!34582 Add tensor&functional interface for TensorScatterMin ops.

Merge pull request !34582 from liangzelang/tensor_scatter_min
This commit is contained in:
i-robot 2022-05-30 07:42:46 +00:00 committed by Gitee
commit 2734f2cca9
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
12 changed files with 157 additions and 48 deletions

View File

@ -299,6 +299,7 @@ Array操作
mindspore.ops.size
mindspore.ops.space_to_batch_nd
mindspore.ops.tensor_scatter_add
mindspore.ops.tensor_scatter_min
mindspore.ops.tensor_scatter_div
mindspore.ops.tensor_scatter_mul
mindspore.ops.tensor_scatter_sub

View File

@ -1191,6 +1191,29 @@ mindspore.Tensor
- **TypeError** - `indices` 的数据类型既不是int32也不是int64。
- **ValueError** - Tensor的shape长度小于 `indices` 的shape的最后一个维度。
.. py:method:: tensor_scatter_min(indices, updates)
根据指定的更新值和输入索引通过最小值运算将结果赋值到输出Tensor中。
索引的最后一个轴是每个索引向量的深度。对于每个索引向量, `updates` 中必须有相应的值。 `updates` 的shape应该等于`input_x[indices]`的shape。有关更多详细信息请参见下方样例。
.. note::
如果 `indices` 的某些值超出范围,则相应的 `updates` 不会更新到 `input_x` ,而不是抛出索引错误。
**参数:**
- **indices** (Tensor) - Tensor的索引数据类型为int32或int64的。其rank必须至少为2。
- **updates** (Tensor) - 指定与本Tensor相减操作的Tensor其数据类型与该Tensor相同。updates.shape应等于indices.shape[:-1] + self.shape[indices.shape[-1]:]。
**返回:**
Tensorshape和数据类型与原Tensor相同。
**异常:**
- **TypeError** - `indices` 的数据类型既不是int32也不是int64。
- **ValueError** - Tensor的shape长度小于 `indices` 的shape的最后一个维度。
.. py:method:: tensor_scatter_div(indices, updates)
根据指定的索引, 通过除法进行计算, 将输出赋值到输出Tensor中。

View File

@ -3,25 +3,6 @@
.. py:class:: mindspore.ops.TensorScatterMin
根据指定的更新值和输入索引,通过最小值运算更新输入Tensor的值
根据指定的更新值和输入索引,通过最小值运算将结果赋值到输出Tensor中
索引的最后一个轴是每个索引向量的深度。对于每个索引向量, `updates` 中必须有相应的值。 `updates` 的shape应该等于input_x[indices]的shape。
有关更多详细信息,请参见使用用例。
.. note::
如果 `indices` 的某些值超出范围,则相应的 `updates` 不会更新为 `input_x` ,而不是抛出索引错误。
**输入:**
- **input_x** (Tensor) - 输入Tensor。 `input_x` 的维度必须不小于indices.shape[-1]。
- **indices** (Tensor) - 输入Tensor的索引数据类型为int32或int64。其rank必须至少为2。
- **updates** (Tensor) - 指定与 `input_x` 取最小值操作的Tensor其数据类型与输入相同。updates.shape应该等于indices.shape[:-1] + input_x.shape[indices.shape[-1]:]。
**输出:**
Tensorshape和数据类型与输入 `input_x` 相同。
**异常:**
- **TypeError** - `indices` 的数据类型既不是int32也不是int64。
- **ValueError** - `input_x` 的shape长度小于 `indices` 的shape的最后一个维度。
更多参考详见 func:`mindspore.ops.tensor_scatter_min`

View File

@ -0,0 +1,26 @@
mindspore.ops.tensor_scatter_min
===============================
.. py:function:: mindspore.ops.tensor_scatter_min(input_x, indices, updates)
根据指定的更新值和输入索引通过最小值运算将结果赋值到输出Tensor中。
索引的最后一个轴是每个索引向量的深度。对于每个索引向量, `updates` 中必须有相应的值。 `updates` 的shape应该等于`input_x[indices]`的shape。有关更多详细信息请参见下方样例。
.. note::
如果 `indices` 的某些值超出范围,则相应的 `updates` 不会更新为 `input_x` ,而不是抛出索引错误。
**参数:**
- **input_x** (Tensor) - 输入Tensor。 `input_x` 的维度必须不小于indices.shape[-1]。
- **indices** (Tensor) - 输入Tensor的索引数据类型为int32或int64。其rank必须至少为2。
- **updates** (Tensor) - 指定与 `input_x` 取最小值操作的Tensor其数据类型与输入相同。updates.shape应该等于indices.shape[:-1] + input_x.shape[indices.shape[-1]:]。
**返回:**
Tensorshape和数据类型与输入 `input_x` 相同。
**异常:**
- **TypeError** - `indices` 的数据类型既不是int32也不是int64。
- **ValueError** - `input_x` 的shape长度小于 `indices` 的shape的最后一个维度。

