forked from mindspore-Ecosystem/mindspore
!43271 fixing staic code warnings
Merge pull request !43271 from Wangsong95/9_30_zx_clean
This commit is contained in:
commit
2ea5414a93
|
@ -173,10 +173,10 @@ int EmbeddingLookUpCpuKernelMod::Resize(const BaseOperatorPtr &base_operator,
|
|||
MS_LOG(EXCEPTION) << "For '" << kernel_name_ << "', the dimension of input must be 1-"
|
||||
<< kEmbeddingLookUpInputParamsMaxDim << "D, but got " << input_params_shape.size() << "D.";
|
||||
}
|
||||
first_dim_size_ = input_params_shape[0];
|
||||
first_dim_size_ = LongToSize(input_params_shape[0]);
|
||||
outer_dim_size_ = 1;
|
||||
for (size_t i = 1; i < input_params_shape.size(); ++i) {
|
||||
outer_dim_size_ *= input_params_shape[i];
|
||||
outer_dim_size_ *= LongToSize(input_params_shape[i]);
|
||||
}
|
||||
input_params_dtype_ = inputs[kIndex0]->GetDtype();
|
||||
|
||||
|
@ -194,11 +194,11 @@ int EmbeddingLookUpCpuKernelMod::Resize(const BaseOperatorPtr &base_operator,
|
|||
template <typename T, typename S, typename G>
|
||||
bool EmbeddingLookUpCpuKernelMod::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs) {
|
||||
T *input_params_addr = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
S *input_indices_addr = reinterpret_cast<S *>(inputs[1]->addr);
|
||||
T *output_addr = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
T *input_params_addr = static_cast<T *>(inputs[0]->addr);
|
||||
S *input_indices_addr = static_cast<S *>(inputs[1]->addr);
|
||||
T *output_addr = static_cast<T *>(outputs[0]->addr);
|
||||
if (inputs.size() == kEmbeddingLookupDynamicShapeInputsNum) {
|
||||
G *input_offset_addr = reinterpret_cast<G *>(inputs[2]->addr);
|
||||
G *input_offset_addr = static_cast<G *>(inputs[2]->addr);
|
||||
memcpy(&offset_, input_offset_addr, sizeof(G));
|
||||
}
|
||||
|
||||
|
|
|
@ -31,9 +31,9 @@ bool HSigmoidCpuKernelMod::LaunchKernel(const std::vector<kernel::AddressPtr> &i
|
|||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
CHECK_KERNEL_INPUTS_NUM(inputs.size(), kHSigmoidInputsNum, kernel_name_);
|
||||
CHECK_KERNEL_OUTPUTS_NUM(outputs.size(), kHSigmoidOutputsNum, kernel_name_);
|
||||
T *x = reinterpret_cast<T *>(inputs[kIndex0]->addr);
|
||||
T *x = static_cast<T *>(inputs[kIndex0]->addr);
|
||||
MS_ERROR_IF_NULL_W_RET_VAL(x, false);
|
||||
T *y = reinterpret_cast<T *>(outputs[kIndex0]->addr);
|
||||
T *y = static_cast<T *>(outputs[kIndex0]->addr);
|
||||
MS_ERROR_IF_NULL_W_RET_VAL(y, false);
|
||||
auto zero = static_cast<T>(0);
|
||||
auto one = static_cast<T>(1);
|
||||
|
|
|
@ -110,8 +110,8 @@ bool LinSpaceCpuKernelMod::LaunchVmapKernel(const std::vector<AddressPtr> &input
|
|||
auto stops = reinterpret_cast<T *>(inputs[kIndex1]->addr);
|
||||
const int64_t num = *reinterpret_cast<int64_t *>(inputs[kIndex2]->addr);
|
||||
|
||||
auto steps = reinterpret_cast<T *>(workspace[kIndex0]->addr);
|
||||
auto output = reinterpret_cast<T *>(outputs[kIndex0]->addr);
|
||||
auto steps = static_cast<T *>(workspace[kIndex0]->addr);
