forked from mindspore-Ecosystem/mindspore
!5561 Fix C++ coding standard problem
Merge pull request !5561 from yeyunpeng2020/r0.7
This commit is contained in:
commit
29fabd1324
|
@ -227,7 +227,7 @@ extern "C" JNIEXPORT jboolean JNICALL Java_com_mindspore_lite_MSTensor_setByteBu
|
|||
jobject buffer) {
|
||||
jbyte *p_data = reinterpret_cast<jbyte *>(env->GetDirectBufferAddress(buffer)); // get buffer poiter
|
||||
jlong data_len = env->GetDirectBufferCapacity(buffer); // get buffer capacity
|
||||
if (!p_data) {
|
||||
if (p_data == nullptr) {
|
||||
MS_LOGE("GetDirectBufferAddress return null");
|
||||
return NULL;
|
||||
}
|
||||
|
|
|
@ -34,7 +34,7 @@ char *ReadFile(const char *file, size_t *size);
|
|||
std::string RealPath(const char *path);
|
||||
|
||||
template <typename T>
|
||||
void WriteToTxt(const std::string& file_path, void *data, size_t element_size) {
|
||||
void WriteToTxt(const std::string &file_path, void *data, size_t element_size) {
|
||||
std::ofstream out_file;
|
||||
out_file.open(file_path, std::ios::out);
|
||||
auto real_data = reinterpret_cast<T *>(data);
|
||||
|
@ -44,7 +44,7 @@ void WriteToTxt(const std::string& file_path, void *data, size_t element_size) {
|
|||
out_file.close();
|
||||
}
|
||||
|
||||
int WriteToBin(const std::string& file_path, void *data, size_t size);
|
||||
int WriteToBin(const std::string &file_path, void *data, size_t size);
|
||||
|
||||
int CompareOutputData(float *output_data, float *correct_data, int data_size);
|
||||
void CompareOutput(float *output_data, std::string file_path);
|
||||
|
@ -55,4 +55,3 @@ std::string GetAndroidPackagePath();
|
|||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_LITE_COMMON_FILE_UTILS_H_
|
||||
|
||||
|
|
|
@ -126,14 +126,10 @@ std::map<tflite::ActivationFunctionType, schema::ActivationType> tfMsActivationF
|
|||
};
|
||||
|
||||
std::map<int, TypeId> type_map = {
|
||||
{tflite::TensorType_FLOAT64, TypeId::kNumberTypeFloat64},
|
||||
{tflite::TensorType_FLOAT32, TypeId::kNumberTypeFloat32},
|
||||
{tflite::TensorType_FLOAT16, TypeId::kNumberTypeFloat16},
|
||||
{tflite::TensorType_INT32, TypeId::kNumberTypeInt32},
|
||||
{tflite::TensorType_INT16, TypeId::kNumberTypeInt16},
|
||||
{tflite::TensorType_INT8, TypeId::kNumberTypeInt8},
|
||||
{tflite::TensorType_INT64, TypeId::kNumberTypeInt64},
|
||||
{tflite::TensorType_UINT8, TypeId::kNumberTypeUInt8},
|
||||
{tflite::TensorType_FLOAT64, TypeId::kNumberTypeFloat64}, {tflite::TensorType_FLOAT32, TypeId::kNumberTypeFloat32},
|
||||
{tflite::TensorType_FLOAT16, TypeId::kNumberTypeFloat16}, {tflite::TensorType_INT32, TypeId::kNumberTypeInt32},
|
||||
{tflite::TensorType_INT16, TypeId::kNumberTypeInt16}, {tflite::TensorType_INT8, TypeId::kNumberTypeInt8},
|
||||
{tflite::TensorType_INT64, TypeId::kNumberTypeInt64}, {tflite::TensorType_UINT8, TypeId::kNumberTypeUInt8},
|
||||
{tflite::TensorType_BOOL, TypeId::kNumberTypeBool},
|
||||
};
|
||||
|
||||
|
@ -190,11 +186,8 @@ size_t GetDataTypeSize(const TypeId &data_type) {