View File

@ -298,6 +298,7 @@ Array Operation
mindspore.ops.size
mindspore.ops.space_to_batch_nd
mindspore.ops.tensor_scatter_add
mindspore.ops.tensor_scatter_min
mindspore.ops.tensor_scatter_div
mindspore.ops.tensor_scatter_mul
mindspore.ops.tensor_scatter_sub

View File

@ -229,6 +229,7 @@ BuiltInTypeMap &GetMethodMap() {
{"tensor_scatter_add", std::string("tensor_scatter_add")}, // P.TensorScatterAdd()
{"tensor_scatter_mul", std::string("tensor_scatter_mul")}, // tensor_scatter_mul()
{"tensor_scatter_sub", std::string("tensor_scatter_sub")}, // P.TensorScatterSub()
{"tensor_scatter_min", std::string("tensor_scatter_min")}, // P.TensorScatterMin()
{"tensor_scatter_div", std::string("tensor_scatter_div")}, // P.TensorScatterDiv()
{"lp_norm", std::string("lp_norm")}, // lp_norm()
{"trace", std::string("trace")}, // P.Eye()

View File

@ -1839,6 +1839,14 @@ def tensor_sactter_div(input_x, indices, updates):
return F.tensor_scatter_div(input_x, indices, updates)
def tensor_scatter_min(x, indices, updates):
"""
By comparing the value at the position indicated by `indices` in `x` with the value in the `updates`,
the value at the index will eventually be equal to the smallest one to create a new tensor.
"""
return F.tensor_scatter_min(x, indices, updates)
def nonzero(x):
"""
Return a tensor of the positions of all non-zero values.

View File

@ -2171,6 +2171,49 @@ class Tensor(Tensor_):
self._init_check()
return tensor_operator_registry.get('tensor_scatter_sub')()(self, indices, updates)
def tensor_scatter_min(self, indices, updates):
"""
By comparing the value at the position indicated by `indices` in self tensor with the value in the `updates`,
the value at the index will eventually be equal to the smallest one to create a new tensor.
The last axis of the index is the depth of each index vector. For each index vector,
there must be a corresponding value in `updates`. The shape of `updates` should be
equal to the shape of `input_x[indices]`. For more details, see case below.
Note:
If some values of the `indices` are out of range, instead of raising an index error,
the corresponding `updates` will not be updated to `input_x`.
Args:
indices (Tensor): The index of input tensor whose data type is int32 or int64.
The rank must be at least 2.
updates (Tensor): The tensor to update the input tensor, has the same type as input,
and updates.shape should be equal to indices.shape[:-1] + input_x.shape[indices.shape[-1]:].
Returns:
Tensor, has the same shape and type as `input_x`.
Raises:
TypeError: If dtype of `indices` is neither int32 nor int64.
ValueError: If length of shape of `input_x` is less than the last dimension of shape of `indices`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype('float32'))
>>> indices = Tensor(np.array([[0, 0], [0, 0]]).astype('int32'))
>>> updates = Tensor(np.array([1.0, 2.2]).astype('float32'))
>>> output = x.tensor_scatter_min(indices, updates)
>>> print(output)
[[ -0.1 0.3 3.6]
[ 0.4 0.5 -3.2]]
"""
self._init_check()
return tensor_operator_registry.get('tensor_scatter_min')()(self, indices, updates)
def fill(self, value):
"""
Fill the tensor with a scalar value.

View File

@ -67,6 +67,7 @@ from .array_func import (
tensor_scatter_mul,
unique_consecutive,
tensor_scatter_div,
tensor_scatter_min,
scatter_max,
scatter_min,
scatter_div,