|
||||
auto output = static_cast<T *>(outputs[kIndex0]->addr);
|
||||
|
||||
for (int64_t i = 0; i < batch_num_; ++i) {
|
||||
steps[i] = ((stops[i] - starts[i]) / (num - 1));
|
||||
|
|
|
@ -249,7 +249,7 @@ void ScaleAndTranslateCpuKernelMod::ComputeSpansCore(const Kernel &kernel, const
|
|||
spans->weights = std::make_shared<Eigen::Tensor<float, dim1>>(spans->span_size * output_size);
|
||||
Eigen::TensorMap<Eigen::Tensor<int64_t, dim1>> starts_vec(spans->starts->data(), spans->starts->dimensions());
|
||||
Eigen::TensorMap<Eigen::Tensor<float, dim1>> weights_vec(spans->weights->data(), spans->weights->dimensions());
|
||||
weights_vec.setZero();
|
||||
(void)weights_vec.setZero();
|
||||
const float one_over_kernel_scale = 1.0f / kernel_scale;
|
||||
int64_t max_span_size = 0;
|
||||
std::vector<float> temp_weights;
|
||||
|
@ -308,7 +308,7 @@ void ScaleAndTranslateGradCpuKernelMod::ComputeGradSpansCore(const Spans *spans,
|
|||
int64_t input_index = starts_vec(output_index);
|
||||
for (int64_t j = 0; j < spans->span_size; ++j, ++input_index) {
|
||||
const float weight = weights_vec(output_index * spans->span_size + j);
|
||||
if (weight != 0.0f && input_index < forward_input_size) {
|
||||
if (weight != static_cast<float>(0.0f) && input_index < forward_input_size) {
|
||||
grad_components[input_index].push_back(GradComponent{output_index, weight});
|
||||
}
|
||||
}
|
||||
|
@ -331,7 +331,7 @@ void ScaleAndTranslateGradCpuKernelMod::ComputeGradSpansCore(const Spans *spans,
|
|||
grad_spans->starts->dimensions());
|
||||
Eigen::TensorMap<Eigen::Tensor<float, dim1>> grad_weights_vec(grad_spans->weights->data(),
|
||||
grad_spans->weights->dimensions());
|
||||
grad_weights_vec.setZero();
|
||||
(void)grad_weights_vec.setZero();
|
||||
auto shard_grad_input = [&grad_components, &grad_starts_vec, &grad_weights_vec, &grad_spans](int64_t start,
|
||||
int64_t end) {
|
||||
for (int64_t input_index = start; input_index < end; ++input_index) {
|
||||
|
@ -449,12 +449,12 @@ bool ScaleAndTranslateCpuKernelMod::LaunchKernel(const std::vector<kernel::Addre
|
|||
|
||||
typename TTypes<float, dim4>::Tensor output_data(outputTensor.tensor<float, dim4>());
|
||||
Spans col_spans;
|
||||
ComputeSpans(sampling_kernel_type, output_width, input_width, col_scale, col_translation, antialias_, &col_spans,
|
||||
kernel_name_);
|
||||
(void)ComputeSpans(sampling_kernel_type, output_width, input_width, col_scale, col_translation, antialias_,
|
||||
&col_spans, kernel_name_);
|
||||
|
||||
Spans row_spans;
|
||||
ComputeSpans(sampling_kernel_type, output_height, input_height, row_scale, row_translation, antialias_, &row_spans,
|
||||
kernel_name_);
|
||||
(void)ComputeSpans(sampling_kernel_type, output_height, input_height, row_scale, row_translation, antialias_,
|
||||
&row_spans, kernel_name_);
|
||||
|
||||
Eigen::Tensor<float, dim4> intermediate_tensor_middle(batch_size, output_height, input_width, channels);
