndShift)
__all__ = [
@ -174,7 +177,9 @@ __all__ = [
'Unstack',
'Tile',
'BiasAdd',
'GeLU',
'Gelu',
'FastGeLU',
'FastGelu',
'Minimum',
'Maximum',

View File

@ -790,12 +790,12 @@ class BNTrainingUpdateGrad(PrimitiveWithInfer):
return (batch_mean, batch_variance)
class GeluGrad(PrimitiveWithInfer):
"""Gradients of Gelu operation."""
class GeLUGrad(PrimitiveWithInfer):
"""Gradients of GeLU operation."""
@prim_attr_register
def __init__(self):
"""Initialize GeluGrad"""
"""Initialize GeLUGrad"""
def infer_shape(self, y_backprop_shape, x_shape, y_shape):
return x_shape
@ -808,12 +808,12 @@ class GeluGrad(PrimitiveWithInfer):
return x_dtype
class FastGeluGrad(PrimitiveWithInfer):
"""Gradients of FastGelu operation."""
class FastGeLUGrad(PrimitiveWithInfer):
"""Gradients of FastGeLU operation."""
@prim_attr_register
def __init__(self):
"""init FastGeluGrad"""
"""init FastGeLUGrad"""
def infer_shape(self, y_backprop_shape, x_shape):
return x_shape

View File

@ -805,6 +805,7 @@ class Gather(PrimitiveWithCheck):
[ 4. 54.]
[ 2. 55.]]
"""
@prim_attr_register
def __init__(self):
"""Initialize index_select"""
@ -826,7 +827,8 @@ class GatherV2(PrimitiveWithCheck):
Same as operator Gather. GatherV2 will be deprecated in the future.
Please use Gather instead.
"""
#deprecate_new_name = "Gather"
# deprecate_new_name = "Gather"
@deprecated("1.1", "Gather", True)
@prim_attr_register
@ -2270,6 +2272,29 @@ def _get_stack_shape(x_shape, x_type, axis, prim_name):
return out_shape
class Pack(PrimitiveWithInfer):
"""
Same as operator Stack. Pack will be deprecated in the future.
Please use Stack instead.
"""
@deprecated("1.1", "Stack", True)
@prim_attr_register
def __init__(self, axis=0):
"""Initialize Pack"""
validator.check_value_type("axis", axis, [int], self.name)
self.axis = axis
def __infer__(self, value):
x_shape = value['shape']
x_type = value['dtype']
self.add_prim_attr('num', len(x_shape))
all_shape = _get_stack_shape(x_shape, x_type, self.axis, self.name)
out = {'shape': all_shape,
'dtype': x_type[0],
'value': None}
return out
class Stack(PrimitiveWithInfer):
r"""
Stacks a list of tensors in specified axis.
@ -2324,26 +2349,45 @@ class Stack(PrimitiveWithInfer):
'value': None}
return out
def Pack(axis=0):
class Unpack(PrimitiveWithInfer):
"""
Packs a list of tensors in specified axis.
The usage of Pack is deprecated. Please use Stack.
Same as operator Unstack. Unpack will be deprecated in the future.
Please use Unstack instead.
"""
logger.warning("WARN_DEPRECATED: The usage of Pack is deprecated. Please use Stack.")
return Stack(axis)
@deprecated("1.1", "Unstack", True)
@prim_attr_register
def __init__(self, axis=0):
"""Initialize Unpack"""
validator.check_value_type("axis", axis, [int], self.name)
self.axis = axis
def Unpack(axis=0):
"""
Unpacks tensor in specified axis.
The usage of Unpack is deprecated. Please use Unstack.
"""
logger.warning("WARN_DEPRECATED: The usage of Unpack is deprecated. Please use Unstack.")
return Unstack(axis)
def __infer__(self, x):
validator.check_subclass("x", x['dtype'], mstype.tensor, self.name)
x_shape = list(x['shape'])
dim = len(x_shape)
validator.check_int_range(self.axis, -dim, dim, Rel.INC_LEFT, 'axis value', self.name)
if self.axis < 0:
self.axis = self.axis + dim
output_num = x_shape[self.axis]
validator.check_value_type("num", output_num, [int], self.name)
validator.check_positive_int(output_num, "output_num", self.name)
self.add_prim_attr('num', output_num)
output_valid_check = x_shape[self.axis] - output_num
validator.check_int(output_valid_check, 0, Rel.EQ,
"The dimension which to unstack divides output_num", self.name)
out_shapes = []
out_dtypes = []
out_shape = x_shape[:self.axis] + x_shape[self.axis + 1:]
for _ in range(output_num):
out_shapes.append(tuple(out_shape))
out_dtypes.append(x['dtype'])
out_shapes = tuple(out_shapes)
out_dtypes = tuple(out_dtypes)
out = {'shape': out_shapes,
'dtype': out_dtypes,
'value': None}
return out
class Unstack(PrimitiveWithInfer):

