forked from mindspore-Ecosystem/mindspore
!23792 [MS][LITE]add npu models + remove model in phone + cancel loop in script
Merge pull request !23792 from XianglongZeng/myms_new_3
This commit is contained in:
commit
24ebb966e9
|
@ -77,7 +77,7 @@ ml_video_edit_img_segment_adaptise_pb2tflite.tflite;2 0.5
|
|||
ml_video_edit_imitate_filter.onnx 200
|
||||
hdc_mobilenet_1w_class.onnx 20
|
||||
hdc_age_medium 504
|
||||
posenet_mobilenet_float_075_1_default_1.tflite 395
|
||||
posenet_mobilenet_float_075_1_default_1.tflite 14
|
||||
nasnet_mobile.tflite 1
|
||||
ml_video_edit_art_generate.onnx 0.5
|
||||
ml_video_edit_art_transfer.onnx;3 3
|
||||
|
@ -99,3 +99,152 @@ ml_motion_capture_spin-res50-poolingnoceilmode;4 1
|
|||
ml_video_edit_hair_dyeing_migrate_v2_fix.onnx;4 1.5
|
||||
ml_motion_capture_yolov3-spp-deploy_ddk_prune 1
|
||||
ml_video_edit_seg_320 0.5
|
||||
hiai_model_0909_kd_rot_ps_softmax.tflite 4
|
||||
hiai_chinese_english_recognize_model_float32.tflite 3
|
||||
hiai_bigmodel_ghost_2_1_no_normalized_no_trans_tflite.tflite 2
|
||||
hiai_bigmodel_ghost_5_1_no_normalized_no_trans_tflite.tflite 3
|
||||
hiai_cn_recognize_modify_padv2.tflite 5
|
||||
hiai_model_normalize_object_scene_ps_20200519.tflite 14
|
||||
mtk_AADB_HADB_MBV2_model_fp32.tflite 1.5
|
||||
#mtk_AADB_HADB_MBV3_model_fp32.tflite 2.5
|
||||
mtk_model_ckpt.tflite 5
|
||||
#mtk_age_gender.tflite
|
||||
#mtk_model_face_dress.tflite;1:input
|
||||
mtk_face_features_v1.tflite 8
|
||||
mnasnet_1.3_224.tflite;1:input 2
|
||||
deeplabv3_257_mv_gpu.tflite;1:sub_7 1
|
||||
multi_person_mobilenet_v1_075_float.tflite;1:sub_2 6
|
||||
ide_label_base.tflite;1:input 11
|
||||
#large precision bias error
|
||||
#ide_label_retrained.tflite;1:input_1
|
||||
#ml_ei_headpose.tflite;1:input_1
|
||||
#ml_ei_landmark.tflite;1:input_image
|
||||
mnist.tflite;1:conv2d_input 1.5
|
||||
#mobilenet.tflite;1:conv2d_input
|
||||
#resnet.tflite;1:input_1
|
||||
scan_hms_angle1.tflite;1:normalized_input_image_tensor 1.5
|
||||
scan_hms_detect.tflite;1:normalized_input_image_tensor 41
|
||||
hiai_latin_ocr.tflite;1:input_0 32
|
||||
hiai_latin_ocr_1.tflite;1:input_0 5.5
|
||||
#ml_ocr_jk.tflite;1:input_0
|
||||
#nasnet_mobile.tflite;1:input
|
||||
#nasnet_large.tflite;1:input
|
||||
#model_emotions_0727_nosoftmax.tflite;1:input
|
||||
#ml_ocr_latin.tflite;1:input_0
|
||||
hiai_PoseEstimation_Pcm.tflite;1:image 12
|
||||
#large precision bias error
|
||||
#hiai_ssd_mobilenetv2_object.tflite;1:image_tensor
|
||||
hiai_cv_focusShootOCRModel_02.tflite;1:input_0 4.5
|
||||
hiai_cv_poseEstimation.tflite;1:Image 37
|
||||
