forked from mindspore-Ecosystem/mindspore
!10885 add nll_loss operation
From: @jiangzg001 Reviewed-by: @liangchenghui,@wuxuejian Signed-off-by: @liangchenghui
This commit is contained in:
commit
274e0aa750
|
@ -147,6 +147,8 @@ constexpr const char kNameCumSum[] = "CumSum";
|
|||
constexpr const char kNameHuberLossGrad[] = "HuberLossGrad";
|
||||
constexpr const char kNameSparseSoftmaxCrossEntropy[] = "SparseSoftmaxCrossEntropy";
|
||||
constexpr const char kNameSparseSoftmaxCrossEntropyGrad[] = "SparseSoftmaxCrossEntropyGrad";
|
||||
constexpr const char kNameNLLLoss[] = "NLLLoss";
|
||||
constexpr const char kNameNLLLossGrad[] = "NLLLossGrad";
|
||||
constexpr const char kNameTopK[] = "TopK";
|
||||
constexpr const char kNameSoftmaxGrad[] = "SoftmaxGrad";
|
||||
constexpr const char kNameMaxPool[] = "MaxPool";
|
||||
|
|
|
@ -0,0 +1,35 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "transform/graph_ir/op_declare/math_ops_declare.h"
|
||||
|
||||
namespace mindspore::transform {
|
||||
// NLLLoss
|
||||
INPUT_MAP(NLLLoss) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(target)}, {3, INPUT_DESC(weight)}};
|
||||
ATTR_MAP(NLLLoss) = {{"reduction", ATTR_DESC(reduction, AnyTraits<std::string>())}};
|
||||
OUTPUT_MAP(NLLLoss) = {{0, OUTPUT_DESC(y)}, {1, OUTPUT_DESC(total_weight)}};
|
||||
REG_ADPT_DESC(NLLLoss, kNameNLLLoss, ADPT_DESC(NLLLoss))
|
||||
|
||||
// NLLLossGrad
|
||||
INPUT_MAP(NLLLossGrad) = {{1, INPUT_DESC(x)},
|
||||
{2, INPUT_DESC(y_grad)},
|
||||
{3, INPUT_DESC(target)},
|
||||
{4, INPUT_DESC(weight)},
|
||||
{5, INPUT_DESC(total_weight)}};
|
||||
ATTR_MAP(NLLLossGrad) = {{"reduction", ATTR_DESC(reduction, AnyTraits<std::string>())}};
|
||||
OUTPUT_MAP(NLLLossGrad) = {{0, OUTPUT_DESC(x_grad)}};
|
||||
REG_ADPT_DESC(NLLLossGrad, kNameNLLLossGrad, ADPT_DESC(NLLLossGrad))
|
||||
} // namespace mindspore::transform
|
|
@ -0,0 +1,31 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_TRANSFORM_GRAPH_IR_OP_DECLARE_MATH_OPS_DECLARE_H_
|
||||
#define MINDSPORE_CCSRC_TRANSFORM_GRAPH_IR_OP_DECLARE_MATH_OPS_DECLARE_H_
|
||||
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include "transform/graph_ir/op_declare/op_declare_macro.h"
|
||||
#include "ops/math_ops.h"
|
||||
|
||||
namespace mindspore::transform {
|
||||
DECLARE_OP_ADAPTER(NLLLoss)
|
||||
DECLARE_OP_USE_OUTPUT(NLLLoss)
|
||||
DECLARE_OP_ADAPTER(NLLLossGrad)
|
||||
DECLARE_OP_USE_OUTPUT(NLLLossGrad)
|
||||
} // namespace mindspore::transform
|
||||
#endif // MINDSPORE_CCSRC_TRANSFORM_GRAPH_IR_OP_DECLARE_MATH_OPS_DECLARE_H_
|
|
@ -761,6 +761,20 @@ def get_bprop_softmax_cross_entropy_with_logits(self):
|
|||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.NLLLoss)
|
||||
def get_bprop_nll_loss(self):
|
||||
"""Grad definition for `NLLLoss` operation."""