View File

@ -20,12 +20,14 @@ import operator
from functools import reduce, partial
from mindspore import log as logger
from mindspore._checkparam import _check_3d_int_or_tuple
from mindspore import log as logger
import numpy as np
from ... import context
from .. import signature as sig
from ..._checkparam import Validator as validator
from ..._checkparam import Rel
from ...common import dtype as mstype
from ...common._decorator import deprecated
from ..primitive import Primitive, PrimitiveWithInfer, PrimitiveWithCheck, prim_attr_register
@ -3245,6 +3247,25 @@ class OneHot(PrimitiveWithInfer):
class Gelu(PrimitiveWithInfer):
"""
Same as operator GeLU. Gelu will be deprecated in the future.
Please use GeLU instead.
"""
@deprecated("1.1", "GeLU", True)
@prim_attr_register
def __init__(self):
"""Initialize Gelu"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, input_x):
return input_x
def infer_dtype(self, input_x):
validator.check_tensor_dtype_valid("input_x", input_x, (mstype.float16, mstype.float32), self.name)
return input_x
class GeLU(PrimitiveWithInfer):
r"""
Gaussian Error Linear Units activation function.
@ -3252,7 +3273,7 @@ class Gelu(PrimitiveWithInfer):
And also please refer to `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
<https://arxiv.org/abs/1810.04805>`_.
Gelu is defined as follows:
GeLU is defined as follows:
.. math::
\text{output} = 0.5 * x * (1 + erf(x / \sqrt{2})),
@ -3260,7 +3281,7 @@ class Gelu(PrimitiveWithInfer):
where :math:`erf` is the "Gauss error function" .
Inputs:
- **input_x** (Tensor) - Input to compute the Gelu with data type of float16 or float32.
- **input_x** (Tensor) - Input to compute the GeLU with data type of float16 or float32.
Outputs:
Tensor, with the same type and shape as input.
@ -3273,7 +3294,7 @@ class Gelu(PrimitiveWithInfer):
Examples:
>>> tensor = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
>>> gelu = ops.Gelu()
>>> gelu = ops.GeLU()
>>> result = gelu(tensor)
>>> print(result)
[0.841192 1.9545976 2.9963627]
@ -3293,10 +3314,29 @@ class Gelu(PrimitiveWithInfer):
class FastGelu(PrimitiveWithInfer):
"""
Same as operator FastGeLU. FastGelu will be deprecated in the future.
Please use FastGeLU instead.
"""
@deprecated("1.1", "FastGeLU", True)
@prim_attr_register
def __init__(self):
"""init FastGelu"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, input_x):
return input_x
def infer_dtype(self, input_x):
validator.check_tensor_dtype_valid("input_x", input_x, (mstype.float16, mstype.float32), self.name)
return input_x
class FastGeLU(PrimitiveWithInfer):
r"""
Fast Gaussian Error Linear Units activation function.
FastGelu is defined as follows:
FastGeLU is defined as follows:
.. math::
\text{output} = \frac {x} {1 + \exp(-1.702 * \left| x \right|)} * \exp(0.851 * (x - \left| x \right|)),
@ -3304,7 +3344,7 @@ class FastGelu(PrimitiveWithInfer):
where :math:`x` is the element of the input.
Inputs:
- **input_x** (Tensor) - Input to compute the FastGelu with data type of float16 or float32.
- **input_x** (Tensor) - Input to compute the FastGeLU with data type of float16 or float32.
Outputs:
Tensor, with the same type and shape as input.
@ -3317,7 +3357,7 @@ class FastGelu(PrimitiveWithInfer):
Examples:
>>> tensor = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> fast_gelu = P.FastGelu()
>>> fast_gelu = P.FastGeLU()
>>> output = fast_gelu(tensor)
>>> print(output)
[[-1.5420423e-01 3.9955849e+00 -9.7664278e-06]

