forked from mindspore-Ecosystem/mindspore
fix sparse related issues
This commit is contained in:
parent
251fba00f5
commit
2cebc62bbf
|
@ -378,10 +378,19 @@ AbstractBasePtr InferImplMakeIndexedSlices(const AnalysisEnginePtr &, const Prim
|
|||
auto elem = GetValue<int>(e);
|
||||
return elem;
|
||||
});
|
||||
for (auto dense_shape_elem : dense_shape_vec) {
|
||||
if (dense_shape_elem < 0) {
|
||||
MS_EXCEPTION(TypeError) << "The element of dense_shape must be positive, but got "
|
||||
<< dense_shape_value->ToString();
|
||||
if (dense_shape_vec.size() != values_shp.size()) {
|
||||
MS_EXCEPTION(TypeError) << "The size of dense_shape must be the same with the dimension of values "
|
||||
<< values_shp.size() << ", but got " << dense_shape_value->size();
|
||||
}
|
||||
for (size_t i = 0; i < dense_shape_vec.size(); i++) {
|
||||
if (dense_shape_vec[i] < 0) {
|
||||
MS_EXCEPTION(TypeError) << "The " << i << "th element of dense_shape must be positive, but got "
|
||||
<< dense_shape_vec[i];
|
||||
}
|
||||
// The 0th mode might be less or exceed dense_shape[0] due to duplicated selection
|
||||
if (i != 0 && dense_shape_vec[i] != values_shp[i]) {
|
||||
MS_EXCEPTION(TypeError) << "The " << i << "th element of dense_shape must be same with the " << i
|
||||
<< "th dimension of values " << values_shp[i] << ", but got " << dense_shape_vec[i];
|
||||
}
|
||||
}
|
||||
auto ret = std::make_shared<AbstractIndexedSlices>(values->element()->BuildType(), dense_shape_vec);
|
||||
|
|
|
@ -386,6 +386,16 @@ py::dict ConvertAbstractToPython(const AbstractBasePtr &abs_base) {
|
|||
dic["shape"] = arg_tensor->shape()->shape();
|
||||
dic["dtype"] = arg_tensor->BuildType();
|
||||
dic["value"] = BuildValue(arg_tensor->BuildValue());
|
||||
} else if (abs_base->isa<AbstractIndexedSlices>()) {
|
||||
auto arg = dyn_cast<AbstractIndexedSlices>(abs_base);
|
||||
dic["shape"] = arg->shape()->shape();
|
||||
dic["dtype"] = arg->BuildType();
|
||||
dic["value"] = BuildValue(arg->BuildValue());
|
||||
} else if (abs_base->isa<AbstractSparseTensor>()) {
|
||||
auto arg = dyn_cast<AbstractSparseTensor>(abs_base);
|
||||
dic["shape"] = arg->shape()->shape();
|
||||
dic["dtype"] = arg->BuildType();
|
||||
dic["value"] = BuildValue(arg->BuildValue());
|
||||
} else if (abs_base->isa<AbstractScalar>() || abs_base->isa<AbstractType>() || abs_base->isa<AbstractRefKey>()) {
|
||||
std::vector<int> shape;
|
||||
dic["shape"] = shape;
|
||||
|
|
|
@ -99,6 +99,8 @@ slice_type = typing.Slice
|
|||
ellipsis_type = typing.TypeEllipsis
|
||||
list_type = typing.List
|
||||
tuple_type = typing.Tuple
|
||||
index_slices = typing.IndexedSlicesType()
|
||||
sparse_tensor = typing.SparseTensorType()
|
||||
|
||||
number_type = (int8,
|
||||
int16,
|
||||
|
|
|
@ -209,9 +209,73 @@ class Tensor(Tensor_):
|
|||
|
||||
|
||||
class IndexedSlices:
|
||||
"""
|
||||
A sparse representation of a set of tensor slices at given indices.