|
||||
nll_loss_grad = G.NLLLossGrad(reduction=self.reduction)
|
||||
|
||||
def bprop(x, target, weight, out, dout):
|
||||
total_weight = out[1]
|
||||
dout_x = dout[0]
|
||||
dx = nll_loss_grad(x, dout_x, target, weight, total_weight)
|
||||
return dx, zeros_like(target), zeros_like(weight)
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.SparseSoftmaxCrossEntropyWithLogits)
|
||||
def get_bprop_sparse_softmax_cross_entropy_with_logits(self):
|
||||
"""Grad definition for `SparseSoftmaxCrossEntropyWithLogits` operation."""
|
||||
|
|
|
@ -353,3 +353,5 @@ from .conv3d_backprop_filter import _conv3d_backprop_filter_tbe
|
|||
from .conv3d_transpose import _conv3d_transpose_tbe
|
||||
from .lamb_apply_optimizer_assign import _lamb_apply_optimizer_assign_tbe
|
||||
from .lamb_apply_weight_assign import _lamb_apply_weight_assign_tbe
|
||||
from .nll_loss import _nll_loss_tbe
|
||||
from .nll_loss_grad import _nll_loss_grad_tbe
|
||||
|
|
|
@ -0,0 +1,40 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""NLLLoss op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
nll_loss_op_info = TBERegOp("NLLLoss") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("nll_loss.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("nll_loss") \
|
||||
.partial_flag(True) \
|
||||
.attr("reduction", "optional", "str", "all") \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.input(1, "target", False, "required", "all") \
|
||||
.input(2, "weight", False, "required", "all") \
|
||||
.output(0, "y", False, "required", "all") \
|
||||
.output(1, "total_weight", False, "optional", "all") \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.F32_Default,
|
||||
DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(nll_loss_op_info)
|
||||
def _nll_loss_tbe():
|
||||
"""NLLLoss TBE register"""
|
||||
return
|
|
@ -0,0 +1,41 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""NLLLossGrad op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
nll_loss_grad_op_info = TBERegOp("NLLLossGrad") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("nll_loss_grad.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("nll_loss_grad") \
|
||||
.partial_flag(True) \
|
||||
.attr("reduction", "optional", "str", "all") \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.input(1, "y_grad", False, "required", "all") \
|
||||
.input(2, "target", False, "required", "all") \
|
||||
.input(3, "weight", False, "required", "all") \
|
||||
.input(4, "total_weight", False, "required", "all") \
|
||||
.output(0, "x_grad", False, "required", "all") \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.I32_Default,
|
||||
DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(nll_loss_grad_op_info)
|
||||
def _nll_loss_grad_tbe():
|
||||
"""NLLLossGrad TBE register"""
|
||||
return
|
|
@ -72,7 +72,7 @@ from .nn_ops import (LSTM, SGD, Adam, FusedSparseAdam, FusedSparseLazyAdam, Adam
|
|||
AvgPool, Conv2DBackpropInput, ComputeAccidentalHits,
|
||||
MaxPoolWithArgmax, OneHot, Pad, MirrorPad, PReLU, ReLU, ReLU6, ReLUV2, HSwish, HSigmoid,
|
||||
ResizeBilinear, Sigmoid,
|
||||
SigmoidCrossEntropyWithLogits,
|
||||
