Upgrade ps ci cases

This commit is contained in:
ZPaC 2022-06-09 17:10:41 +08:00
parent e5c2dcbabb
commit 2e1d231b37
9 changed files with 18 additions and 29 deletions

View File

@ -22,7 +22,6 @@ export MS_WORKER_NUM=$2
export MS_SERVER_NUM=$3
export MS_SCHED_HOST=$4
export MS_SCHED_PORT=$5
export MS_ROLE=MS_SCHED
for((i=0;i<1;i++));
do

View File

@ -14,7 +14,6 @@
# ============================================================================
import os
import sys
import argparse
import numpy as np
@ -26,10 +25,11 @@ from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn.optim import Adam
from mindspore.common import set_seed
from mindspore.ops import operations as P
from mindspore.parallel._ps_context import _is_role_pserver, _is_role_worker
from mindspore.parallel._ps_context import _is_role_worker
from mindspore.communication.management import init
parser = argparse.ArgumentParser(description="test_sparse_embedding")
parser.add_argument("--device_target", type=str, default="Ascend")
parser.add_argument("--device_target", type=str, default="GPU")
args, _ = parser.parse_known_args()
device_target = args.device_target
context.set_context(
@ -71,12 +71,8 @@ def do_sparse_embedding(ps=False):
for _ in range(epoch):
data = Tensor(np.random.randint(-5, 15, (32, 3), np.int32))
label = Tensor(np.random.randint(0, 9, (32), np.int32))
if _is_role_pserver():
train_network(data, label)
sys.exit()
else:
loss = train_network(data, label).asnumpy()
losses.append(loss)
loss = train_network(data, label).asnumpy()
losses.append(loss)
print(losses)
return losses
@ -84,6 +80,7 @@ def do_sparse_embedding(ps=False):
envs = os.environ
if __name__ == "__main__":
set_seed(0)
init()
ps_loss = do_sparse_embedding(True)
if _is_role_worker():
@ -92,4 +89,4 @@ if __name__ == "__main__":
no_ps_loss = do_sparse_embedding()
context.set_ps_context(enable_ps=True)
assert np.allclose(ps_loss, no_ps_loss, rtol=1.0e-6, atol=1.0e-6)
assert np.allclose(ps_loss, no_ps_loss, rtol=1.0e-6, atol=1.0e-6)

View File

@ -13,13 +13,8 @@
# limitations under the License.
# ============================================================================
import os
import pytest
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_cmp_sparse_embedding():
return_code = os.system("bash shell_run_test.sh Ascend 1 1 127.0.0.1 8081")
return_code = os.system("bash shell_run_test.sh GPU 1 1 127.0.0.1 8081")
assert return_code == 0

View File

@ -23,8 +23,8 @@ export MS_WORKER_NUM=$3
export MS_SERVER_NUM=$4
export MS_SCHED_HOST=$5
export MS_SCHED_PORT=$6
export MS_ROLE=MS_SCHED
export fusion=True
for((i=0;i<1;i++));
do
rm -rf ${execute_path}/sched_$i/

View File

@ -13,15 +13,10 @@
# limitations under the License.
# ============================================================================
import os
import pytest
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_full_ps_ascend_lenet():
return_code = os.system(
"bash shell_run_test.sh Ascend /home/workspace/mindspore_dataset/mnist 1 1 127.0.0.1 8082"
"bash shell_run_test.sh GPU /home/workspace/mindspore_dataset/mnist 1 1 127.0.0.1 8082"
)
assert return_code == 0

View File

@ -27,9 +27,10 @@ from mindspore.nn.metrics import Accuracy
from mindspore.train import Model
from mindspore.train.callback import LossMonitor
from mindspore.common.initializer import TruncatedNormal
from mindspore.communication.management import init
parser = argparse.ArgumentParser(description='test_ps_lenet')
parser.add_argument("--device_target", type=str, default="Ascend")
parser.add_argument("--device_target", type=str, default="GPU")
parser.add_argument("--dataset_path", type=str, default="/home/workspace/mindspore_dataset/mnist")
args, _ = parser.parse_known_args()
device_target = args.device_target
@ -122,6 +123,7 @@ def create_dataset(data_path, batch_size=32, repeat_size=1,
return mnist_ds
if __name__ == "__main__":
init()
network = LeNet5(10)
network.set_param_ps()
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")

View File

@ -23,8 +23,8 @@ export MS_WORKER_NUM=$3
export MS_SERVER_NUM=$4
export MS_SCHED_HOST=$5
export MS_SCHED_PORT=$6
export MS_ROLE=MS_SCHED
export fusion=True
for((i=0;i<1;i++));
do
rm -rf ${execute_path}/sched_$i/

View File

@ -13,11 +13,10 @@
# limitations under the License.
# ============================================================================
import os
import pytest
def test_ps_embedding_heterogeneous_conv2d_adam():
return_code = os.system(
"bash shell_run_test.sh Ascend /home/workspace/mindspore_dataset/mnist 1 1 127.0.0.1 8085"
"bash shell_run_test.sh GPU /home/workspace/mindspore_dataset/mnist 1 1 127.0.0.1 8085"
)
assert return_code == 0

View File

@ -36,9 +36,10 @@ import mindspore.ops.operations as op
from mindspore.common.parameter import Parameter
from mindspore.train import Model
from mindspore.common import set_seed
from mindspore.communication.management import init
parser = argparse.ArgumentParser(description='test_ps_lenet')
parser.add_argument("--device_target", type=str, default="Ascend")
parser.add_argument("--device_target", type=str, default="GPU")
parser.add_argument("--dataset_path", type=str, default="/home/workspace/mindspore_dataset/mnist")
args, _ = parser.parse_known_args()
device_target = args.device_target
@ -180,5 +181,6 @@ class NetFactory:
if __name__ == "__main__":
init()
fact = NetFactory()
fact.part_cmp()