!4575 optimize fp16 conv3x3 post func

Merge pull request !4575 from fuzhiye/tmp
This commit is contained in:
mindspore-ci-bot 2020-08-17 15:32:29 +08:00 committed by Gitee
commit 2da8b5d9aa
8 changed files with 161 additions and 84 deletions

View File

@ -247,36 +247,17 @@ int Convolution3x3FP16CPUKernel::Run() {
}
// get real output
// todo
int out_w_block = UP_DIV(conv_param_->output_w_, C4NUM);
int out_h_block = UP_DIV(conv_param_->output_h_, C4NUM);
int oc8 = UP_DIV(conv_param_->output_channel_, C8NUM);
bool relu = conv_param_->is_relu_;
bool relu6 = conv_param_->is_relu6_;
for (int batch = 0; batch < conv_param_->output_batch_; batch++) {
int tmp_out_batch_offset =
batch * oc8 * C8NUM * out_w_block * out_h_block * C4NUM * C4NUM;
int ro_batch_size = batch * conv_param_->output_channel_ * conv_param_->output_h_ * conv_param_->output_w_;
const float16_t *batch_tmp_out = tmp_out_ + tmp_out_batch_offset;
float16_t *batch_out = execute_output_ + ro_batch_size;
for (int h = 0; h < conv_param_->output_h_; h++) {
for (int w = 0; w < conv_param_->output_w_; w++) {
for (int c = 0; c < conv_param_->output_channel_; c++) {
int oc8_block = c / C8NUM;
int oc8_res = c % C8NUM;
int src_offset = oc8_block * C8NUM * out_w_block * out_h_block * C4NUM * C4NUM +
C8NUM * (h * out_w_block * C4NUM + w) + oc8_res;
int dst_offset = (h * conv_param_->output_w_ + w) * conv_param_->output_channel_ + c;
(batch_out + dst_offset)[0] = (batch_tmp_out + src_offset)[0];
if (relu) {
(batch_out + dst_offset)[0] = (batch_out + dst_offset)[0] < 0 ? 0 : (batch_out + dst_offset)[0];
} else if (relu6) {
(batch_out + dst_offset)[0] = (batch_out + dst_offset)[0] < 0 ? 0 : (batch_out + dst_offset)[0];
(batch_out + dst_offset)[0] = (batch_out + dst_offset)[0] > 6 ? 6 : (batch_out + dst_offset)[0];
}
}
}
}
if (relu) {
UnPack3x3ReluOutputFp16(tmp_out_, execute_output_, conv_param_->output_batch_, conv_param_->output_h_,
conv_param_->output_w_, conv_param_->output_channel_);
} else if (relu6) {
UnPack3x3Relu6OutputFp16(tmp_out_, execute_output_, conv_param_->output_batch_, conv_param_->output_h_,
conv_param_->output_w_, conv_param_->output_channel_);
} else {
UnPack3x3OutputFp16(tmp_out_, execute_output_, conv_param_->output_batch_, conv_param_->output_h_,
conv_param_->output_w_, conv_param_->output_channel_);
}
ConvolutionBaseFP16CPUKernel::IfCastOutput();

View File

@ -31,8 +31,8 @@ class ConvolutionWinogradFP16CPUKernel : public ConvolutionBaseFP16CPUKernel {
public:
ConvolutionWinogradFP16CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx,
const lite::Primitive *primitive)
: ConvolutionBaseFP16CPUKernel(parameter, inputs, outputs, ctx, primitive) {}
const lite::Primitive *primitive, int out_unit)
: ConvolutionBaseFP16CPUKernel(parameter, inputs, outputs, ctx, primitive), output_unit_(out_unit) {}
~ConvolutionWinogradFP16CPUKernel() override {
if (fp16_weight_ != nullptr) {
free(fp16_weight_);