mtk_model_normalize_object_scene_ps_20200519_f16.tflite;1:input_0 3
|
||||
#mtk_age_gender_fp16.tflite;1:img
|
||||
#mtk_model_face_dress_fp16.tflite;1:img
|
||||
#mtk_AADB_HADB_MBV2_model_f16.tflite;1:input_0
|
||||
#mtk_AADB_HADB_MBV3_model_f16.tflite;1:input_0
|
||||
#mtk_model_emotions_0725_fp16.tflite;1:input
|
||||
mtk_face_features_v1_fp16.tflite;1:input 4
|
||||
#siteAI_digcom_AI_ECN.tflite;1:input_expansion
|
||||
siteAI_digcom_g2v_keras.tflite;1:conv2d_1_input 2
|
||||
#siteAI_trans_nonlinear.tflite;1:features_placeholder
|
||||
siteAI_trans_tcpclassify.tflite;1:conv2d_1_input 2.5
|
||||
#siteAI_wireless_depress_w.tflite;1:x-input
|
||||
#siteAI_wireless_restore_w.tflite;1:x-input
|
||||
#magenta_arbitrary-image-stylization-v1-256_fp16_prediction_1.tflite;1:style_image
|
||||
#ml_object_detect.tflite;1:input/input_data
|
||||
#ml_object_detect_1.tflite;1:input/input_data
|
||||
hiai_cpu_face_emotion.tflite;1:input_0 1.5
|
||||
#hiai_cpu_face_gazing.tflite;1:input_0
|
||||
hiai_cpu_face_headpose.tflite;1:input_0 1.5
|
||||
hiai_humanDetection.tflite;1:normalized_input_image_tensor 150
|
||||
hiai_cv_focusShootOCRModel_08.tflite;1:input 4
|
||||
#ml_face_openclose.tflite;1:input
|
||||
hiai_face_model_npu.tflite;1:input_0 3
|
||||
hiai_ctpn_feature_map.tflite;1:input_image 2
|
||||
hiai_cv_labelDetectorModel_v2.tflite;1:input_0 10
|
||||
hiai_cv_labelDetectorModel_v4.tflite;1:input_0 1
|
||||
hiai_dress_detect.tflite;1:data 1
|
||||
#hiai_cv_saliencyDetectorModel.tflite;1:image_tensor
|
||||
hiai_frozen_inference_graph.tflite;1:image_tensor 2.5
|
||||
#hiai_ghostnet.tflite;1:input
|
||||
#hiai_iMaxDN_RGB.tflite;1:input
|
||||
#hiai_iMaxSR_RGB.tflite;1:input
|
||||
hiai_label_and_video.tflite;1:input_0 4.5
|
||||
#hiai_lm_inference_graph.tflite;1:image_tensor
|
||||
mnasnet_0.50_224_1_metadata_1.tflite;1:input 3.5
|
||||
mnasnet_0.75_224_1_metadata_1.tflite;1:input 3
|
||||
mnasnet_1.0_128_1_metadata_1.tflite;1:input 2.5
|
||||
mnasnet_1.0_160_1_metadata_1.tflite;1:input 2
|
||||
mnasnet_1.0_192_1_metadata_1.tflite;1:input 2
|
||||
mnasnet_1.0_224_1_metadata_1.tflite;1:input 1.5
|
||||
mnasnet_1.0_96_1_metadata_1.tflite;1:input 1.5
|
||||
#lite-model_on_device_vision_classifier_popular_us_products_V1_1.tflite;1:uint8_image_input
|
||||
#lite-model_on_device_vision_classifier_popular_wine_V1_1.tflite;1:uint8_image_input
|
||||
#lite-model_deeplabv3-mobilenetv2_dm05-float16_1_default_1.tflite;1:sub_7
|
||||
#lite-model_deeplabv3-mobilenetv2-float16_1_default_1.tflite;1:sub_7
|
||||
lite-model_east-text-detector_fp16_1.tflite;1:input_images 460
|
||||
