!7502 delete launch file

Merge pull request !7502 from zhaoting/mobilenet
This commit is contained in:
mindspore-ci-bot 2020-10-21 12:11:42 +08:00 committed by Gitee
commit 290b0aa194
9 changed files with 22 additions and 239 deletions

View File

@ -70,7 +70,6 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
│ ├──args.py # parse args
│ ├──config.py # parameter configuration
│ ├──dataset.py # creating dataset
│ ├──launch.py # start python script
│ ├──lr_generator.py # learning rate config
│ ├──mobilenetV2.py # MobileNetV2 architecture
│ ├──models.py # contain define_net and Loss, Monitor

View File

@ -31,21 +31,32 @@ run_ascend()
BASEPATH=$(cd "`dirname $0`" || exit; pwd)
export PYTHONPATH=${BASEPATH}:$PYTHONPATH
export RANK_TABLE_FILE=$4
DEVICE_NUM=$2
if [ -d "../train" ];
then
rm -rf ../train
fi
mkdir ../train
cd ../train || exit
python ${BASEPATH}/../src/launch.py \
for((i=0; i<${DEVICE_NUM}; i++))
do
export DEVICE_ID=$i
export RANK_ID=$i
rm -rf ./rank$i
mkdir ./rank$i
cp ../*.py ./rank$i
cp -r ../src ./rank$i
cd ./rank$i || exit
echo "start training for rank $RANK_ID, device $DEVICE_ID"
env > env.log
python train.py \
--platform=$1 \
--nproc_per_node=$2 \
--visible_devices=$3 \
--training_script=${BASEPATH}/../train.py \
--dataset_path=$5 \
--pretrain_ckpt=$6 \
--freeze_layer=$7 \
&> ../train.log & # dataset train folder
&> log$i.log &
cd ..
done
}
run_gpu()

View File

@ -1,64 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""launch train script"""
import os
import sys
import subprocess
import shutil
from args import launch_parse_args
def main():
print("start", __file__)
args = launch_parse_args()
print(args)
visible_devices = args.visible_devices.split(',')
assert os.path.isfile(args.training_script)
assert len(visible_devices) >= args.nproc_per_node
print('visible_devices:{}'.format(visible_devices))
# spawn the processes
processes = []
cmds = []
log_files = []
env = os.environ.copy()
env['RANK_SIZE'] = str(args.nproc_per_node)
cur_path = os.getcwd()
for rank_id in range(0, args.nproc_per_node):
os.chdir(cur_path)
device_id = visible_devices[rank_id]
rank_dir = os.path.join(cur_path, 'rank{}'.format(rank_id))
env['RANK_ID'] = str(rank_id)
env['DEVICE_ID'] = str(device_id)
if os.path.exists(rank_dir):
shutil.rmtree(rank_dir)
os.mkdir(rank_dir)
os.chdir(rank_dir)
cmd = [sys.executable, '-u']
cmd.append(args.training_script)
cmd.extend(args.training_script_args)
log_file = open(f'{rank_dir}/log{rank_id}.log', 'w')
process = subprocess.Popen(cmd, stdout=log_file, stderr=log_file, env=env)
processes.append(process)
cmds.append(cmd)
log_files.append(log_file)
for process, cmd, log_file in zip(processes, cmds, log_files):
process.wait()
if process.returncode != 0:
raise subprocess.CalledProcessError(returncode=process, cmd=cmd)
log_file.close()
if __name__ == "__main__":
main()

View File

@ -64,7 +64,6 @@ Dataset used: [imagenet](http://www.image-net.org/)
├── src
│ ├──config.py # parameter configuration
│ ├──dataset.py # creating dataset
│ ├──launch.py # start python script
│ ├──lr_generator.py # learning rate config
│ ├──mobilenetV3.py # MobileNetV3 architecture
├── train.py # training script