View File

@ -42,13 +42,13 @@ int ConvolutionCPUKernel::InitWeightBias() {
int ic4 = UP_DIV(in_channel, C4NUM);
int kernel_plane = kernel_h * kernel_w;
int oc_block, oc_block_num;
// #ifdef ENABLE_ARM32
// oc_block = C4NUM;
// oc_block_num = UP_DIV(out_channel, C4NUM);
// #else
// #ifdef ENABLE_ARM32
// oc_block = C4NUM;
// oc_block_num = UP_DIV(out_channel, C4NUM);
// #else
oc_block = C8NUM;
oc_block_num = UP_DIV(out_channel, C8NUM);
// #endif
// #endif
int pack_weight_size = oc_block_num * oc_block * ic4 * C4NUM * kernel_plane;
// init weight
@ -123,18 +123,11 @@ void ConvolutionCPUKernel::ConfigInputOutput() {
auto output_tensor = out_tensors_.at(kOutputIndex);
output_tensor->SetFormat(schema::Format_NHWC);
// select trans func for input
auto input_tensor = in_tensors_.at(kInputIndex);
auto ret = CheckLayout(input_tensor);
if (ret != RET_OK) {
MS_LOG(ERROR) << "Check layout failed.";
return;
}
// #ifdef ENABLE_ARM32
// gemm_func_ = IndirectGemmFp32_8x4;
// #else
// #ifdef ENABLE_ARM32
// gemm_func_ = IndirectGemmFp32_8x4;
// #else
gemm_func_ = IndirectGemmFp32_8x8;
// #endif
// #endif
}
int ConvolutionCPUKernel::Init() {
@ -221,7 +214,7 @@ int ConvolutionCPUKernel::Run() {
int in_h = conv_param_->input_h_;
int in_w = conv_param_->input_w_;
int in_channel = conv_param_->input_channel_;
convert_func_(ori_input_data, nhwc4_input_, in_batch, in_h * in_w, in_channel);
PackNHWCToNHWC4Fp32(ori_input_data, nhwc4_input_, in_batch, in_h * in_w, in_channel);
int error_code = LiteBackendParallelLaunch(ConvolutionImpl, this, thread_count_);
if (error_code != RET_OK) {

View File

@ -54,13 +54,13 @@ int Convolution3x3CPUKernel::InitWeightBias() {
int iC4 = UP_DIV(input_channel, C4NUM);
int oC4 = UP_DIV(output_channel, C4NUM);
int oc_block, oc_block_num;
// #ifdef ENABLE_ARM32
// oc_block = C4NUM;
// oc_block_num = UP_DIV(output_channel, C4NUM);
// #else
// #ifdef ENABLE_ARM32
// oc_block = C4NUM;
// oc_block_num = UP_DIV(output_channel, C4NUM);
// #else
oc_block = C8NUM;
oc_block_num = UP_DIV(output_channel, C8NUM);
// #endif
// #endif
const int k_plane = 16;
// init weight
size_t transformed_size = iC4 * C4NUM * oc_block_num * oc_block * k_plane * sizeof(float);
@ -151,18 +151,11 @@ int Convolution3x3CPUKernel::InitTmpBuffer() {
void Convolution3x3CPUKernel::ConfigInputOutput() {
auto output_tensor = out_tensors_.at(kOutputIndex);
output_tensor->SetFormat(schema::Format_NHWC);
auto input_tensor = in_tensors_.at(kInputIndex);
auto ret = CheckLayout(input_tensor);
if (ret != RET_OK) {
MS_LOG(ERROR) << "Check layout failed.";
return;
}
// #ifdef ENABLE_ARM32
// gemm_func_ = IndirectGemmFp32_8x4;
// #else
// #ifdef ENABLE_ARM32
// gemm_func_ = IndirectGemmFp32_8x4;
// #else
gemm_func_ = IndirectGemmFp32_8x8;
// #endif
// #endif
}
int Convolution3x3CPUKernel::Init() {
@ -252,7 +245,7 @@ int Convolution3x3CPUKernel::Run() {
int in_h = conv_param_->input_h_;
int in_w = conv_param_->input_w_;
int in_channel = conv_param_->input_channel_;
convert_func_(ori_input_data, nhwc4_input_, in_batch, in_h * in_w, in_channel);
PackNHWCToNHWC4Fp32(ori_input_data, nhwc4_input_, in_batch, in_h * in_w, in_channel);
int error_code = LiteBackendParallelLaunch(Convolution3x3Impl, this, thread_count_);
if (error_code != RET_OK) {