#lite-model_cartoongan_fp16_1.tflite;1:input_photo
|
||||
lite-model_arbitrary-image-stylization-inceptionv3_fp16_predict_1.tflite;1:style_image 1
|
||||
#gts_detect_5k_tf115.tflite;1:normalized_input_image_tensor
|
||||
#mtk_isface.tflite;1:data
|
||||
#mtk_landmark.tflite;1:img
|
||||
#mtk_new_detect.tflite;1:input
|
||||
#mtk_pose.tflite;1:input
|
||||
#mtk_model_emotions_0727_nosoftmax.tflite;1:input
|
||||
mtk_model_normalize_object_scene_ps_20200826_f32_no_softmax.tflite;1:input_0 32
|
||||
mtk_276landmark_0913.tflite;1:input 4
|
||||
#mtk_face_recognition.tflite;1:input
|
||||
#mtk_convert_model.tflite;1:data
|
||||
#smartreply.tflite;1:input_sentence
|
||||
mindspore_text_classification_tflite.tflite;1:base_input 3
|
||||
# ml_location.tflite
|
||||
#ml_text_correction.tflite;1:hed_input
|
||||
#ml_pic_shopping.tflite;1:images
|
||||
#ml_vision_guide_detection3_pb2tflite.tflite;1:input/input_data
|
||||
#ml_vision_guide_detection1_pb2tflite.tflite;1:input/input_data
|
||||
#ml_pic_shopping_pb2tflite.tflite;1:images
|
||||
#ml_ocr_jk_pb2tflite.tflite;1:input_0
|
||||
#ml_ocr_latin_pb2tflite.tflite;1:input_0
|
||||
scan_hms_angle_pb2tflite.tflite;1:normalized_input_image_tensor 2.5
|
||||
scan_hms_detect_pb2tflite.tflite;1:normalized_input_image_tensor 110
|
||||
#ml_location.tflite;1:inputs
|
||||
#ml_face_openclose_tflite.tflite;1:input
|
||||
#ml_object_detect_pb2tflite.tflite;1:input/input_data
|
||||
Q_AADB_HADB_MBV2_model.tflite;1:input_0 2.5
|
||||
#Q_convert.tflite;1:input
|
||||
#Q_crnn_ori_75w_slim_norm_pb2tflite.tflite;1:input_0
|
||||
#Q_crnn_ori_v2_405001_notrans_nopre_pb2tflite.tflite;1:input_0
|
||||
#Q_crnn_screen_slim400w_more_20w_pb2tflite.tflite;1:input_0
|
||||
Q_dila-small-mix-full-fineturn-390000-nopixel-nosigmoid_tflite.tflite;1:input 2
|
||||
Q_focusocr_cn_recog.tflite;1:input_0 6
|
||||
Q_focusocr_jk_recog.tflite;1:input_0 4.5
|
||||
Q_inception-249970-672-11-16_pb2tflite.tflite;1:input 3
|
||||
#Q_isface.tflite;1:data
|
||||
#Q_landmark.tflite;1:img
|
||||
Q_language_model_hrmini_Q4_b4_17w.tflite;1:input_0 51
|
||||
#Q_new_detect.tflite;1:input
|
||||
Q_object_scene.tflite;1:input_0 2.5
|
||||
Q_pose.tflite;1:input 1
|
||||
#ml_ei_landmark_pb2tflite.tflite;1:input_image
|
||||
unet_mbv2_05_104pts.tflite;1:input 4.5
|
||||
hiai_AADB_HADB_MBV2_model_f16.tflite;1:input_0 1
|
||||
hiai_AADB_HADB_MBV2_model_fp32.tflite;1:input_0 2.5
|
||||
#hiai_detect_curve_model_float32.tflite;1:input
|
||||
hiai_detectmodel_06_23_960_480_1180700.tflite;1:input 2.5
|
||||
hiai_detectmodel_desnet_256_128_64_32.tflite;1:input 13
|
||||
