add api mindspore.ops.tanhshrink

This commit is contained in:
guozhibin 2022-12-29 20:47:14 +08:00
parent 3ccff77d3b
commit 2c20b046c8
7 changed files with 127 additions and 2 deletions

View File

@ -275,6 +275,7 @@ mindspore.ops
mindspore.ops.svd
mindspore.ops.t
mindspore.ops.tan
mindspore.ops.tanhshrink
mindspore.ops.true_divide
mindspore.ops.trunc
mindspore.ops.truncate_div

View File

@ -0,0 +1,8 @@
mindspore.ops.tanhshrink
=========================
.. py:function:: mindspore.ops.tanhshrink(x)
按元素计算Tanhshrink函数。
详情请查看 :class:`mindspore.nn.Tanhshrink`

View File

@ -275,6 +275,7 @@ Element-by-Element Operations
mindspore.ops.svd
mindspore.ops.t
mindspore.ops.tan
mindspore.ops.tanhshrink
mindspore.ops.true_divide
mindspore.ops.trunc
mindspore.ops.truncate_div

View File

@ -744,10 +744,9 @@ class Tanhshrink(Cell):
def __init__(self):
"""Initialize Tanhshrink."""
super(Tanhshrink, self).__init__()
self.tanh = P.Tanh()
def construct(self, x):
return x - self.tanh(x)
return F.tanhshrink(x)
@constexpr

View File

@ -272,6 +272,7 @@ from .math_func import (
sinh,
cosh,
tanh,
tanhshrink,
asinh,
arcsinh,
acosh,

View File

@ -9612,6 +9612,28 @@ def sum(x, dim=None, keepdim=False, *, dtype=None):
return out
def tanhshrink(x):
'''
Applies element-wise, :math:`Tanhshrink(x)=x-Tanh(x)` .
see :class:`mindspore.nn.Tanhshrink` for more details.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import mindspore as ms
>>> import mindspore.ops as ops
>>> from mindspore import Tensor
>>> import numpy as np
>>> x = Tensor(np.array([1, 2, 3, 2, 1]), ms.float16)
>>> output = ops.tanhshrink(x)
>>> print(output)
[0.2383 1.036 2.004 1.036 0.2383]
'''
tanh_op = _get_cache_prim(P.Tanh)()
return x - tanh_op(x)
__all__ = [
'addn',
'absolute',
@ -9730,6 +9752,7 @@ __all__ = [
'sinh',
'cosh',
'tanh',
'tanhshrink',
'asinh',
'arcsinh',
'acosh',

View File

@ -0,0 +1,92 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore as ms
import mindspore.nn as nn
import mindspore.ops as ops
from mindspore import Tensor
class Net(nn.Cell):
def construct(self, x):
return ops.tanhshrink(x)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
def test_tanhshrink_normal(mode):
"""
Feature: Tanhshrink
Description: Verify the result of Tanhshrink with normal input
Expectation: success
"""
ms.set_context(mode=mode)
net = Net()
a = Tensor(np.array([1, 2, 3, 2, 1]).astype(np.float16))
output = net(a).asnumpy()
expected_output = np.array([0.2383, 1.036, 2.004, 1.036, 0.2383]).astype(np.float16)
assert np.allclose(output, expected_output, 1e-3, 1e-3)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
def test_tanhshrink_negative(mode):
"""
Feature: Tanhshrink
Description: Verify the result of Tanhshrink with negative input
Expectation: success
"""
ms.set_context(mode=mode)
net = Net()
a = Tensor(np.array([-1, -2, -3, -2, -1]).astype(np.float16))
output = net(a).asnumpy()
expected_output = np.array([-0.2383, -1.036, -2.004, -1.036, -0.2383]).astype(np.float16)
assert np.allclose(output, expected_output, 1e-3, 1e-3)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
def test_tanhshrink_zeros(mode):
"""
Feature: Tanhshrink
Description: Verify the result of Tanhshrink with zeros
Expectation: success
"""
ms.set_context(mode=mode)
net = Net()
a = Tensor(np.array([0, 0, 0, 0, 0]).astype(np.float16))
output = net(a).asnumpy()
expected_output = np.array([0, 0, 0, 0, 0]).astype(np.float16)
assert np.allclose(output, expected_output, 1e-3, 1e-3)