|
||||
Eigen::TensorMap<Eigen::Tensor<float, dim4>> intermediate_data(intermediate_tensor_middle.data(),
|
||||
|
@ -501,11 +501,11 @@ bool ScaleAndTranslateGradCpuKernelMod::LaunchKernel(const std::vector<kernel::A
|
|||
const int64_t forward_output_width = input_grad.dimension(2);
|
||||
|
||||
Spans col_spans;
|
||||
ComputeGradSpans(sampling_kernel_type, forward_output_width, forward_input_width, col_scale, col_translation,
|
||||
antialias_, &col_spans, kernel_name_);
|
||||
(void)ComputeGradSpans(sampling_kernel_type, forward_output_width, forward_input_width, col_scale, col_translation,
|
||||
antialias_, &col_spans, kernel_name_);
|
||||
Spans row_spans;
|
||||
ComputeGradSpans(sampling_kernel_type, forward_output_height, forward_input_height, row_scale, row_translation,
|
||||
antialias_, &row_spans, kernel_name_);
|
||||
(void)ComputeGradSpans(sampling_kernel_type, forward_output_height, forward_input_height, row_scale, row_translation,
|
||||
antialias_, &row_spans, kernel_name_);
|
||||
|
||||
Eigen::Tensor<float, dim4> intermediate_tensor_middle(batch_size, forward_input_height, forward_output_width,
|
||||
channels);
|
||||
|
|
|
@ -17,7 +17,6 @@
|
|||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UTILS_SAMPLING_KERNELS_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UTILS_SAMPLING_KERNELS_H_
|
||||
|
||||
#include <stdio.h>
|
||||
#include <cmath>
|
||||
#include <string>
|
||||
|
||||
|
@ -76,7 +75,7 @@ struct ComputerBoxKernel {
|
|||
input = std::abs(input);
|
||||
if (input < 0.5f) {
|
||||
result = kRValue1;
|
||||
} else if (input == 0.5f) {
|
||||
} else if (input == static_cast<float>(0.5f)) {
|
||||
result = 0.5f;
|
||||
} else {
|
||||
result = kRValue0;
|
||||
|
|
|
@ -32,29 +32,29 @@ abstract::ShapePtr CompareAndBitpackInferShape(const PrimitivePtr &primitive,
|
|||
auto x_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[kInputIndex0]->BuildShape())[kShape];
|
||||
auto threshold_shape =
|
||||
CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[kInputIndex1]->BuildShape())[kShape];
|
||||
auto x_rank = SizeToLong(x_shape.size());
|
||||
auto x_rank = x_shape.size();
|
||||
|
||||
// threshold must be a scalar tensor
|
||||
const size_t kShapeSize_ = 0;
|
||||
const size_t divisible_num = 8;
|
||||
auto threshold_shape_size = threshold_shape.size();
|
||||
(void)CheckAndConvertUtils::CheckInteger("threshold's rank'", threshold_shape_size, kEqual, kShapeSize_,
|
||||
(void)CheckAndConvertUtils::CheckInteger("threshold's rank'", SizeToLong(threshold_shape_size), kEqual, kShapeSize_,
|
||||
primitive->name());
|
||||
|
||||
// Input should be at least a vector
|
||||
(void)CheckAndConvertUtils::CheckInteger("x's rank'", x_rank, kNotEqual, kShapeSize_, primitive->name());
|
||||
(void)CheckAndConvertUtils::CheckInteger("x's rank'", SizeToLong(x_rank), kNotEqual, kShapeSize_, primitive->name());
|
||||
|
||||
// check the innermost dimension of `x`'s shape is disvisible by 8.