View File

@ -61,7 +61,7 @@ class MEGeluLargeIn(Cell):
def __init__(self):
super(MEGeluLargeIn, self).__init__()
self.matmul = P.MatMul()
self.fast_gelu = P.Gelu()
self.fast_gelu = P.GeLU()
def construct(self, x1, x2):
x = self.matmul(x1, x2)

View File

@ -61,7 +61,7 @@ class MEGeluLargeIn(Cell):
def __init__(self):
super(MEGeluLargeIn, self).__init__()
self.matmul = P.MatMul()
self.gelu = P.Gelu()
self.gelu = P.GeLU()
def construct(self, x1, x2):
x = self.matmul(x1, x2)

View File

@ -28,7 +28,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
class GeluNet(nn.Cell):
def __init__(self):
super(GeluNet, self).__init__()
self.gelu = P.Gelu()
self.gelu = P.GeLU()
def construct(self, x):
return self.gelu(x)

View File

@ -27,7 +27,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
class GeluNet(nn.Cell):
def __init__(self):
super(GeluNet, self).__init__()
self.gelu = P.Gelu()
self.gelu = P.GeLU()
def construct(self, x):
return self.gelu(x)

View File

@ -28,7 +28,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
class GeluNet(nn.Cell):
def __init__(self):
super(GeluNet, self).__init__()
self.gelu = P.Gelu()
self.gelu = P.GeLU()
def construct(self, x):
return self.gelu(x)

View File

@ -27,7 +27,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
class GeluNet(nn.Cell):
def __init__(self):
super(GeluNet, self).__init__()
self.gelu = P.Gelu()
self.gelu = P.GeLU()
def construct(self, x):
return self.gelu(x)

View File

@ -25,7 +25,7 @@ import mindspore.ops.operations._grad_ops as G
class GeluNet(Cell):
def __init__(self):
super(GeluNet, self).__init__()
self.gelu = P.Gelu()
self.gelu = P.GeLU()
def construct(self, x):
return self.gelu(x)
@ -34,7 +34,7 @@ class GeluNet(Cell):
class GeluGradNet(Cell):
def __init__(self):
super(GeluGradNet, self).__init__()
self.gelu_grad = G.GeluGrad()
self.gelu_grad = G.GeLUGrad()
def construct(self, dy, x, y):
return self.gelu_grad(dy, x, y)