|
||||
|
||||
An IndexedSlices is typically used to represent a subset of a larger
|
||||
tensor dense of shape [LARGE0, D1, .. , DN] where LARGE0 >> D0.
|
||||
The values in indices are the indices in the first dimension of the slices
|
||||
that have been extracted from the larger tensor.
|
||||
The dense tensor dense represented by an IndexedSlices slices has
|
||||
`dense[slices.indices[i], :, :, :, ...] = slices.values[i, :, :, :, ...]`.
|
||||
IndexedSlices can only be used in `Cell`'s contruct method.
|
||||
|
||||
Args:
|
||||
indices (Tensor): A 1-D integer Tensor of shape [D0].
|
||||
values (Tensor): A Tensor of any dtype of shape [D0, D1, ..., Dn].
|
||||
dense_shape: (tuple): A integer tuple containing the shape
|
||||
of the corresponding dense tensor.
|
||||
|
||||
Outputs:
|
||||
IndexedSlices, composed of `indices`, `values`, `dense_shape`.
|
||||
|
||||
Examples:
|
||||
>>> # Create a IndexedSlices.
|
||||
>>> indices = Tensor([1, 2])
|
||||
>>> values = Tensor([[0, 0], [1, 2]], dtype=ms.float32)
|
||||
>>> dense_shape = (3, 2)
|
||||
>>> indexed_slices = IndexedSlices(indices, values, dense_shape)
|
||||
>>>
|
||||
>>> # Get atrr.
|
||||
>>> indices = indexed_slices.indices()
|
||||
>>> values = indexed_slices.values()
|
||||
>>> dense_shape = indexed_slices.dense_shape()
|
||||
"""
|
||||
def __init__(self, indices, values, dense_shape):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class SparseTensor:
|
||||
"""
|
||||
A sparse representation of a set of nonzero elememts from a tensor at given indices.
|
||||
|
||||
SparseTensor can only be used in `Cell`'s contruct method.
|
||||
For a tensor dense, its SparseTensor(indices, values, dense_shape) has
|
||||
`dense[indices[i]] = values[i]`
|
||||
|
||||
Args:
|
||||
indices (Tensor): A 2-D integer Tensor of shape `[N, ndims]`,
|
||||
where N and ndims are the number of values and number of dimensions in
|
||||
the SparseTensor, respectively.
|
||||
values (Tensor): A 1-D tensor of any type and shape `[N]`, which
|
||||
supplies the values for each element in indices.
|
||||
dense_shape: (tuple): A integer tuple of size `ndims`,
|
||||
which specifies the dense_shape of the sparse tensor.
|
||||
|
||||
Outputs:
|
||||
SparseTensor, composed of `indices`, `values`, `dense_shape`.
|
||||
|
||||
Examples:
|
||||
>>> # Create a SparseTensor.
|
||||
>>> indices = Tensor([[0, 1], [1, 2]])
|
||||
>>> values = Tensor([1, 2], dtype=ms.float32)
|
||||
>>> dense_shape = (3, 4)
|
||||
>>> sparse_tensor = SparseTensor(indices, values, dense_shape)
|
||||
>>>
|
||||
>>> # Get atrr.