View File

@ -104,14 +104,6 @@ void ConvolutionSWCPUKernel::ConfigInputOutput() {
// set output format
auto output_tensor = out_tensors_.at(kOutputIndex);
output_tensor->SetFormat(schema::Format_NHWC);
// select trans func for input
auto input_tensor = in_tensors_.at(kInputIndex);
auto ret = CheckLayout(input_tensor);
if (ret != RET_OK) {
MS_LOG(ERROR) << "Check layout failed.";
return;
}
}
int ConvolutionSWCPUKernel::Init() {
@ -199,7 +191,7 @@ int ConvolutionSWCPUKernel::Run() {
int in_h = conv_param_->input_h_;
int in_w = conv_param_->input_w_;
int in_channel = conv_param_->input_channel_;
convert_func_(ori_input_data, nhwc4_input_, in_batch, in_h * in_w, in_channel);
PackNHWCToNHWC4Fp32(ori_input_data, nhwc4_input_, in_batch, in_h * in_w, in_channel);
int error_code = LiteBackendParallelLaunch(ConvolutionSWImpl, this, thread_count_);
if (error_code != RET_OK) {

View File

@ -222,12 +222,6 @@ int ConvolutionWinogradCPUKernel::InitTmpBuffer() {
}
int ConvolutionWinogradCPUKernel::ConfigInputOutput() {
auto input_tensor = in_tensors_.at(kInputIndex);
auto ret = CheckLayout(input_tensor);
if (ret != RET_OK) {
MS_LOG(ERROR) << "Check layout failed.";
return RET_ERROR;
}
auto output_tensor = out_tensors_.at(kOutputIndex);
output_tensor->SetFormat(schema::Format_NHWC);
@ -357,7 +351,7 @@ int ConvolutionWinogradCPUKernel::Run() {
int in_h = conv_param_->input_h_;
int in_w = conv_param_->input_w_;
int in_channel = conv_param_->input_channel_;
convert_func_(ori_input_data, nhwc4_input_, in_batch, in_h * in_w, in_channel);
PackNHWCToNHWC4Fp32(ori_input_data, nhwc4_input_, in_batch, in_h * in_w, in_channel);
int error_code = LiteBackendParallelLaunch(ConvolutionWinogradImpl, this, thread_count_);
if (error_code != RET_OK) {

