!9034 [MS][DynamicShape] - Converting P.Square to DynamicShape op

From: @danishnxt
Reviewed-by: @robingrosman
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2020-11-27 23:25:45 +08:00 committed by Gitee
commit 28e6c7f29e
2 changed files with 77 additions and 6 deletions

View File

@ -1319,7 +1319,7 @@ class SquaredDifference(_MathBinaryOp):
return _MathBinaryOp.do_infer_dtype(x_dtype, y_dtype, valid_type, self.name)
class Square(PrimitiveWithInfer):
class Square(PrimitiveWithCheck):
"""
Returns square of a tensor element-wise.
@ -1345,12 +1345,9 @@ class Square(PrimitiveWithInfer):
"""Initialize Square"""
self.init_prim_io_names(inputs=['input_x'], outputs=['output'])
def infer_shape(self, x_shape):
return x_shape
def infer_dtype(self, x_dtype):
def __check__(self, x):
x_dtype = x["dtype"]
validator.check_tensor_dtype_valid("x", x_dtype, mstype.number_type, self.name)
return x_dtype
def infer_value(self, x):
if x is not None:

View File

@ -0,0 +1,74 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops.operations import _inner_ops as inner
from mindspore.ops import operations as P
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_square_normal():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
x_np = np.random.rand(2, 3, 4, 4).astype(np.float32)
output_ms = P.Square()(Tensor(x_np))
output_np = np.square(x_np)
assert np.allclose(output_ms.asnumpy(), output_np)
x_np = np.random.rand(2, 3, 1, 5, 4, 4).astype(np.float32)
output_ms = P.Square()(Tensor(x_np))
output_np = np.square(x_np)
assert np.allclose(output_ms.asnumpy(), output_np)
x_np = np.random.rand(2,).astype(np.float32)
output_ms = P.Square()(Tensor(x_np))
output_np = np.square(x_np)
assert np.allclose(output_ms.asnumpy(), output_np)
# Dynamic Shape Testing
class SqaureNetDynamic(nn.Cell):
def __init__(self):
super(SqaureNetDynamic, self).__init__()
self.square = P.Square()
self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape()
def construct(self, x):
x_dyn = self.gpu_convert_to_dynamic_shape(x)
return self.square(x_dyn)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_square_dynamic():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = SqaureNetDynamic()
x_np = np.random.rand(1, 3, 4, 4, 1).astype(np.float32)
output_ms = net(Tensor(x_np))
output_np = np.square(x_np)
assert np.allclose(output_ms.asnumpy(), output_np)
x_np = np.random.rand(2, 3, 4, 4, 8, 9).astype(np.float16)
output_ms = net(Tensor(x_np))
output_np = np.square(x_np)
assert np.allclose(output_ms.asnumpy(), output_np)
x_np = np.random.rand(1).astype(np.float32)
output_ms = net(Tensor(x_np))
output_np = np.square(x_np)
assert np.allclose(output_ms.asnumpy(), output_np)