View File

@ -26,18 +26,18 @@
namespace mindspore {
namespace parallel {
class GeluInfo;
using GeluInfoPtr = std::shared_ptr<GeluInfo>;
GeluInfoPtr gelu;
class GeLUInfo;
using GeLUInfoPtr = std::shared_ptr<GeLUInfo>;
GeLUInfoPtr gelu;
class TestGeluInfo : public UT::Common {
class TestGeLUInfo : public UT::Common {
public:
TestGeluInfo() {}
TestGeLUInfo() {}
void SetUp();
void TearDown() {}
};
void TestGeluInfo::SetUp() {
void TestGeLUInfo::SetUp() {
RankList dev_list;
for (int32_t i = 0; i < 130; i++) {
@ -59,10 +59,10 @@ void TestGeluInfo::SetUp() {
Shapes inputs_shape = {{2, 4, 8, 16}};
Shapes outputs_shape = {{2, 4, 8, 16}};
gelu = std::make_shared<GeluInfo>("gelu_info", inputs_shape, outputs_shape, attr);
gelu = std::make_shared<GeLUInfo>("gelu_info", inputs_shape, outputs_shape, attr);
}
TEST_F(TestGeluInfo, InferDevMatrixShape1) {
TEST_F(TestGeLUInfo, InferDevMatrixShape1) {
Strategys inputs = {{2, 4, 1, 16}};
StrategyPtr strategy = NewStrategy(0, inputs);
@ -73,7 +73,7 @@ TEST_F(TestGeluInfo, InferDevMatrixShape1) {
ASSERT_EQ(dev_matrix_shape, expect);
}
TEST_F(TestGeluInfo, InferSliceShape1) {
TEST_F(TestGeLUInfo, InferSliceShape1) {
Strategys str = {{2, 4, 1, 16}};
StrategyPtr strategy = NewStrategy(0, str);
@ -94,7 +94,7 @@ TEST_F(TestGeluInfo, InferSliceShape1) {
ASSERT_EQ(output_slice_shape, output_slice_shape_expect);
}
TEST_F(TestGeluInfo, GetTensorLayout1) {
TEST_F(TestGeLUInfo, GetTensorLayout1) {
Strategys str = {{2, 4, 1, 16}};
StrategyPtr strategy = NewStrategy(0, str);
@ -115,7 +115,7 @@ TEST_F(TestGeluInfo, GetTensorLayout1) {
ASSERT_EQ(output_tensor_map.array(), output_expect);
}
TEST_F(TestGeluInfo, GetForwardOp1) {
TEST_F(TestGeLUInfo, GetForwardOp1) {
Strategys inputs = {{2, 4, 1, 16}};
StrategyPtr strategy = NewStrategy(0, inputs);
@ -126,7 +126,7 @@ TEST_F(TestGeluInfo, GetForwardOp1) {
ASSERT_EQ(size, 0);
}
TEST_F(TestGeluInfo, GetMirrorOPs1) {
TEST_F(TestGeLUInfo, GetMirrorOPs1) {
Strategys inputs = {{2, 4, 1, 16}};
StrategyPtr strategy = NewStrategy(0, inputs);
@ -138,7 +138,7 @@ TEST_F(TestGeluInfo, GetMirrorOPs1) {
ASSERT_EQ(size, 0);
}
TEST_F(TestGeluInfo, CheckStrategy1) {
TEST_F(TestGeLUInfo, CheckStrategy1) {
// Success: {{2,4,1,16}}
Strategys inputs = {{2, 2, 8, 16}, {2, 4, 16, 1}};
StrategyPtr strategy = NewStrategy(0, inputs);
@ -147,7 +147,7 @@ TEST_F(TestGeluInfo, CheckStrategy1) {
ASSERT_EQ(ret, FAILED);
}
TEST_F(TestGeluInfo, CheckStrategy2) {
TEST_F(TestGeLUInfo, CheckStrategy2) {
// Success: {{2,4,1,16}}
Strategys inputs = {{2, 4, 8}};
StrategyPtr strategy = NewStrategy(0, inputs);
@ -156,7 +156,7 @@ TEST_F(TestGeluInfo, CheckStrategy2) {
ASSERT_EQ(ret, FAILED);
}
TEST_F(TestGeluInfo, CheckStrategy3) {
TEST_F(TestGeLUInfo, CheckStrategy3) {
// Success: {{2,4,1,16}}
Strategys inputs = {{2, 4, 1, 16}};
StrategyPtr strategy = NewStrategy(0, inputs);

View File

@ -1632,12 +1632,12 @@ test_case_nn_ops = [
'block': G.BiasAddGrad(),
'desc_inputs': [[1, 3, 3, 3]],
'skip': ['backward']}),
('Gelu', {
'block': P.Gelu(),
('GeLU', {
'block': P.GeLU(),
'desc_inputs': [[1, 3, 4, 4]],
'desc_bprop': [[1, 3, 4, 4]]}),
('GeluGrad', {
'block': G.GeluGrad(),
('GeLUGrad', {
'block': G.GeLUGrad(),
'desc_inputs': [[2, 2], [2, 2], [2, 2]],
'desc_bprop': [[2, 2]],
'skip': ['backward']}),

View File

@ -51,7 +51,7 @@ def test_softmax_cross_entropy_loss_auto_parallel():
def __init__(self):
super().__init__()
self.matmul = P.MatMul(transpose_b=True)
self.gelu = P.Gelu()
self.gelu = P.GeLU()
def construct(self, x, y):
out = self.matmul(x, y)

View File

@ -61,7 +61,7 @@ def test_virtual_dataset_3_input():
self.virtual_dataset = _VirtualDataset()
self.matmul1 = P.MatMul()
self.matmul2 = P.MatMul()
self.gelu = P.Gelu()
self.gelu = P.GeLU()
self.bn1 = bn_with_initialize(2048)
def construct(self, x, y, b):