View File

@ -1,162 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""launch train script"""
import os
import sys
import json
import subprocess
import shutil
from argparse import ArgumentParser
def parse_args():
"""
parse args .
Args:
Returns:
args.
Examples:
>>> parse_args()
"""
parser = ArgumentParser(description="mindspore distributed training launch "
"helper utilty that will spawn up "
"multiple distributed processes")
parser.add_argument("--nproc_per_node", type=int, default=1,
help="The number of processes to launch on each node, "
"for D training, this is recommended to be set "
"to the number of D in your system so that "
"each process can be bound to a single D.")
parser.add_argument("--visible_devices", type=str, default="0,1,2,3,4,5,6,7",
help="will use the visible devices sequentially")
parser.add_argument("--server_id", type=str, default="",
help="server ip")
parser.add_argument("--training_script", type=str,
help="The full path to the single D training "
"program/script to be launched in parallel, "
"followed by all the arguments for the "
"training script")
# rest from the training program
args, unknown = parser.parse_known_args()
args.training_script_args = unknown
return args
def main():
print("start", __file__)
args = parse_args()
print(args)
visible_devices = args.visible_devices.split(',')
assert os.path.isfile(args.training_script)
assert len(visible_devices) >= args.nproc_per_node
print('visible_devices:{}'.format(visible_devices))
if not args.server_id:
print('pleaser input server ip!!!')
exit(0)
print('server_id:{}'.format(args.server_id))
# construct hccn_table
hccn_configs = open('/etc/hccn.conf', 'r').readlines()
device_ips = {}
for hccn_item in hccn_configs:
hccn_item = hccn_item.strip()
if hccn_item.startswith('address_'):
device_id, device_ip = hccn_item.split('=')
device_id = device_id.split('_')[1]
device_ips[device_id] = device_ip
print('device_id:{}, device_ip:{}'.format(device_id, device_ip))
hccn_table = {}
hccn_table['board_id'] = '0x0000'
hccn_table['chip_info'] = '910'
hccn_table['deploy_mode'] = 'lab'
hccn_table['group_count'] = '1'
hccn_table['group_list'] = []
instance_list = []
usable_dev = ''
for instance_id in range(args.nproc_per_node):
instance = {}
instance['devices'] = []
device_id = visible_devices[instance_id]
device_ip = device_ips[device_id]
usable_dev += str(device_id)
instance['devices'].append({
'device_id': device_id,
'device_ip': device_ip,
})
instance['rank_id'] = str(instance_id)
instance['server_id'] = args.server_id
instance_list.append(instance)
hccn_table['group_list'].append({
'device_num': str(args.nproc_per_node),
'server_num': '1',
'group_name': '',
'instance_count': str(args.nproc_per_node),
'instance_list': instance_list,
})
hccn_table['para_plane_nic_location'] = 'device'
hccn_table['para_plane_nic_name'] = []
for instance_id in range(args.nproc_per_node):
eth_id = visible_devices[instance_id]
hccn_table['para_plane_nic_name'].append('eth{}'.format(eth_id))
hccn_table['para_plane_nic_num'] = str(args.nproc_per_node)
hccn_table['status'] = 'completed'
# save hccn_table to file
table_path = os.getcwd()
if not os.path.exists(table_path):
os.mkdir(table_path)
table_fn = os.path.join(table_path,
'rank_table_{}p_{}_{}.json'.format(args.nproc_per_node, usable_dev, args.server_id))
with open(table_fn, 'w') as table_fp:
json.dump(hccn_table, table_fp, indent=4)
sys.stdout.flush()
# spawn the processes
processes = []
cmds = []
log_files = []
env = os.environ.copy()
env['RANK_SIZE'] = str(args.nproc_per_node)
cur_path = os.getcwd()
for rank_id in range(0, args.nproc_per_node):
os.chdir(cur_path)
device_id = visible_devices[rank_id]
device_dir = os.path.join(cur_path, 'device{}'.format(rank_id))
env['RANK_ID'] = str(rank_id)
env['DEVICE_ID'] = str(device_id)
if args.nproc_per_node > 1:
env['RANK_TABLE_FILE'] = table_fn
if os.path.exists(device_dir):
shutil.rmtree(device_dir)
os.mkdir(device_dir)
os.chdir(device_dir)
cmd = [sys.executable, '-u']
cmd.append(args.training_script)
cmd.extend(args.training_script_args)
log_file = open('{dir}/log{id}.log'.format(dir=device_dir, id=rank_id), 'w')
process = subprocess.Popen(cmd, stdout=log_file, stderr=log_file, env=env)
processes.append(process)
cmds.append(cmd)
log_files.append(log_file)
for process, cmd, log_file in zip(processes, cmds, log_files):
process.wait()
if process.returncode != 0:
raise subprocess.CalledProcessError(returncode=process, cmd=cmd)
log_file.close()
if __name__ == "__main__":
main()

View File

@ -66,7 +66,7 @@ default_boxes_ltrb = GeneratDefaultBoxes().default_boxes_ltrb
default_boxes = GeneratDefaultBoxes().default_boxes
y1, x1, y2, x2 = np.split(default_boxes_ltrb[:, :4], 4, axis=-1)
vol_anchors = (x2 - x1) * (y2 - y1)
matching_threshold = config.match_thershold
matching_threshold = config.match_threshold
def ssd_bboxes_encode(boxes):

View File

@ -100,7 +100,7 @@ def metrics(pred_data):
class_boxes = pred_boxes[score_mask] * [h, w, h, w]
if score_mask.any():
nms_index = apply_nms(class_boxes, class_box_scores, config.nms_thershold, config.max_boxes)
nms_index = apply_nms(class_boxes, class_box_scores, config.nms_threshold, config.max_boxes)
class_boxes = class_boxes[nms_index]
class_box_scores = class_box_scores[nms_index]

View File

@ -21,8 +21,8 @@ config = ed({
"img_shape": [300, 300],
"num_ssd_boxes": 1917,
"neg_pre_positive": 3,
"match_thershold": 0.5,
"nms_thershold": 0.6,
"match_threshold": 0.5,
"nms_threshold": 0.6,
"min_score": 0.1,
"max_boxes": 100,
@ -38,7 +38,7 @@ config = ed({
"num_default": [3, 6, 6, 6, 6, 6],
"extras_in_channels": [256, 576, 1280, 512, 256, 256],
"extras_out_channels": [576, 1280, 512, 256, 256, 128],
"extras_srides": [1, 1, 2, 2, 2, 2],
"extras_strides": [1, 1, 2, 2, 2, 2],
"extras_ratio": [0.2, 0.2, 0.2, 0.25, 0.5, 0.25],
"feature_size": [19, 10, 5, 3, 2, 1],
"min_scale": 0.2,

View File

@ -228,7 +228,7 @@ class SSD300(nn.Cell):
in_channels = config.extras_in_channels
out_channels = config.extras_out_channels
ratios = config.extras_ratio
strides = config.extras_srides
strides = config.extras_strides
residual_list = []
for i in range(2, len(in_channels)):
residual = InvertedResidual(in_channels[i], out_channels[i], stride=strides[i],