SigmoidCrossEntropyWithLogits, NLLLoss,
|
||||
SmoothL1Loss, Softmax, Softsign, Softplus, LRN, RNNTLoss, DynamicRNN, DynamicGRUV2,
|
||||
SoftmaxCrossEntropyWithLogits, ROIAlign,
|
||||
SparseSoftmaxCrossEntropyWithLogits, Tanh,
|
||||
|
@ -147,6 +147,7 @@ __all__ = [
|
|||
'SoftmaxCrossEntropyWithLogits',
|
||||
'ROIAlign',
|
||||
'SparseSoftmaxCrossEntropyWithLogits',
|
||||
'NLLLoss',
|
||||
'SGD',
|
||||
'ApplyMomentum',
|
||||
'ExpandDims',
|
||||
|
|
|
@ -1746,6 +1746,35 @@ class SliceGrad(PrimitiveWithInfer):
|
|||
'value': None}
|
||||
|
||||
|
||||
class NLLLossGrad(PrimitiveWithInfer):
|
||||
"""Computes the gradients of `NLLLoss`."""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, reduction="mean"):
|
||||
"""Initialize NLLLoss"""
|
||||
self.init_prim_io_names(inputs=['x', 'target', "weight"], outputs=['loss'])
|
||||
self.reduction = validator.check_string(reduction, ['none', 'sum', 'mean'], 'reduction', self.name)
|
||||
self.add_prim_attr('reduction', self.reduction)
|
||||
|
||||
def infer_shape(self, x_shape, y_grad_shape, t_shape, w_shape, tw_shape):
|
||||
validator.check_int(len(x_shape), [1, 2], Rel.IN, "x rank", self.name)
|
||||
validator.check_int(len(t_shape), 1, Rel.EQ, "target rank", self.name)
|
||||
validator.check_int(len(w_shape), 1, Rel.EQ, "weight rank", self.name)
|
||||
validator.check(f"input_shape[0]", x_shape[0], "target_shape", t_shape[0], Rel.EQ, self.name)
|
||||
validator.check(f"input_shape[1]", x_shape[1], "weight_shape", w_shape[0], Rel.EQ, self.name)
|
||||
return x_shape
|
||||
|
||||
def infer_dtype(self, x_dtype, y_grad_dtype, t_dtype, w_dtype, tw_dtype):
|
||||
valid_dtypes = (mstype.float16, mstype.float32)
|
||||
validator.check_tensor_dtype_valid("x_dtype", x_dtype, valid_dtypes, self.name)
|
||||
validator.check_tensor_dtype_valid("y_grad_dtype", y_grad_dtype, valid_dtypes, self.name)
|
||||
validator.check_tensor_dtype_valid("t_dtype", t_dtype, mstype.int32, self.name)
|
||||
validator.check_tensor_dtype_valid("w_dtype", w_dtype, valid_dtypes, self.name)
|
||||
validator.check_tensor_dtype_valid("tw_dtype", tw_dtype, valid_dtypes, self.name)
|
||||
validator.check('tw_shape_dtype', tw_dtype, 'w_shape_dtype', w_dtype, Rel.EQ, self.name)
|
||||
return x_dtype
|
||||
|
||||
|
||||
class SmoothL1LossGrad(PrimitiveWithInfer):
|
||||
"""Computes gradient for prediction on SmoothL1Loss."""
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -1917,6 +1917,66 @@ class TopK(PrimitiveWithInfer):
|
|||
'value': None}
|
||||
|
||||
|
||||
class NLLLoss(PrimitiveWithInfer):
|
||||
r"""
|
||||
Gets the negative log likelihood loss between logits and labels.
|
||||
|
||||
Args:
|
||||
reduction (string): Apply specific reduction method to the output: 'none', 'mean', 'sum'. Default: "mean".
|
||||
|
||||
Inputs:
|
||||
- **input** (Tensor) - Input logits, with shape :math:`(N, C)`. Data type only support float32 or float16.
|
||||
- **target** (Tensor) - Ground truth labels, with shape :math:`(N)`. Data type only support int32.
|
||||
- **weight** (Tensor) - The rescaling weight to each class, with shape :math:`(C)` and data type only
|
||||
support float32 or float16`.