lite-model_aiy_vision_classifier_food_V1_1.tflite;1:input 15
|
||||
lite-model_disease-classification_1.tflite;1:mobilenetv2_1_00_224_input 30
|
||||
#lite-model_models_mushroom-identification_v1_1.tflite;1:input
|
||||
#smartreply_1_default_1.tflite;1:input_sentence
|
||||
#text_classification.tflite;1:embedding_input
|
||||
#Q_detect_fpn_add_inception-1448650.tflite;1:input
|
||||
Q_hand_0812_pb2tflite.tflite;1:input 8
|
||||
#bloom_landmark.tflite;1:img
|
||||
Q888_age_gender_orderd.tflite;1:input 5.5
|
||||
#Q888_face_dress_mv3y.tflite;1:input
|
||||
Q888_HADB_AADB_MBV2_model_fp32.tflite;1:input_0 1
|
||||
#Q888_landmark.tflite;1:img
|
||||
Q888_pose.tflite;1:input 1.5
|
||||
Q888_lapa158_unet_0924.tflite;1:input 4.5
|
||||
#Q888_isface.tflite;1:data
|
||||
#Q888_new_detect.tflite;1:input
|
||||
Q888_model_normalize_object_scene_ps_20200826_f32_no_softmax.tflite;1:input_0 1.5
|
||||
|
|
|
@ -102,7 +102,7 @@ gender_resnet34_lzl.onnx;1:input.1
|
|||
tiny-yolov3-11.onnx;2:input_1,image_shape;1,224,224,3:1,2 3
|
||||
# cur acc for ml_video_edit_art_transfer is 2+%
|
||||
ml_video_edit_art_transfer.onnx;3:input,sMatrix,sMean
|
||||
ssd-10.onnx;1:image;;;calib_only
|
||||
ssd-10.onnx;1:image
|
||||
Q888_CV_face_recognition_self.onnx;1:input
|
||||
ml_video_edit_dimming_tech_model_styleGan.onnx;2:0,lightFeature
|
||||
ml_video_edit_hair_dyeing_migrate_v2_fix.onnx;4
|
||||
|
|
|
@ -92,12 +92,12 @@ tacotron_encoder_stf.pb;5:phones,tones,seg_tags,prosodies,input_length;1,62:1,62
|
|||
female_model_step2_int16_noiseout.pb;66:cur_mel,noise_next,big_mel_c,upsample_net_conv_in_stack,upsample_net_layers_1_stack,upsample_net_layers_2_stack,upsample_net_layers_3_stack,conv_layers_0_stack,conv_layers_1_stack,conv_layers_2_stack,conv_layers_3_stack,conv_layers_4_stack,conv_layers_5_stack,conv_layers_6_stack,conv_layers_7_stack,conv_layers_8_stack,conv_layers_9_stack,conv_layers_10_stack,conv_layers_11_stack,conv_layers_12_stack,conv_layers_13_stack,conv_layers_14_stack,conv_layers_15_stack,conv_layers_16_stack,conv_layers_17_stack,conv_layers_18_stack,conv_layers_19_stack,conv_layers_20_stack,conv_layers_21_stack,conv_layers_22_stack,conv_layers_23_stack,conv_layers_24_stack,conv_layers_25_stack,conv_layers_26_stack,conv_layers_27_stack,conv_layers_28_stack,conv_layers_29_stack,h_0_stack,h_1_stack,h_2_stack,h_3_stack,h_4_stack,h_5_stack,h_6_stack,h_7_stack,h_8_stack,h_9_stack,h_10_stack,h_11_stack,h_12_stack,h_13_stack,h_14_stack,h_15_stack,h_16_stack,h_17_stack,h_18_stack,h_19_stack,h_20_stack,h_21_stack,h_22_stack,h_23_stack,h_24_stack,h_25_stack,h_26_stack,h_27_stack,h_28_stack