View File

@ -35,14 +35,14 @@ void IndirectGemmFp16_16x8(float16_t *output, float16_t *input, float16_t *weigh
size_t ic4, size_t out_channel, size_t offset, size_t mode, size_t writeC8, size_t relu,
size_t relu6) {
if (!(mode && writeC8)) {
IndirectGemmFp16_16x8_common(output, input, weight, bias, step, ic4, output, offset, relu, relu6);
IndirectGemmFp16_16x8_common(output, input, weight, bias, step, ic4, out_channel, offset, relu, relu6);
} else {
IndirectGemmFp16_16x8_c8(output, input, weight, bias, step, ic4, output, offset, mode, writeC8, relu, relu6);
IndirectGemmFp16_16x8_c8(output, input, weight, bias, step, ic4, out_channel, offset, mode, writeC8, relu, relu6);
}
}
void IndirectGemmFp16_16x8_common(float16_t *output, float16_t *input, float16_t *weight, float16_t *bias, size_t step,
size_t ic4, size_t oc8, size_t offset, size_t relu, size_t relu6) {
size_t ic4, size_t out_channel, size_t offset, size_t relu, size_t relu6) {
const int tile_n = 16;
for (int i = 0; i < out_channel; i++) {
int oc8_block = i / C8NUM;
@ -74,7 +74,7 @@ void IndirectGemmFp16_16x8_common(float16_t *output, float16_t *input, float16_t
if (relu) {
tmp[0] = tmp[0] < 0 ? 0 : tmp[0];
} else if (relu6) {
mp[0] = tmp[0] < 0 ? 0 : tmp[0];
tmp[0] = tmp[0] < 0 ? 0 : tmp[0];
tmp[0] = tmp[0] > 6 ? 6 : tmp[0];
}
}
@ -415,6 +415,124 @@ void Conv3x3Fp16(float16_t *input_data, float16_t *transed_weight, const float16
}
}
void UnPack3x3OutputFp16(const float16_t *src, float16_t *dst, int batch, int height, int width, int channel) {
int out_w_block = UP_DIV(width, C4NUM);
int out_h_block = UP_DIV(height, C4NUM);
int oc8 = UP_DIV(channel, C8NUM);
for (int b = 0; b < batch; b++) {
int tmp_out_batch_offset = b * oc8 * C8NUM * out_w_block * out_h_block * C4NUM * C4NUM;
int ro_batch_size = b * channel * height * width;
const float16_t *batch_tmp_out = src + tmp_out_batch_offset;
float16_t *batch_out = dst + ro_batch_size;
for (int h = 0; h < height; h++) {
int src_h_offset = h * out_w_block * C4NUM * C8NUM;
int dst_h_offset = h * width * channel;
for (int w = 0; w < width; w++) {
int src_w_offset = src_h_offset + w * C8NUM;
int dst_w_offset = dst_h_offset + w * channel;
for (int c = 0; c < oc8 - 1; ++c) {
int src_offset = c * C8NUM * out_w_block * out_h_block * C4NUM * C4NUM + src_w_offset;
int dst_offset = dst_w_offset + c * C8NUM;
vst1q_f16(batch_out + dst_offset, vld1q_f16(batch_tmp_out + src_offset));
}
int c_res = channel - (oc8 - 1) * C8NUM;
int src_c_res_offset = src_w_offset + (oc8 - 1) * C8NUM * out_w_block * out_h_block * C4NUM * C4NUM;
int dst_c_res_offset = dst_w_offset + (oc8 - 1) * C8NUM;
for (int c = 0; c < c_res; c++) {
int src_offset = src_c_res_offset + c;
int dst_offset = dst_c_res_offset + c;
(batch_out + dst_offset)[0] = (batch_tmp_out + src_offset)[0];
}
}
}
}
}
void UnPack3x3ReluOutputFp16(const float16_t *src, float16_t *dst, int batch, int height, int width, int channel) {
int out_w_block = UP_DIV(width, C4NUM);
int out_h_block = UP_DIV(height, C4NUM);
int oc8 = UP_DIV(channel, C8NUM);
for (int b = 0; b < batch; b++) {
int tmp_out_batch_offset = b * oc8 * C8NUM * out_w_block * out_h_block * C4NUM * C4NUM;
int ro_batch_size = b * channel * height * width;
const float16_t *batch_tmp_out = src + tmp_out_batch_offset;
float16_t *batch_out = dst + ro_batch_size;
for (int h = 0; h < height; h++) {
int src_h_offset = h * out_w_block * C4NUM * C8NUM;
int dst_h_offset = h * width * channel;
for (int w = 0; w < width; w++) {
int src_w_offset = src_h_offset + w * C8NUM;
int dst_w_offset = dst_h_offset + w * channel;