|
||||
>>> indices = sparse_tensor.indices()
|
||||
>>> values = sparse_tensor.values()
|
||||
>>> dense_shape = sparse_tensor.dense_shape()
|
||||
"""
|
||||
def __init__(self, indices, values, dense_shape):
|
||||
raise NotImplementedError
|
||||
|
|
|
@ -18,7 +18,7 @@ from mindspore.nn.wrap.grad_reducer import DistributedGradReducer
|
|||
from mindspore.train.parallel_utils import ParallelMode
|
||||
from mindspore.parallel._utils import _get_device_num, _get_parallel_mode, _get_mirror_mean
|
||||
from ..cell import Cell
|
||||
from ...common import Tensor
|
||||
from ...common import Tensor, IndexedSlices
|
||||
from ...common.parameter import Parameter
|
||||
from ...ops import functional as F
|
||||
from ...ops import composite as C
|
||||
|
@ -35,6 +35,12 @@ reciprocal = P.Reciprocal()
|
|||
def tensor_grad_scale(scale, grad):
|
||||
return grad * F.cast(reciprocal(scale), F.dtype(grad))
|
||||
|
||||
@_grad_scale.register("Tensor", "IndexedSlices")
|
||||
def tensor_grad_scale_indexed_slices(scale, grad):
|
||||
return IndexedSlices(grad.indices(),
|
||||
grad.values() * F.cast(reciprocal(scale), F.dtype(grad.values())),
|
||||
grad.dense_shape())
|
||||
|
||||
_grad_overflow = C.MultitypeFuncGraph("_grad_overflow")
|
||||
grad_overflow = P.FloatStatus()
|
||||
|
||||
|
|
|
@ -15,6 +15,8 @@
|
|||
|
||||
"""array_ops"""
|
||||
|
||||
import mindspore as ms
|
||||
from mindspore.ops import composite as C
|
||||
from .. import operations as P
|
||||
from ..operations import _grad_ops as G
|
||||
from ..operations import _inner_ops as inner
|
||||
|
@ -35,6 +37,7 @@ reshape = P.Reshape()
|
|||
size_op = P.Size()
|
||||
invert_permutation = P.InvertPermutation()
|
||||
logical_and = P.LogicalAnd()
|
||||
is_sub_class = P.IsSubClass()
|
||||
|
||||
|
||||
@bprop_getters.register(P.Fill)
|
||||
|
@ -57,6 +60,29 @@ def get_bprop_dtype(self):
|
|||
return bprop
|
||||
|
||||
|
||||
dout_cast = C.MultitypeFuncGraph("dout_cast")
|
||||
@dout_cast.register("Tensor", "Tensor")
|
||||
def dout_cast_tensor(dout, x):
|
||||
cast = P.Cast()
|
||||
get_dtype = P.DType()
|
||||
dx = cast(dout, get_dtype(x))
|
||||
return dx
|
||||
|
||||
@dout_cast.register("Number", "Number")
|
||||
def dout_cast_number(dout, x):
|
||||
cast = P.Cast()
|
||||
get_dtype = P.DType()
|
||||
dx = cast(dout, get_dtype(x))
|
||||
return dx
|
||||
|
||||
@dout_cast.register("IndexedSlices", "Tensor")
|
||||
def dout_cast_indexed_slices(dout, x):
|
||||
cast = P.Cast()
|
||||
get_dtype = P.DType()
|
||||
values = cast(dout.values(), get_dtype(x))
|
||||
return IndexedSlices(dout.indices(), values, dout.dense_shape())
|
||||
|
||||
|
||||
@bprop_getters.register(P.Cast)
|
||||
def get_bprop_cast(self):
|
||||
"""Generate bprop for Cast"""
|
||||
|
@ -67,6 +93,13 @@ def get_bprop_cast(self):
|
|||
dx = cast(dout, get_dtype(x))
|
||||
return dx, zeros_like(t)
|
||||
|
||||
def bprop_sparse(x, t, out, dout):
|
||||
dx = dout_cast(dout, x)
|
||||
return dx, zeros_like(t)
|
||||
|
||||
if context.get_context('enable_sparse'):
|
||||
return bprop_sparse
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
|
@ -372,6 +405,11 @@ def get_bprop_pack(self):
|
|||
def bprop(x, out, dout):
|
||||
pack_grad = P.Unpack(axis)
|
||||
out = pack_grad(dout)
|
||||
if is_sub_class(F.typeof(x), ms.list_):
|
||||
ret = []
