diff --git a/mindspore/nn/layer/basic.py b/mindspore/nn/layer/basic.py index 0b2b1fe6122..5fac61b092c 100644 --- a/mindspore/nn/layer/basic.py +++ b/mindspore/nn/layer/basic.py @@ -709,7 +709,7 @@ class ResizeBilinear(Cell): ValueError: If `size` is a list or tuple whose length is not equal to 2. Supported Platforms: - ``Ascend`` + ``Ascend`` ``CPU`` Examples: >>> tensor = Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], mindspore.float32) diff --git a/mindspore/ops/operations/array_ops.py b/mindspore/ops/operations/array_ops.py index a4af75548f9..d3d804d4062 100644 --- a/mindspore/ops/operations/array_ops.py +++ b/mindspore/ops/operations/array_ops.py @@ -3297,7 +3297,7 @@ class ResizeNearestNeighbor(PrimitiveWithInfer): ValueError: If length of `size` is not equal to 2. Supported Platforms: - ``Ascend`` ``GPU`` + ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_tensor = Tensor(np.array([[[[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]]]), mindspore.float32) diff --git a/mindspore/ops/operations/nn_ops.py b/mindspore/ops/operations/nn_ops.py index d8b1a1c7b3b..d8403fd49f4 100644 --- a/mindspore/ops/operations/nn_ops.py +++ b/mindspore/ops/operations/nn_ops.py @@ -3148,7 +3148,7 @@ class ResizeBilinear(PrimitiveWithInfer): ValueError: If length of shape of `input` is not equal to 4. Supported Platforms: - ``Ascend`` + ``Ascend`` ``CPU`` Examples: >>> tensor = Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mindspore.float32) diff --git a/model_zoo/research/audio/deepspeech2/train.py b/model_zoo/research/audio/deepspeech2/train.py index 0ebed19296d..98e1d8a8401 100644 --- a/model_zoo/research/audio/deepspeech2/train.py +++ b/model_zoo/research/audio/deepspeech2/train.py @@ -21,7 +21,7 @@ import argparse from mindspore import context, Tensor, ParameterTuple from mindspore.context import ParallelMode from mindspore.communication.management import init, get_rank, get_group_size -from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor +from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.nn.optim import Adam from mindspore.nn import TrainOneStepCell @@ -89,7 +89,7 @@ if __name__ == '__main__': print('Successfully loading the pre-trained model') model = Model(train_net) - callback_list = [LossMonitor()] + callback_list = [TimeMonitor(steps_size), LossMonitor()] if args.is_distributed: config.CheckpointConfig.ckpt_file_name_prefix = config.CheckpointConfig.ckpt_file_name_prefix + str(get_rank())