|
||||
ml_female_model_step6_noiseout.pb;66:cur_mel,noise_next,big_mel_c,upsample_net_conv_in_stack,upsample_net_layers_1_stack,upsample_net_layers_2_stack,upsample_net_layers_3_stack,conv_layers_0_stack,conv_layers_1_stack,conv_layers_2_stack,conv_layers_3_stack,conv_layers_4_stack,conv_layers_5_stack,conv_layers_6_stack,conv_layers_7_stack,conv_layers_8_stack,conv_layers_9_stack,conv_layers_10_stack,conv_layers_11_stack,conv_layers_12_stack,conv_layers_13_stack,conv_layers_14_stack,conv_layers_15_stack,conv_layers_16_stack,conv_layers_17_stack,conv_layers_18_stack,conv_layers_19_stack,conv_layers_20_stack,conv_layers_21_stack,conv_layers_22_stack,conv_layers_23_stack,conv_layers_24_stack,conv_layers_25_stack,conv_layers_26_stack,conv_layers_27_stack,conv_layers_28_stack,conv_layers_29_stack,h_0_stack,h_1_stack,h_2_stack,h_3_stack,h_4_stack,h_5_stack,h_6_stack,h_7_stack,h_8_stack,h_9_stack,h_10_stack,h_11_stack,h_12_stack,h_13_stack,h_14_stack,h_15_stack,h_16_stack,h_17_stack,h_18_stack,h_19_stack,h_20_stack,h_21_stack,h_22_stack,h_23_stack,h_24_stack,h_25_stack,h_26_stack,h_27_stack,h_28_stack
|
||||
ml_male_model_step6_noiseout.pb;66:cur_mel,noise_next,big_mel_c,upsample_net_conv_in_stack,upsample_net_layers_1_stack,upsample_net_layers_2_stack,upsample_net_layers_3_stack,conv_layers_0_stack,conv_layers_1_stack,conv_layers_2_stack,conv_layers_3_stack,conv_layers_4_stack,conv_layers_5_stack,conv_layers_6_stack,conv_layers_7_stack,conv_layers_8_stack,conv_layers_9_stack,conv_layers_10_stack,conv_layers_11_stack,conv_layers_12_stack,conv_layers_13_stack,conv_layers_14_stack,conv_layers_15_stack,conv_layers_16_stack,conv_layers_17_stack,conv_layers_18_stack,conv_layers_19_stack,conv_layers_20_stack,conv_layers_21_stack,conv_layers_22_stack,conv_layers_23_stack,conv_layers_24_stack,conv_layers_25_stack,conv_layers_26_stack,conv_layers_27_stack,conv_layers_28_stack,conv_layers_29_stack,h_0_stack,h_1_stack,h_2_stack,h_3_stack,h_4_stack,h_5_stack,h_6_stack,h_7_stack,h_8_stack,h_9_stack,h_10_stack,h_11_stack,h_12_stack,h_13_stack,h_14_stack,h_15_stack,h_16_stack,h_17_stack,h_18_stack,h_19_stack,h_20_stack,h_21_stack,h_22_stack,h_23_stack,h_24_stack,h_25_stack,h_26_stack,h_27_stack,h_28_stack
|
||||
ml_tts_decoder_control_flow.pb;5:h_1,c_1,h_0,decoder_inputs_array,c_0
|
||||
ml_tts_decoder_control_flow.pb;5:h_1,c_1,h_0,decoder_inputs_array,c_0;;;need_loop
|
||||
ml_tts_decoder.pb;5:h_1,c_1,h_0,decoder_inputs_array,c_0
|
||||
ml_tts_encoder_control_flow.pb;4:phones,alpha,spk_id,input_length;1,22:1:1:1;;input_dependent
|
||||