|
||||
for item in out:
|
||||
ret.append(item)
|
||||
return (ret,)
|
||||
return (out,)
|
||||
|
||||
return bprop
|
||||
|
|
|
@ -18,8 +18,10 @@ import numpy as np
|
|||
import pytest
|
||||
import mindspore.nn as nn
|
||||
import mindspore.context as context
|
||||
import mindspore as ms
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.common import dtype as mstype
|
||||
from tests.ut.python.ut_filter import non_graph_engine
|
||||
from tests.mindspore_test_framework.mindspore_test import mindspore_test
|
||||
|
@ -282,3 +284,26 @@ test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
|
|||
def test_exec():
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
return test_exec_case
|
||||
|
||||
|
||||
def test_grad_make_list():
|
||||
class MyWhileNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def construct(self, idx, x):
|
||||
return x[idx, :, :]
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return C.grad_all(self.net)(*inputs)
|
||||
|
||||
while_net = MyWhileNet()
|
||||
net = GradNet(while_net)
|
||||
idx = Tensor(np.array(0), dtype=ms.int32)
|
||||
x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
|
||||
net(idx, x)
|
||||
|
|
|
@ -19,6 +19,7 @@
|
|||
@Desc : test mindspore indexed_slices's operation
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
|
@ -222,7 +223,7 @@ def test_indexed_slices_make_indexed_slices():
|
|||
class MakeIndexedSlices(nn.Cell):
|
||||
def __init__(self):
|
||||
super(MakeIndexedSlices, self).__init__()
|
||||
self.dense_shape = (3, 4)
|
||||
self.dense_shape = (3, 2)
|
||||
def construct(self, indices, values):
|
||||
ret = (IndexedSlices(indices, values, self.dense_shape),)
|
||||
return ret[0]
|
||||
|
@ -231,17 +232,19 @@ def test_indexed_slices_make_indexed_slices():
|
|||
MakeIndexedSlices()(indices, values)
|
||||
|
||||
|
||||
def test_indexed_slices_attr():
|
||||
class IndexedSlicesGetAttr(nn.Cell):
|
||||
def __init__(self):
|
||||
class IndexedSlicesGetAttr(nn.Cell):
|
||||
def __init__(self, dense_shape):
|
||||
super(IndexedSlicesGetAttr, self).__init__()
|
||||
self.dense_shape = (3, 4)
|
||||
self.dense_shape = dense_shape
|
||||
def construct(self, indices, values):
|
||||
x = IndexedSlices(indices, values, self.dense_shape)
|
||||
return x.values(), x.indices(), x.dense_shape()
|
||||
|
||||
|
||||
def test_indexed_slices_attr():
|
||||
indices = Tensor([0])
|
||||
values = Tensor([[1, 2]], dtype=ms.float32)
|
||||
IndexedSlicesGetAttr()(indices, values)
|
||||
IndexedSlicesGetAttr((3, 2))(indices, values)
|
||||
|
||||
|
||||
def test_indexed_slices_sparse_gatherv2_grad_all():
|
||||
|
@ -342,3 +345,109 @@ def test_indexed_slices_model_train():
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
model = Model(net, optimizer=optimizer)
|
||||
model.train(2, dataset, dataset_sink_mode=False)
|
||||
|
||||
|
||||
def test_indexed_slices_values_dim_greater_than_dense_shape_dim():
|
||||
indices = Tensor(np.array([0, 1], dtype=np.int32))
|
||||
values = Tensor(np.random.randn(2, 4, 5).astype(np.float32))
|
||||
dense_shape = (3, 4)
|
||||
with pytest.raises(TypeError):
|
||||
IndexedSlicesGetAttr(dense_shape)(indices, values)
|
||||
|
||||
|
||||
def test_indexed_slices_values_dim_less_than_dense_shape_dim():
|
||||
indices = Tensor(np.array([0, 1], dtype=np.int32))
|
||||