|
|||
}
|
||||
}
|
||||
|
||||
STATUS getPaddingParam(const std::unique_ptr<tflite::TensorT> &tensor,
|
||||
schema::PadMode pad_mode,
|
||||
int strideH, int strideW,
|
||||
int windowH, int windowW,
|
||||
std::vector<int> *params) {
|
||||
STATUS getPaddingParam(const std::unique_ptr<tflite::TensorT> &tensor, schema::PadMode pad_mode, int strideH,
|
||||
int strideW, int windowH, int windowW, std::vector<int> *params) {
|
||||
if (tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "the input tensor is null";
|
||||
return RET_ERROR;
|
||||
|
@ -208,12 +201,18 @@ STATUS getPaddingParam(const std::unique_ptr<tflite::TensorT> &tensor,
|
|||
auto shape = tensor->shape;
|
||||
int H_input = shape.at(1);
|
||||
int W_input = shape.at(2);
|
||||
|
||||
if (strideH == 0) {
|
||||
MS_LOG(ERROR) << "strideH is zero";
|
||||
return RET_ERROR;
|
||||
}
|
||||
int H_output = ceil(H_input * 1.0 / strideH);
|
||||
int pad_needed_H = (H_output - 1) * strideH + windowH - H_input;
|
||||
padUp = floor(pad_needed_H / 2.0);
|
||||
padDown = pad_needed_H - padUp;
|
||||
|
||||
if (strideW == 0) {
|
||||
MS_LOG(ERROR) << "strideW is zero";
|
||||
return RET_ERROR;
|
||||
}
|
||||
int W_output = ceil(W_input * 1.0 / strideW);
|
||||
int pad_needed_W = (W_output - 1) * strideW + windowW - W_input;
|
||||
padLeft = floor(pad_needed_W / 2.0);
|
||||
|
@ -227,9 +226,7 @@ STATUS getPaddingParam(const std::unique_ptr<tflite::TensorT> &tensor,
|
|||
return RET_OK;
|
||||
}
|
||||
|
||||
void Split(const std::string &src_str,
|
||||
std::vector<std::string> *dst_str,
|
||||
const std::string &chr) {
|
||||
void Split(const std::string &src_str, std::vector<std::string> *dst_str, const std::string &chr) {
|
||||
std::string ::size_type p1 = 0, p2 = src_str.find(chr);
|
||||
while (std::string::npos != p2) {
|
||||
dst_str->push_back(src_str.substr(p1, p2 - p1));
|
||||
|
|
|
@ -32,7 +32,6 @@
|
|||
#include <memory>
|
||||
#include <utility>
|
||||
|
||||
|
||||
struct ImgDims {
|
||||
int channel = 0;
|
||||
int width = 0;
|
||||
|
@ -43,8 +42,6 @@ struct ImgDims {
|
|||
std::shared_ptr<mindspore::session::LiteSession> sess = nullptr;
|
||||
};*/
|
||||
|
||||
|
||||
|
||||
class MSNetWork {
|
||||
public:
|
||||
MSNetWork();
|
||||
|
@ -55,6 +52,7 @@ class MSNetWork {
|
|||
|
||||
int ReleaseNets(void);
|
||||
|
||||
protected:
|
||||
mindspore::session::LiteSession *session;
|
||||
mindspore::lite::Model *model;
|
||||
static const int RET_CATEGORY_SUM = 601;
|
||||
|
|
|
@ -76,10 +76,10 @@ cv::Mat PreProcessImageData(cv::Mat input) {
|
|||
|
||||
imgFloatTmp.convertTo(imgResized256, CV_32FC3, normalizMin / normalizMax);
|
||||
|
||||
int offsetX = 16;
|
||||
int offsetY = 16;
|
||||
int cropWidth = 224;
|
||||
int cropHeight = 224;
|
||||
const int offsetX = 16;
|
||||
const int offsetY = 16;
|
||||
const int cropWidth = 224;
|
||||
const int cropHeight = 224;
|
||||
|
||||
// Standardization processing.
|
||||
float meanR = 0.485;
|
||||
|
|
Loading…
Reference in New Issue