ml_tts_encoder_control_flow.pb;4:phones,alpha,spk_id,input_length;1,22:1:1:1;;input_dependent+need_loop
|
||||
ml_tts_vocoder.pb;66:cur_mel,noise_next,big_mel_c,upsample_net_conv_in_stack,upsample_net_layers_1_stack,upsample_net_layers_2_stack,upsample_net_layers_3_stack,conv_layers_0_stack,conv_layers_1_stack,conv_layers_2_stack,conv_layers_3_stack,conv_layers_4_stack,conv_layers_5_stack,conv_layers_6_stack,conv_layers_7_stack,conv_layers_8_stack,conv_layers_9_stack,conv_layers_10_stack,conv_layers_11_stack,conv_layers_12_stack,conv_layers_13_stack,conv_layers_14_stack,conv_layers_15_stack,conv_layers_16_stack,conv_layers_17_stack,conv_layers_18_stack,conv_layers_19_stack,conv_layers_20_stack,conv_layers_21_stack,conv_layers_22_stack,conv_layers_23_stack,conv_layers_24_stack,conv_layers_25_stack,conv_layers_26_stack,conv_layers_27_stack,conv_layers_28_stack,conv_layers_29_stack,h_0_stack,h_1_stack,h_2_stack,h_3_stack,h_4_stack,h_5_stack,h_6_stack,h_7_stack,h_8_stack,h_9_stack,h_10_stack,h_11_stack,h_12_stack,h_13_stack,h_14_stack,h_15_stack,h_16_stack,h_17_stack,h_18_stack,h_19_stack,h_20_stack,h_21_stack,h_22_stack,h_23_stack,h_24_stack,h_25_stack,h_26_stack,h_27_stack,h_28_stack
|
||||
hiai_nlu_model.pb;3:input_ids,input_mask,segment_ids;1,16:1,16:1,16
|
||||
gts_object_detect_Ics.pb;1:image;420,630,3;;input_dependent
|
||||
gts_object_detect_Ics.pb;1:image;420,630,3;;input_dependent+need_loop
|
||||
hiai_transformer_encoder.pb;15:buffer_in_0,buffer_in_1,buffer_in_2,buffer_in_3,buffer_in_4,buffer_in_5,buffer_in_6,buffer_in_7,buffer_in_8,buffer_in_9,buffer_in_10,buffer_in_11,buffer_in_12,buffer_in_13,encoder_in_deploy
|
||||
decoder_step_nocumsum_v5.pb;13:h_1,h_2,c_2,c_1,c_0,dec_lr_inputs,dec_lr_posmat,dec_ref_frames,time_step,dec_lr_sigma,h_0,previous_output,dec_lr_dend;1,512:1,512:1,512:1,512:1,512:1,127,320:1,1429,2:1,127:1:1,127:1,512:1,80:1,127
|
||||
ml_audio_kit_encoder_v5.pb;6:input_length,seg_tags,prosodies,phones,alpha,tones;1:1,32:1,32:1,32:1:1,32
|
||||
|
|
|
@ -80,8 +80,8 @@ ml_video_edit_oneclick_adaptis.pb;3 6
|
|||
#encoder_0111.pb;4;1:1,44:1:1
|
||||
ml_female_model_step6_noiseout.pb;66 2
|
||||
ml_male_model_step6_noiseout.pb;66 2.5
|
||||
ml_tts_encoder_control_flow.pb;4;1,22:1:1:1 1.5
|
||||
ml_tts_decoder_control_flow.pb;5 1
|
||||
ml_tts_encoder_control_flow.pb;4;1,22:1:1:1;;input_dependent+need_loop 1.5
|
||||
ml_tts_decoder_control_flow.pb;5;;;need_loop 1
|
||||
ml_tts_decoder.pb;5 2.5
|
||||
ml_tts_vocoder.pb;66 53
|
||||
hiai_transformer_encoder.pb;15 4
|
||||
|
|
|
@ -151,9 +151,6 @@ function Run_Benchmark() {
|
|||
echo "Benchmarking ${model_name} $6 $7 ......"