values = Tensor(np.random.randn(2, 4).astype(np.float32))
|
||||
dense_shape = (3, 4, 5)
|
||||
with pytest.raises(TypeError):
|
||||
IndexedSlicesGetAttr(dense_shape)(indices, values)
|
||||
|
||||
|
||||
def test_indexed_slices_value_and_dense_shape_illegal():
|
||||
indices = Tensor(np.array([0, 1], dtype=np.int32))
|
||||
values = Tensor(np.random.randn(2, 4).astype(np.float32))
|
||||
dense_shape = (3, 5)
|
||||
with pytest.raises(TypeError):
|
||||
IndexedSlicesGetAttr(dense_shape)(indices, values)
|
||||
|
||||
|
||||
class IndexedSlicesValuesDouble(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def construct(self, x):
|
||||
indices = x.indices()
|
||||
values = x.values() * 2
|
||||
dense_shape = x.dense_shape()
|
||||
return IndexedSlices(indices, values, dense_shape)
|
||||
|
||||
|
||||
class IndexedSlicesValuesAdd2(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def construct(self, x):
|
||||
indices = x.indices()
|
||||
values = x.values() + 2
|
||||
dense_shape = x.dense_shape()
|
||||
return IndexedSlices(indices, values, dense_shape)
|
||||
|
||||
|
||||
class IndexedSlicesWithControlIf(nn.Cell):
|
||||
def __init__(self, dense_shape):
|
||||
super().__init__()
|
||||
self.op1 = IndexedSlicesValuesDouble()
|
||||
self.op2 = IndexedSlicesValuesAdd2()
|
||||
self.dense_shape = dense_shape
|
||||
|
||||
def construct(self, a, b, indices, values):
|
||||
x = IndexedSlices(indices, values, self.dense_shape)
|
||||
if a > b:
|
||||
x = self.op1(x)
|
||||
else:
|
||||
x = self.op2(x)
|
||||
return x.indices(), x.values()
|
||||
|
||||
|
||||
def test_indexed_slices_with_control_flow_if():
|
||||
a = Tensor(np.array(0).astype(np.int32))
|
||||
b = Tensor(np.array(2).astype(np.int32))
|
||||
indices = Tensor(np.array([0, 2]).astype(np.int32))
|
||||
values = Tensor(np.ones([2, 2]).astype(np.float32))
|
||||
dense_shape = (5, 2)
|
||||
|
||||
net = IndexedSlicesWithControlIf(dense_shape)
|
||||
net(a, b, indices, values)
|
||||
|
||||
|
||||
class EmbeddingLookUpBnNet(nn.Cell):
|
||||
def __init__(self, param_np, target='CPU'):
|
||||
super().__init__()
|
||||
self.param = Parameter(Tensor(param_np), name="w1")
|
||||
self.embedding_lookup = nn.EmbeddingLookup(target=target)
|
||||
self.bn = nn.BatchNorm2d(num_features=3)
|
||||
self.mul = P.Mul()
|
||||
self.reshape = P.Reshape()
|
||||
self.relu = nn.PReLU()
|
||||
|
||||
def construct(self, indices):
|
||||
x = self.embedding_lookup(self.param, indices)
|
||||
x = self.reshape(x, (2, 3, 2, 2))
|
||||
x = self.relu(x)
|
||||
x = self.bn(x)
|
||||
return x
|
||||
|
||||
|
||||
def test_embedding_lookup_with_mix_precision():
|
||||
param_np = np.ones([8, 8]).astype(np.float32)
|
||||
data = Tensor(np.array([0, 1, 2]).astype(np.int32))
|
||||
label = Tensor(np.random.randn(*(2, 3, 2, 2)).astype(np.float32))
|
||||
net = EmbeddingLookUpBnNet(param_np, target='CPU')
|
||||
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(reduction='mean')
|
||||
optimizer = nn.Adam(params=net.trainable_params(), learning_rate=0.1)
|
||||
optimizer.sparse_opt.add_prim_attr("primitive_target", "CPU")
|
||||
train_network = ms.amp.build_train_network(net, optimizer, criterion, level="O2")
|
||||
train_network.set_train()
|
||||
for _ in range(2):
|
||||
train_network(data, label)
|
||||
|
|
Loading…
Reference in New Issue