View File

@ -52,6 +52,7 @@ tensor_scatter_add_ = P.TensorScatterAdd()
tensor_scatter_sub_ = P.TensorScatterSub()
tensor_scatter_mul_ = P.TensorScatterMul()
tensor_scatter_div_ = P.TensorScatterDiv()
tensor_scatter_min_ = P.TensorScatterMin()
scalar_to_array_ = P.ScalarToArray()
scalar_to_tensor_ = P.ScalarToTensor()
tuple_to_array_ = P.TupleToArray()
@ -1869,6 +1870,49 @@ def tensor_scatter_sub(input_x, indices, updates):
return tensor_scatter_sub_(input_x, indices, updates)
def tensor_scatter_min(input_x, indices, updates):
"""
By comparing the value at the position indicated by `indices` in `input_x` with the value in the `updates`,
the value at the index will eventually be equal to the smallest one to create a new tensor.
The last axis of the index is the depth of each index vector. For each index vector,
there must be a corresponding value in `updates`. The shape of `updates` should be
equal to the shape of `input_x[indices]`. For more details, see case below.
Note:
If some values of the `indices` are out of range, instead of raising an index error,
the corresponding `updates` will not be hw to `input_x`.
Args:
indices (Tensor): The index of input tensor whose data type is int32 or int64.
The rank must be at least 2.
updates (Tensor): The tensor to update the input tensor, has the same type as input,
and updates.shape should be equal to indices.shape[:-1] + input_x.shape[indices.shape[-1]:].
Returns:
Tensor, has the same shape and type as `input_x`.
Raises:
TypeError: If dtype of `indices` is neither int32 nor int64.
ValueError: If length of shape of `input_x` is less than the last dimension of shape of `indices`.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype('float32'))
>>> indices = Tensor(np.array([[0, 0], [0, 0]]).astype('int32'))
>>> updates = Tensor(np.array([1.0, 2.2]).astype('float32'))
>>> output = x.tensor_scatter_min(indices, updates)
>>> print(output)
[[ -0.1 0.3 3.6]
[ 0.4 0.5 -3.2]]
"""
return tensor_scatter_min_(input_x, indices, updates)
def space_to_batch_nd(input_x, block_size, paddings):
r"""
Divides a tensor's spatial dimensions into blocks and combines the block sizes with the original batch.
@ -2576,14 +2620,15 @@ __all__ = [
'scatter_nd_min',
'tensor_scatter_add',
'tensor_scatter_sub',
'tensor_scatter_mul',
'tensor_scatter_div',
'tensor_scatter_min',
'gather',
'gather_d',
'gather_nd',
'one_hot',
'masked_fill',
'masked_select',
'tensor_scatter_mul',
'tensor_scatter_div',
'scatter_max',
'scatter_min',
'scatter_div',

View File

@ -70,7 +70,6 @@ scatter_nd_mul = P.ScatterNdMul()
scatter_nd_max = P.ScatterNdMax()
scatter_update = P.ScatterUpdate()
tensor_scatter_update = P.TensorScatterUpdate()
tensor_scatter_min = P.TensorScatterMin()
tensor_scatter_max = P.TensorScatterMax()
scatter_nd_update = P.ScatterNdUpdate()
stack = P.Stack()
@ -965,6 +964,7 @@ tensor_operator_registry.register('zeros', zeros)
tensor_operator_registry.register('tensor_scatter_update', tensor_scatter_update)
tensor_operator_registry.register('tensor_scatter_mul', tensor_scatter_mul)
tensor_operator_registry.register('tensor_scatter_div', tensor_scatter_div)
tensor_operator_registry.register('tensor_scatter_min', P.TensorScatterMin)
tensor_operator_registry.register('tensor_scatter_sub', P.TensorScatterSub)
tensor_operator_registry.register('tensor_scatter_add', P.TensorScatterAdd)
tensor_operator_registry.register('bernoulli', bernoulli)

View File

@ -6753,34 +6753,13 @@ class TensorScatterMax(_TensorScatterOp):
class TensorScatterMin(_TensorScatterOp):
"""
By comparing the value at the position indicated by the index in input_x with the value in the `updates`,
By comparing the value at the position indicated by `indices` in `input_x` with the value in the `updates`,
the value at the index will eventually be equal to the smallest one to create a new tensor.
The last axis of the index is the depth of each index vector. For each index vector,
there must be a corresponding value in `updates`. The shape of `updates` should be
equal to the shape of input_x[indices].
For more details, see use cases.
Note:
If some values of the `indices` are out of bound, instead of raising an index error,
the corresponding `updates` will not be updated to `input_x`.
Inputs:
- **input_x** (Tensor) - The target tensor. The dimension of input_x must be no less than indices.shape[-1].
- **indices** (Tensor) - The index of input tensor whose data type is int32 or int64.
The rank must be at least 2.
- **updates** (Tensor) - The tensor to update the input tensor, has the same type as input,
and updates.shape should be equal to indices.shape[:-1] + input_x.shape[indices.shape[-1]:].
Outputs:
Tensor, has the same shape and type as `input_x`.
Raises:
TypeError: If dtype of `indices` is neither int32 nor int64.
ValueError: If length of shape of `input_x` is less than the last dimension of shape of `indices`.
Refer to :func:`mindspore.ops.tensor_scatter_min` for more detail.
Supported Platforms:
``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)