|
||||
# adjust benchmark mode
|
||||
benchmark_mode="calib"
|
||||
if [[ $6 == "arm64" && $7 == "CPU" && ! ${cfg_file_name} =~ "fp16" ]]; then
|
||||
benchmark_mode="calib+loop"
|
||||
fi
|
||||
# adjust precision mode
|
||||
mode="fp32"
|
||||
if [[ ${cfg_file_name} =~ "fp16" ]]; then
|
||||
|
@ -164,7 +161,6 @@ function Run_Benchmark() {
|
|||
if [[ ${cfg_file_name} =~ "weightquant" ]]; then
|
||||
infix="_${cfg_file##*_}"
|
||||
infix=${infix%.*}
|
||||
benchmark_mode="calib"
|
||||
elif [[ ${cfg_file_name} =~ "_train" ]]; then
|
||||
infix="_train"
|
||||
elif [[ ${cfg_file_name} =~ "_posttraining" ]]; then
|
||||
|
@ -207,8 +203,8 @@ function Run_Benchmark() {
|
|||
if [[ ${mode} == "fp16" ]]; then
|
||||
enableFp16="true"
|
||||
fi
|
||||
if [[ ${extra_info} =~ "calib_only" ]]; then
|
||||
benchmark_mode="calib"
|
||||
if [[ $6 == "arm64" && ${extra_info} =~ "need_loop" ]]; then
|
||||
benchmark_mode="calib+loop"
|
||||
fi
|
||||
# start running benchmark
|
||||
echo "---------------------------------------------------------" >> "$4"
|
||||
|
@ -267,14 +263,14 @@ function Run_Benchmark() {
|
|||
# Print start msg before run testcase
|
||||
function MS_PRINT_TESTCASE_START_MSG() {
|
||||
echo ""
|
||||
echo -e "-----------------------------------------------------------------------------------------------------------------------------------"
|
||||
echo -e "env Testcase Result "
|
||||
echo -e "--- -------- ------ "
|
||||
echo -e "----------------------------------------------------------------------------------------------------------------------------------------"
|
||||
echo -e "env Testcase Result "
|
||||
echo -e "--- -------- ------ "
|
||||
}
|
||||
|
||||
# Print start msg after run testcase
|
||||
function MS_PRINT_TESTCASE_END_MSG() {
|
||||
echo -e "-----------------------------------------------------------------------------------------------------------------------------------"
|
||||
echo -e "----------------------------------------------------------------------------------------------------------------------------------------"
|
||||
}
|
||||
|
||||
function Print_Converter_Result() {
|
||||
|
@ -290,7 +286,7 @@ function Print_Benchmark_Result() {
|
|||
MS_PRINT_TESTCASE_START_MSG
|
||||
while read line; do
|
||||
arr=("${line}")
|
||||
printf "%-20s %-100s %-7s\n" ${arr[0]} ${arr[1]} ${arr[2]}
|
||||
printf "%-25s %-100s %-7s\n" ${arr[0]} ${arr[1]} ${arr[2]}
|
||||
done < $1
|
||||
MS_PRINT_TESTCASE_END_MSG
|
||||
}
|
|
@ -160,4 +160,5 @@ fi
|
|||
|
||||
echo "Run_arm32_fp32 and Run_armv82_a32_fp16 is ended"
|
||||
Print_Benchmark_Result $run_benchmark_result_file
|
||||
adb -s ${device_id} shell "rm -rf /data/local/tmp/benchmark_test/*"
|
||||
exit ${isFailed}
|
||||
|
|
|
@ -196,4 +196,5 @@ fi
|
|||
|
||||
echo "Run_arm64_fp32 and Run_arm64_fp16 is ended"
|
||||
Print_Benchmark_Result $run_benchmark_result_file
|
||||
adb -s ${device_id} shell "rm -rf /data/local/tmp/benchmark_test/*"
|
||||
exit ${isFailed}
|
||||
|
|
|
@ -231,4 +231,5 @@ fi
|
|||
|
||||
echo "Run_gpu and Run_cropper and mindrt_parallel is ended"
|
||||
Print_Benchmark_Result $run_benchmark_result_file
|
||||
adb -s ${device_id} shell "rm -rf /data/local/tmp/benchmark_test/*"
|
||||
exit ${isFailed}
|
||||
|
|
|
@ -138,4 +138,5 @@ fi
|
|||
|
||||
echo "Run_npu ended"
|
||||
Print_Benchmark_Result $run_benchmark_result_file
|
||||
adb -s ${device_id} shell "rm -rf /data/local/tmp/benchmark_test/*"