View File

@ -27,7 +27,7 @@ class VirtualDatasetNet(nn.Cell):
self.virtual_dataset = _VirtualDataset()
self.matmul1 = P.MatMul()
self.matmul2 = P.MatMul()
self.gelu = P.Gelu()
self.gelu = P.GeLU()
def construct(self, x, y, z):
x, y, z = self.virtual_dataset(x, y, z)

View File

@ -163,7 +163,7 @@ def test_activations():
super().__init__()
self.matmul1 = P.MatMul().shard(strategy1)
self.matmul2 = P.MatMul().shard(strategy2)
self.gelu = P.Gelu().shard(strategy3)
self.gelu = P.GeLU().shard(strategy3)
self.tanh = P.Tanh().shard(strategy3)
self.softmax = P.Softmax().shard(strategy3)
self.logsoftmax = P.LogSoftmax().shard(strategy3)
@ -192,7 +192,7 @@ def test_activations_repeated_calculation():
super().__init__()
self.matmul1 = P.MatMul().shard(strategy1)
self.matmul2 = P.MatMul().shard(strategy2)
self.gelu = P.Gelu().shard(strategy3)
self.gelu = P.GeLU().shard(strategy3)
self.tanh = P.Tanh().shard(strategy4)
self.softmax = P.Softmax().shard(strategy5)
self.logsoftmax = P.LogSoftmax().shard(strategy6)
@ -224,7 +224,7 @@ def test_activations_axis_tuple():
super().__init__()
self.matmul1 = P.MatMul().shard(strategy1)
self.matmul2 = P.MatMul().shard(strategy2)
self.gelu = P.Gelu().shard(strategy3)
self.gelu = P.GeLU().shard(strategy3)
self.tanh = P.Tanh().shard(strategy4)
self.softmax = P.Softmax(axis=(0, 1)).shard(strategy5)
self.logsoftmax = P.LogSoftmax().shard(strategy6)

View File

@ -52,7 +52,7 @@ def test_linear():
super().__init__()
self.fc_nobias = P.MatMul(transpose_b=True).shard(strategy0)
self.add = P.Add().shard(strategy1)
self.gelu = P.Gelu().shard(strategy2)
self.gelu = P.GeLU().shard(strategy2)
def construct(self, x, y, bias):
out = self.fc_nobias(x, y)

View File

@ -57,7 +57,7 @@ class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().shard(strategy1)
self.gelu = P.Gelu().shard(strategy2)
self.gelu = P.GeLU().shard(strategy2)
def construct(self, x, y):
out = self.matmul(x, y)

View File

@ -57,7 +57,7 @@ def test_softmax_cross_entropy_loss():
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul(transpose_b=True).shard(strategy1)
self.gelu = P.Gelu().shard(strategy2)
self.gelu = P.GeLU().shard(strategy2)
def construct(self, x, y):
out = self.matmul(x, y)
@ -82,7 +82,7 @@ def test_softmax_cross_entropy_loss_repeated_calculation():
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul(transpose_b=True).shard(strategy1)
self.gelu = P.Gelu().shard(strategy2)
self.gelu = P.GeLU().shard(strategy2)
def construct(self, x, y):
out = self.matmul(x, y)
@ -107,7 +107,7 @@ def test_softmax_cross_entropy_loss_auto_batch_parallel():
def __init__(self):
super().__init__()
self.matmul = P.MatMul(transpose_b=True)
self.gelu = P.Gelu()
self.gelu = P.GeLU()
def construct(self, x, y):
out = self.matmul(x, y)

View File

@ -57,7 +57,7 @@ def test_virtual_dataset_3_input():
self.virtual_dataset = _VirtualDataset().shard(strategy0)
self.matmul1 = P.MatMul().shard(strategy1)
self.matmul2 = P.MatMul().shard(strategy2)
self.gelu = P.Gelu().shard(strategy3)
self.gelu = P.GeLU().shard(strategy3)
def construct(self, x, y, b):
x, y, b = self.virtual_dataset(x, y, b)
@ -86,7 +86,7 @@ def test_virtualdataset_cell_3_inputs():
super().__init__()
self.matmul1 = P.MatMul().shard(strategy1)
self.matmul2 = P.MatMul().shard(strategy2)
self.gelu = P.Gelu().shard(strategy3)
self.gelu = P.GeLU().shard(strategy3)
def construct(self, x, y, b):
out = self.gelu(self.matmul1(x, y))