forked from mindspore-Ecosystem/mindspore
!9413 Fixing errors in classes' notes
From: @zhangz0911gm Reviewed-by: @liangchenghui,@c_34,@c_34,@liangchenghui Signed-off-by: @liangchenghui,@c_34
This commit is contained in:
commit
29622602e0
|
@ -159,7 +159,7 @@ class ELU(Cell):
|
|||
>>> elu = nn.ELU()
|
||||
>>> result = elu(input_x)
|
||||
>>> print(result)
|
||||
[-0.63212055 -0.86466473 0 2 1]
|
||||
[-0.63212055 -0.86466473 0. 2. 1.]
|
||||
"""
|
||||
|
||||
def __init__(self, alpha=1.0):
|
||||
|
@ -389,8 +389,8 @@ class FastGelu(Cell):
|
|||
>>> fast_gelu = nn.FastGelu()
|
||||
>>> output = fast_gelu(input_x)
|
||||
>>> print(output)
|
||||
[[-1.5420423e-01 3.9955849e+00 -9.7664278e-06]
|
||||
[ 1.9356585e+00 -1.0070159e-03 8.9999981e+00]]
|
||||
[[-1.5420423e-01 3.9955850e+00 -9.7664279e-06]
|
||||
[ 1.9356586e+00 -1.0070159e-03 8.9999981e+00]]
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
|
|
|
@ -712,7 +712,7 @@ class LBeta(Cell):
|
|||
>>> input_x = Tensor(np.array([2.0, 4.0, 6.0, 8.0]).astype(np.float32))
|
||||
>>> input_y = Tensor(np.array([2.0, 3.0, 14.0, 15.0]).astype(np.float32))
|
||||
>>> lbeta = nn.LBeta()
|
||||
>>> output = lbeta(input_a, input_x)
|
||||
>>> output = lbeta(input_y, input_x)
|
||||
>>> print (output)
|
||||
[-1.7917596 -4.094345 -12.000229 -14.754799]
|
||||
"""
|
||||
|
|
|
@ -59,7 +59,7 @@ class GumbelCDF(Bijector):
|
|||
>>> y = Tensor([0.1, 0.2, 0.3], dtype=mindspore.float32)
|
||||
>>> ans1 = gumbel_cdf.forward(x)
|
||||
>>> print(ans1)
|
||||
[0.36787945 0.54523915 0.6922006 ]
|
||||
[0.36787945 0.5452392 0.69220066]
|
||||
>>> ans2 = gumbel_cdf.inverse(y)
|
||||
>>> print(ans2)
|
||||
[-0.66806495 0.04822993 0.62874645]
|
||||
|
|
|
@ -64,7 +64,7 @@ class ScalarAffine(Bijector):
|
|||
0.0
|
||||
>>> ans4 = scalaraffine.inverse_log_jacobian(value)
|
||||
>>> print(ans4)
|
||||
-0.0
|
||||
0.0
|
||||
...
|
||||
"""
|
||||
|
||||
|
|
|
@ -69,7 +69,7 @@ class Bernoulli(Distribution):
|
|||
>>> # Evaluate `prob` with respect to distribution b.
|
||||
>>> ans = b1.prob(value, probs_b)
|
||||
>>> print(ans)
|
||||
[0.2 0.5 0.4]
|
||||
[0.2 0.7 0.4]
|
||||
>>> # `probs` must be passed in during function calls.
|
||||
>>> ans = b2.prob(value, probs_a)
|
||||
>>> print(ans)
|
||||
|
|
|
@ -70,7 +70,7 @@ class Cauchy(Distribution):
|
|||
>>> # by replacing 'prob' by the name of the function
|
||||
>>> ans = cauchy1.prob(value)
|
||||
>>> print(ans)
|
||||
[0.06366198 0.07489645 0.07957747]
|
||||
[0.06366198 0.07489645 0.07957748]
|
||||
>>> # Evaluate with respect to distribution b.
|
||||
>>> ans = cauchy1.prob(value, loc_b, scale_b)
|
||||
>>> print(ans)
|
||||
|
|
|
@ -71,7 +71,7 @@ class Exponential(Distribution):
|
|||
>>> # Evaluate with respect to distribution b.
|
||||
>>> ans = e1.prob(value, rate_b)
|
||||
>>> print(ans)
|
||||
[0.16374613 0.18393973 0.12047768]
|
||||
[0.16374615 0.18393973 0.12047768]
|
||||
>>> # `rate` must be passed in during function calls.
|
||||
>>> ans = e2.prob(value, rate_a)
|
||||
>>> print(ans)
|
||||
|
|
|
@ -64,7 +64,7 @@ class Gumbel(TransformedDistribution):
|
|||
>>> value = Tensor([1.0, 2.0, 3.0], dtype=mindspore.float32)
|
||||
>>> ans = gumbel.prob(value)
|
||||
>>> print(ans)
|
||||
[0.07926048 0.08889321 0.09196986]
|
||||
[0.07926048 0.08889319 0.09196986]
|
||||
>>> # Functions `mean`, `mode`, sd`, `var`, and `entropy` do not take in any argument.
|
||||
>>> ans = gumbel.mean()
|
||||
>>> print(ans)
|
||||
|
|
|
@ -71,7 +71,7 @@ class Logistic(Distribution):
|
|||
>>> # by replacing 'prob' by the name of the function
|
||||
>>> ans = l1.prob(value)
|
||||
>>> print(ans)
|
||||
[0.05875093 0.06153353 0.0625 ]
|
||||
[0.05875093 0.06153352 0.0625 ]
|
||||
>>> # Evaluate with respect to distribution b.
|
||||
>>> ans = l1.prob(value, loc_b, scale_b)
|
||||
>>> print(ans)
|
||||
|
|
|
@ -71,10 +71,10 @@ def repeat_elements(x, rep, axis=0):
|
|||
>>> x = Tensor(np.array([[0, 1, 2], [3, 4, 5]]), mindspore.int32)
|
||||
>>> output = C.repeat_elements(x, rep = 2, axis = 0)
|
||||
>>> print(output)
|
||||
[[0, 1, 2],
|
||||
[0, 1, 2],
|
||||
[3, 4, 5],
|
||||
[3, 4, 5]],
|
||||
[[0 1 2]
|
||||
[0 1 2]
|
||||
[3 4 5]
|
||||
[3 4 5]]
|
||||
"""
|
||||
const_utils.check_valid_type(F.dtype(x), mstype.number_type, 'input x')
|
||||
rep = _check_positive_int(rep, "rep", "repeat_elements")
|
||||
|
|
|
@ -186,9 +186,9 @@ def tensor_dot(x1, x2, axes):
|
|||
>>> input_x2 = Tensor(np.ones(shape=[3, 1, 2]), mindspore.float32)
|
||||
>>> output = C.tensor_dot(input_x1, input_x2, ((0,1),(1,2)))
|
||||
>>> print(output)
|
||||
[[2,2,2],
|
||||
[2,2,2],
|
||||
[2,2,2]]
|
||||
[[2. 2. 2]
|
||||
[2. 2. 2]
|
||||
[2. 2. 2]]
|
||||
"""
|
||||
shape_op = P.Shape()
|
||||
reshape_op = P.Reshape()
|
||||
|
|
Loading…
Reference in New Issue