forked from mindspore-Ecosystem/mindspore
add modelzoo network deeplabv3 testcase
This commit is contained in:
parent
1827697642
commit
295be87280
|
@ -0,0 +1,68 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import os
|
||||
import pytest
|
||||
|
||||
from tests.st.model_zoo_tests import utils
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.env_single
|
||||
def test_DeeplabV3_voc2007():
|
||||
cur_path = os.path.dirname(os.path.abspath(__file__))
|
||||
model_path = "{}/../../../../model_zoo/official/cv".format(cur_path)
|
||||
model_name = "deeplabv3"
|
||||
utils.copy_files(model_path, cur_path, model_name)
|
||||
cur_model_path = os.path.join(cur_path, model_name)
|
||||
|
||||
old_list = ['/PATH/TO/EXPERIMENTS_DIR',
|
||||
'/PATH/TO/MODEL_ZOO_CODE',
|
||||
'/PATH/TO/MINDRECORD_NAME',
|
||||
'/PATH/TO/PRETRAIN_MODEL',
|
||||
"\\${train_code_path}/src/tools/rank_table_8p.json"]
|
||||
new_list = [cur_model_path + '/train',
|
||||
cur_model_path,
|
||||
os.path.join(utils.data_root, "voc/voc2012/mindrecord_train/vocaug_mindrecord0"),
|
||||
os.path.join(utils.ckpt_root, "deeplabv3/resnet101_ascend.ckpt"),
|
||||
utils.rank_table_path]
|
||||
utils.exec_sed_command(old_list, new_list,
|
||||
os.path.join(cur_model_path, "scripts/run_distribute_train_s16_r1.sh"))
|
||||
|
||||
old_list = ['model.train(args.train_epochs',
|
||||
'callbacks=cbs']
|
||||
new_list = ['model.train(70',
|
||||
'callbacks=cbs, sink_size=2']
|
||||
utils.exec_sed_command(old_list, new_list, os.path.join(cur_model_path, "train.py"))
|
||||
|
||||
exec_network_shell = "cd {}; sh scripts/run_distribute_train_s16_r1.sh".format(model_name)
|
||||
ret = os.system(exec_network_shell)
|
||||
assert ret == 0
|
||||
cmd = "ps -ef | grep python | grep train.py | grep -v grep"
|
||||
ret = utils.process_check(100, cmd)
|
||||
assert ret
|
||||
|
||||
log_file = os.path.join(cur_model_path, "train/device{}/log")
|
||||
for i in range(8):
|
||||
per_step_time = utils.get_perf_data(log_file.format(i))
|
||||
print("per_step_time is", per_step_time)
|
||||
assert per_step_time < 530.0
|
||||
loss_list = []
|
||||
for i in range(8):
|
||||
loss = utils.get_loss_data_list(log_file.format(i))
|
||||
print("loss is", loss[-1])
|
||||
loss_list.append(loss[-1])
|
||||
assert sum(loss_list) / len(loss_list) < 2.5
|
Loading…
Reference in New Issue