|
||||
|
||||
Outputs:
|
||||
Tuple of 2 tensors composed with `loss` and `total_weight`. when `reduction` is `none` and `input` is 2D
|
||||
tensor, the `loss` shape is `(N,)`. Otherwise, the `loss` and the `total_weight` is a scalar. The data type
|
||||
of `loss` and `total_weight` are same with `input's` and `weight's` respectively.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
|
||||
Examples:
|
||||
>>> input = Tensor(np.array([[0.5488135, 0.71518934],
|
||||
>>> [0.60276335, 0.5448832],
|
||||
>>> [0.4236548, 0.6458941]]).astype(np.float32))
|
||||
>>> target = Tensor(np.array([0, 0, 0]).astype(np.int32))
|
||||
>>> weight = Tensor(np.array([0.3834415, 0.79172504]).astype(np.float32))
|
||||
>>> nll_loss = ops.NLLLoss(reduction="mean")
|
||||
>>> loss, weight = nll_loss(input, target, weight)
|
||||
>>> print(loss)
|
||||
[-0.52507716]
|
||||
>>> print(weight)
|
||||
[1.1503246 0.79172504]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, reduction="mean"):
|
||||
"""Initialize NLLLoss"""
|
||||
self.init_prim_io_names(inputs=['x', 'target', "weight"], outputs=['loss'])
|
||||
self.reduction = validator.check_string(reduction.lower(), ['none', 'sum', 'mean'], 'reduction', self.name)
|
||||
self.add_prim_attr('reduction', self.reduction)
|
||||
|
||||
def infer_shape(self, x_shape, t_shape, w_shape):
|
||||
validator.check_int(len(x_shape), [1, 2], Rel.IN, "x rank", self.name)
|
||||
validator.check_int(len(t_shape), 1, Rel.EQ, "target rank", self.name)
|
||||
validator.check_int(len(w_shape), 1, Rel.EQ, "weight rank", self.name)
|
||||
validator.check(f"input_shape[0]", x_shape[0], "target_shape", t_shape[0], Rel.EQ, self.name)
|
||||
validator.check(f"input_shape[1]", x_shape[1], "weight_shape", w_shape[0], Rel.EQ, self.name)
|
||||
if self.reduction == "none":
|
||||
return t_shape, ()
|
||||
return (), ()
|
||||
|
||||
def infer_dtype(self, x_dtype, t_dtype, w_dtype):
|
||||
valid_dtypes = (mstype.float16, mstype.float32)
|
||||
validator.check_tensor_dtype_valid("x_dtype", x_dtype, valid_dtypes, self.name)
|
||||
validator.check_tensor_dtype_valid("t_dtype", t_dtype, mstype.int32, self.name)
|
||||
validator.check_tensor_dtype_valid("w_dtype", w_dtype, valid_dtypes, self.name)
|
||||
return x_dtype, w_dtype
|
||||
|
||||
|
||||
class SoftmaxCrossEntropyWithLogits(PrimitiveWithInfer):
|
||||
r"""
|
||||
Gets the softmax cross-entropy value between logits and labels with one-hot encoding.
|
||||
|
|
|
@ -242,6 +242,18 @@ class BatchNorm3d(nn.Cell):
|
|||
return bn3d_out
|
||||
|
||||
|
||||
class NLLLoss(nn.Cell):
|
||||
"""NLLLoss net definition"""
|
||||
|
||||
def __init__(self, reduction):
|
||||
super(NLLLoss, self).__init__()
|
||||
self.nll_loss = P.NLLLoss(reduction=reduction)
|
||||
|
||||
def construct(self, input_x, target, weight):
|
||||
loss = self.nll_loss(input_x, target, weight)
|
||||
return loss
|
||||
|
||||
|
||||
class ClipByNorm(nn.Cell):
|
||||
"""ClipByNorm net definition"""
|
||||
|
||||
|
@ -1253,6 +1265,12 @@ test_case_math_ops = [
|
|||
'block': Moments(axis=(), keep_dims=False),
|
||||
'desc_inputs': [Tensor(np.random.rand(3, 16, 5, 4).astype(np.float32))],
|
||||
'skip': ['backward']}),
|
||||
('NLLLoss', {
|
||||
'block': NLLLoss(reduction="mean"),
|
||||
'desc_inputs': [Tensor(np.random.rand(3, 16), mstype.float32),
|
||||
Tensor(np.random.rand(3), mstype.int32),
|
||||
Tensor(np.random.rand(16), mstype.float32)],
|
||||
'desc_bprop': [(Tensor(np.random.rand(1), mstype.float32), Tensor(np.random.rand(1), mstype.float32))]}),
|
||||
('BatchNorm3d', {
|
||||
'block': BatchNorm3d(num_features=3),
|
||||
'desc_inputs': [Tensor(np.random.rand(3, 3, 3, 5, 4).astype(np.float32))],
|
||||
|
|
Loading…
Reference in New Issue