|
||||
if (x_shape[x_rank - 1] != -1) {
|
||||
(void)CheckAndConvertUtils::Check("x innermost dimension % 8", x_shape[x_rank - 1] % divisible_num, kEqual, 0,
|
||||
primitive->name());
|
||||
(void)CheckAndConvertUtils::Check("x innermost dimension % 8", x_shape[x_rank - 1] % SizeToLong(divisible_num),
|
||||
kEqual, 0, primitive->name());
|
||||
}
|
||||
std::vector<int64_t> out_shape;
|
||||
for (int dim = 0; dim < x_rank - 1; dim = dim + 1) {
|
||||
(void)out_shape.emplace_back(x_shape[dim]);
|
||||
for (int dim = 0; dim < SizeToLong(x_rank - 1); dim = dim + 1) {
|
||||
(void)out_shape.emplace_back(x_shape[IntToSize(dim)]);
|
||||
}
|
||||
|
||||
(void)out_shape.emplace_back(x_shape[x_rank - 1] / divisible_num);
|
||||
(void)out_shape.emplace_back(x_shape[x_rank - 1] / SizeToLong(divisible_num));
|
||||
auto return_shape = out_shape;
|
||||
return std::make_shared<abstract::Shape>(return_shape);
|
||||
}
|
||||
|
|
|
@ -67,12 +67,13 @@ class EmbeddingLookupInfer : public abstract::OpInferBase {
|
|||
MS_EXCEPTION_IF_NULL(params_shape_ptr);
|
||||
auto params_shape = params_shape_ptr->shape();
|
||||
constexpr int64_t kEmbeddingLookupInputParamsMaxDim = 2;
|
||||
CheckAndConvertUtils::CheckInRange<int64_t>("dimension of params", SizeToLong(params_shape.size()), kIncludeBoth,
|
||||
{1, kEmbeddingLookupInputParamsMaxDim}, op_name);
|
||||
(void)CheckAndConvertUtils::CheckInRange<int64_t>("dimension of params", SizeToLong(params_shape.size()),
|
||||
kIncludeBoth, {1, kEmbeddingLookupInputParamsMaxDim}, op_name);
|
||||
auto indices_shape_ptr = CheckAndConvertUtils::GetTensorInputShape(op_name, input_args, kInputIndex1);
|
||||
MS_EXCEPTION_IF_NULL(indices_shape_ptr);
|
||||
auto indices_shape = indices_shape_ptr->shape();
|
||||
CheckAndConvertUtils::CheckValue<int64_t>("dimension of indices ", indices_shape.size(), kGreaterThan, 0, op_name);
|
||||
(void)CheckAndConvertUtils::CheckValue<int64_t>("dimension of indices ", SizeToLong(indices_shape.size()),
|
||||
kGreaterThan, 0, op_name);
|
||||
|
||||
ShapeVector out_shape;
|
||||
if (!params_shape_ptr->IsDimUnknown() && !indices_shape_ptr->IsDimUnknown()) {
|
||||
|
|
|
@ -41,16 +41,18 @@ abstract::ShapePtr ScaleAndTranslateGradInferShape(const PrimitivePtr &primitive
|
|||
const int64_t kShapeSize2 = 4;
|
||||
const int64_t kElementsNumber = 2;
|
||||
// check grads rank'4
|
||||
(void)CheckAndConvertUtils::CheckInteger("grads's rank'", grads_shape.size(), kEqual, kShapeSize2, prim_name);
|
||||
// check original_image's rank 4
|
||||
(void)CheckAndConvertUtils::CheckInteger("original_image's rank'", original_image_shape.size(), kEqual, kShapeSize2,
|
||||
(void)CheckAndConvertUtils::CheckInteger("grads's rank'", SizeToLong(grads_shape.size()), kEqual, kShapeSize2,
|
||||
prim_name);
|
||||
// check original_image's rank 4
|
||||
(void)CheckAndConvertUtils::CheckInteger("original_image's rank'", SizeToLong(original_image_shape.size()), kEqual,
|
||||
kShapeSize2, prim_name);
|
||||
// check scale' rank must be 1, must have 2 elements
|
||||
(void)CheckAndConvertUtils::CheckInteger("scale's rank'", scale_shape.size(), kEqual, kShapeSize1, prim_name);
|
||||
(void)CheckAndConvertUtils::CheckInteger("scale's rank'", SizeToLong(scale_shape.size()), kEqual, kShapeSize1,
|
||||
prim_name);
|
||||
(void)CheckAndConvertUtils::CheckInteger("scale's elements'", scale_shape[0], kEqual, kElementsNumber, prim_name);
|
||||
// check translation' rank must be 1, must have 2 elements
|
||||
(void)CheckAndConvertUtils::CheckInteger("translation's rank'", translation_shape.size(), kEqual, kShapeSize1,
|
||||
prim_name);
|
||||