|
||||
exit ${isFailed}
|
||||
|
|
|
@ -121,8 +121,8 @@ function Run_x86() {
|
|||
|
||||
# Prepare the config file list
|
||||
local x86_cfg_file_list=("$models_tf_config" "$models_tflite_config" "$models_caffe_config" "$models_onnx_config" "$models_mindspore_config" \
|
||||
"$models_mindspore_train_config" "$models_posttraining_config" "$models_process_only_fp16_config" \
|
||||
"$models_tflite_awaretraining_config" "$models_weightquant_0bit_config" "$models_weightquant_8bit_config" "$models_weightquant_7bit_config" \
|
||||
"$models_mindspore_train_config" "$models_posttraining_config" "$models_tflite_awaretraining_config" \
|
||||
"$models_weightquant_0bit_config" "$models_weightquant_8bit_config" "$models_weightquant_7bit_config" \
|
||||
"$models_weightquant_9bit_config" "$models_process_only_config")
|
||||
# Run converted models:
|
||||
# $1:cfgFileList; $2:modelPath; $3:dataPath; $4:logFile; $5:resultFile; $6:platform; $7:processor; $8:phoneId;
|
||||
|
@ -139,8 +139,8 @@ function Run_x86_sse() {
|
|||
|
||||
# Prepare the config file list
|
||||
local sse_cfg_file_list=("$models_tf_config" "$models_tflite_config" "$models_caffe_config" "$models_onnx_config" "$models_mindspore_config" \
|
||||
"$models_mindspore_train_config" "$models_posttraining_config" "$models_process_only_fp16_config" \
|
||||
"$models_tflite_awaretraining_config" "$models_weightquant_0bit_config" "$models_weightquant_8bit_config" "$models_weightquant_7bit_config" \
|
||||
"$models_mindspore_train_config" "$models_posttraining_config" "$models_tflite_awaretraining_config" \
|
||||
"$models_weightquant_0bit_config" "$models_weightquant_8bit_config" "$models_weightquant_7bit_config" \
|
||||
"$models_weightquant_9bit_config" "$models_process_only_config")
|
||||
# Run converted models:
|
||||
# $1:cfgFileList; $2:modelPath; $3:dataPath; $4:logFile; $5:resultFile; $6:platform; $7:processor; $8:phoneId;
|
||||
|
@ -157,8 +157,8 @@ function Run_x86_avx() {
|
|||
|
||||
# Prepare the config file list
|
||||
local avx_cfg_file_list=("$models_tf_config" "$models_tflite_config" "$models_caffe_config" "$models_onnx_config" "$models_mindspore_config" \
|
||||
"$models_mindspore_train_config" "$models_posttraining_config" "$models_process_only_fp16_config" \
|
||||
"$models_tflite_awaretraining_config" "$models_weightquant_0bit_config" "$models_weightquant_8bit_config" "$models_weightquant_7bit_config" \
|
||||
"$models_mindspore_train_config" "$models_posttraining_config" "$models_tflite_awaretraining_config" \
|
||||
"$models_weightquant_0bit_config" "$models_weightquant_8bit_config" "$models_weightquant_7bit_config" \
|
||||
"$models_weightquant_9bit_config" "$models_process_only_config")
|
||||
# Run converted models:
|
||||
# $1:cfgFileList; $2:modelPath; $3:dataPath; $4:logFile; $5:resultFile; $6:platform; $7:processor; $8:phoneId; $9:benchmark_mode
|
||||
|
@ -251,7 +251,6 @@ models_weightquant_7bit_config=${basepath}/../config/models_weightquant_7bit.cfg
|
|||
models_weightquant_9bit_config=${basepath}/../config/models_weightquant_9bit.cfg
|
||||
models_weightquant_8bit_config=${basepath}/../config/models_weightquant_8bit.cfg
|
||||
models_process_only_config=${basepath}/../config/models_process_only.cfg
|
||||
models_process_only_fp16_config=${basepath}/../config/models_process_only_fp16.cfg
|
||||
|
||||
ms_models_path=${basepath}/ms_models
|
||||
|
||||
|
|
Loading…
Reference in New Issue