for (int c = 0; c < oc8 - 1; ++c) {
int src_offset = c * C8NUM * out_w_block * out_h_block * C4NUM * C4NUM + src_w_offset;
int dst_offset = dst_w_offset + c * C8NUM;
float16x8_t input_ptr = vld1q_f16(batch_tmp_out + src_offset);
float16x8_t zero = vdupq_n_f16(0);
input_ptr = vmaxq_f16(zero, input_ptr);
vst1q_f16(batch_out + dst_offset, input_ptr);
}
int c_res = channel - (oc8 - 1) * C8NUM;
int src_c_res_offset = src_w_offset + (oc8 - 1) * C8NUM * out_w_block * out_h_block * C4NUM * C4NUM;
int dst_c_res_offset = dst_w_offset + (oc8 - 1) * C8NUM;
for (int c = 0; c < c_res; c++) {
int src_offset = src_c_res_offset + c;
int dst_offset = dst_c_res_offset + c;
float16_t input_data = (batch_tmp_out + src_offset)[0];
input_data = input_data < 0 ? 0 : input_data;
(batch_out + dst_offset)[0] = input_data;
}
}
}
}
}
void UnPack3x3Relu6OutputFp16(const float16_t *src, float16_t *dst, int batch, int height, int width, int channel) {
int out_w_block = UP_DIV(width, C4NUM);
int out_h_block = UP_DIV(height, C4NUM);
int oc8 = UP_DIV(channel, C8NUM);
for (int b = 0; b < batch; b++) {
int tmp_out_batch_offset = b * oc8 * C8NUM * out_w_block * out_h_block * C4NUM * C4NUM;
int ro_batch_size = b * channel * height * width;
const float16_t *batch_tmp_out = src + tmp_out_batch_offset;
float16_t *batch_out = dst + ro_batch_size;
for (int h = 0; h < height; h++) {
int src_h_offset = h * out_w_block * C4NUM * C8NUM;
int dst_h_offset = h * width * channel;
for (int w = 0; w < width; w++) {
int src_w_offset = src_h_offset + w * C8NUM;
int dst_w_offset = dst_h_offset + w * channel;
for (int c = 0; c < oc8 - 1; ++c) {
int src_offset = c * C8NUM * out_w_block * out_h_block * C4NUM * C4NUM + src_w_offset;
int dst_offset = dst_w_offset + c * C8NUM;
float16x8_t input_ptr = vld1q_f16(batch_tmp_out + src_offset);
float16x8_t zero = vdupq_n_f16(0);
float16x8_t six = vdupq_n_f16(6);
input_ptr = vmaxq_f16(zero, input_ptr);
input_ptr = vminq_f16(six, input_ptr);
vst1q_f16(batch_out + dst_offset, input_ptr);
}
int c_res = channel - (oc8 - 1) * C8NUM;
int src_c_res_offset = src_w_offset + (oc8 - 1) * C8NUM * out_w_block * out_h_block * C4NUM * C4NUM;
int dst_c_res_offset = dst_w_offset + (oc8 - 1) * C8NUM;
for (int c = 0; c < c_res; c++) {
int src_offset = src_c_res_offset + c;
int dst_offset = dst_c_res_offset + c;
float16_t input_data = (batch_tmp_out + src_offset)[0];
input_data = input_data < 0 ? 0 : input_data;
input_data = input_data > 6 ? 6 : input_data;
(batch_out + dst_offset)[0] = input_data;
}
}
}
}
}
// fp16 convolution winograd
void ConvWinogardFp16(float16_t *input_data, float16_t *trans_weight, const float16_t *bias_data,
TmpBufferAddressFp16 *buffer_list, int task_id, ConvParameter *conv_param,

View File

@ -60,6 +60,12 @@ void Conv3x3Fp16(float16_t *input_data, float16_t *transed_weight, const float16
float16_t *tile_buffer, float16_t *block_unit_buffer, float16_t *tmp_dst_buffer, float16_t *tmp_out,
int task_id, ConvParameter *conv_param);
void UnPack3x3OutputFp16(const float16_t *src, float16_t *dst, int batch, int height, int width, int channel);
void UnPack3x3ReluOutputFp16(const float16_t *src, float16_t *dst, int batch, int height, int width, int channel);
void UnPack3x3Relu6OutputFp16(const float16_t *src, float16_t *dst, int batch, int height, int width, int channel);
// fp16 convolution winograd
void ConvWinogardFp16(float16_t *input_data, float16_t *trans_weight, const float16_t *bias_data,
TmpBufferAddressFp16 *buffer_list, int task_id, ConvParameter *conv_param,