(void)CheckAndConvertUtils::CheckInteger("translation's rank'", SizeToLong(translation_shape.size()), kEqual,
|
||||
kShapeSize1, prim_name);
|
||||
(void)CheckAndConvertUtils::CheckInteger("translation's elements'", translation_shape[0], kEqual, kElementsNumber,
|
||||
prim_name);
|
||||
// infer output shape
|
||||
|
|
|
@ -30,8 +30,8 @@ namespace {
|
|||
#define IsNoneOrAnyValue(value_ptr) ((value_ptr->isa<None>()) || (value_ptr->isa<AnyValue>()))
|
||||
TypePtr LinSpaceInferType(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
|
||||
auto prim_name = primitive->name();
|
||||
CheckAndConvertUtils::CheckArgs<abstract::AbstractTensor>(prim_name, input_args, kInputIndex0);
|
||||
CheckAndConvertUtils::CheckArgs<abstract::AbstractTensor>(prim_name, input_args, kInputIndex1);
|
||||
(void)CheckAndConvertUtils::CheckArgs<abstract::AbstractTensor>(prim_name, input_args, kInputIndex0);
|
||||
(void)CheckAndConvertUtils::CheckArgs<abstract::AbstractTensor>(prim_name, input_args, kInputIndex1);
|
||||
|
||||
auto start_dtype = input_args[kInputIndex0]->BuildType();
|
||||
auto stop_dtype = input_args[kInputIndex1]->BuildType();
|
||||
|
|
|
@ -44,16 +44,18 @@ abstract::ShapePtr ScaleAndTranslateInferShape(const PrimitivePtr &primitive,
|
|||
auto scale_shape_size = scale_shape.size();
|
||||
auto translation_shape_size = translation_shape.size();
|
||||
// check images' rank must be 4
|
||||
(void)CheckAndConvertUtils::CheckInteger("images's rank'", images_shape_size, kEqual, kImagesShapeSize, prim_name);
|
||||
(void)CheckAndConvertUtils::CheckInteger("images's rank'", SizeToLong(images_shape_size), kEqual, kImagesShapeSize,
|
||||
prim_name);
|
||||
// check size' rank must be 1, must have 2 elements
|
||||
(void)CheckAndConvertUtils::CheckInteger("size's rank'", size_shape_size, kEqual, kShapeSize, prim_name);
|
||||
(void)CheckAndConvertUtils::CheckInteger("size's rank'", SizeToLong(size_shape_size), kEqual, kShapeSize, prim_name);
|
||||
(void)CheckAndConvertUtils::CheckInteger("size's elements'", size_shape[0], kEqual, kElementsNumber, prim_name);
|
||||
// check scale' rank must be 1, must have 2 elements
|
||||
(void)CheckAndConvertUtils::CheckInteger("scale's rank'", scale_shape_size, kEqual, kShapeSize, prim_name);
|
||||
(void)CheckAndConvertUtils::CheckInteger("scale's rank'", SizeToLong(scale_shape_size), kEqual, kShapeSize,
|
||||
prim_name);
|
||||
(void)CheckAndConvertUtils::CheckInteger("scale's elements'", scale_shape[0], kEqual, kElementsNumber, prim_name);
|
||||
// check translation' rank must be 1, must have 2 elements
|
||||
(void)CheckAndConvertUtils::CheckInteger("translation's rank'", translation_shape_size, kEqual, kShapeSize,
|
||||
prim_name);
|
||||
(void)CheckAndConvertUtils::CheckInteger("translation's rank'", SizeToLong(translation_shape_size), kEqual,
|
||||
kShapeSize, prim_name);
|
||||
(void)CheckAndConvertUtils::CheckInteger("translation's elements'", translation_shape[0], kEqual, kElementsNumber,
|
||||
prim_name);
|
||||
// check scale greater than zero
|
||||
|
@ -72,7 +74,7 @@ abstract::ShapePtr ScaleAndTranslateInferShape(const PrimitivePtr &primitive,
|
|||
auto scale_tensor = scale_v->cast<tensor::TensorPtr>();
|
||||
MS_EXCEPTION_IF_NULL(scale_tensor);
|
||||
size_t data_size = scale_tensor->DataSize();
|
||||
auto data_c = reinterpret_cast<float *>(scale_tensor->data_c());
|
||||
auto data_c = static_cast<float *>(scale_tensor->data_c());
|
||||
MS_EXCEPTION_IF_NULL(data_c);
|
||||
for (size_t i = 0; i < data_size; i++) {
|
||||
scale_value.push_back(static_cast<float>(*data_c));
|
||||
|
|
Loading…
Reference in New Issue