forked from mindspore-Ecosystem/mindspore
commit
23856d6117
|
@ -337,7 +337,6 @@ class _Executor:
|
|||
self.is_init = False
|
||||
self._executor = Executor_.get_instance()
|
||||
self.compile_cache = {}
|
||||
self.phase_prefix = ""
|
||||
|
||||
def init_dataset(self, queue_name, dataset_size, batch_size, dataset_types, dataset_shapes,
|
||||
input_indexs, phase='dataset'):
|
||||
|
@ -383,7 +382,12 @@ class _Executor:
|
|||
"""Build broadcast graph."""
|
||||
from mindspore.nn.wrap.cell_wrapper import _BroadCastCell
|
||||
|
||||
_broadcast_net = _BroadCastCell(broadcast_params_dict.values())
|
||||
if not broadcast_params_dict:
|
||||
broadcast_params_dict = {}
|
||||
broadcast_params = []
|
||||
for param in broadcast_params_dict.values():
|
||||
broadcast_params.append(Tensor(param.asnumpy()))
|
||||
_broadcast_net = _BroadCastCell(broadcast_params)
|
||||
_broadcast_net.phase = broadcast_phase
|
||||
broadcasted_params = _broadcast_net()
|
||||
for param_name, param in zip(broadcast_params_dict.keys(), broadcasted_params):
|
||||
|
@ -440,11 +444,11 @@ class _Executor:
|
|||
if not hasattr(obj, "inputs_to_attr"):
|
||||
dic = dict(zip(args_names, args_list))
|
||||
key = generate_key(phase, dic)
|
||||
self.phase_prefix = str(key[1])
|
||||
obj.phase_prefix = str(key[1])
|
||||
if 'export' in phase:
|
||||
phase = phase + '.' + self.phase_prefix + '.' + str(obj.create_time)
|
||||
phase = phase + '.' + obj.phase_prefix + '.' + str(obj.create_time)
|
||||
else:
|
||||
phase = self.phase_prefix + phase + '.' + str(obj.create_time)
|
||||
phase = obj.phase_prefix + phase + '.' + str(obj.create_time)
|
||||
|
||||
if phase in self.compile_cache.keys():
|
||||
logger.debug("%r graph has existed.", phase)
|
||||
|
@ -518,9 +522,8 @@ class _Executor:
|
|||
for param_name, param in obj.parameters_broadcast_dict().items():
|
||||
if param_name not in auto_split_param_names:
|
||||
broadcast_params_dict[param_name] = param
|
||||
broadcast_phase = "_broadcast_subgraph" + "." + str(obj.create_time)
|
||||
broadcast_phase = "_broadcast_subgraph"
|
||||
self._build_broadcast_graph(broadcast_params_dict, broadcast_phase)
|
||||
self.compile_cache[phase] = broadcast_phase
|
||||
|
||||
return phase, True
|
||||
|
||||
|
@ -529,15 +532,15 @@ class _Executor:
|
|||
return self._executor.updata_param_node_default_input(phase, new_param)
|
||||
|
||||
def _get_shard_strategy(self, obj):
|
||||
real_phase = self.phase_prefix + obj.phase + '.' + str(obj.create_time)
|
||||
real_phase = obj.phase_prefix + obj.phase + '.' + str(obj.create_time)
|
||||
return self._executor.get_strategy(real_phase)
|
||||
|
||||
def _get_num_parallel_ops(self, obj):
|
||||
real_phase = self.phase_prefix + obj.phase + '.' + str(obj.create_time)
|
||||
real_phase = obj.phase_prefix + obj.phase + '.' + str(obj.create_time)
|
||||
return self._executor.get_num_parallel_ops(real_phase)
|
||||
|
||||
def _get_allreduce_fusion(self, obj):
|
||||
real_phase = self.phase_prefix + obj.phase + '.' + str(obj.create_time)
|
||||
real_phase = obj.phase_prefix + obj.phase + '.' + str(obj.create_time)
|
||||
return self._executor.get_allreduce_fusion(real_phase)
|
||||
|
||||
def has_compiled(self, phase='predict'):
|
||||
|
@ -581,7 +584,7 @@ class _Executor:
|
|||
if phase == 'save':
|
||||
return self._executor((), phase + '.' + str(obj.create_time))
|
||||
|
||||
phase_real = self.phase_prefix + phase + '.' + str(obj.create_time)
|
||||
phase_real = obj.phase_prefix + phase + '.' + str(obj.create_time)
|
||||
if self.has_compiled(phase_real):
|
||||
return self._exec_pip(obj, *args, phase=phase_real)
|
||||
raise KeyError('{} graph is not exist.'.format(phase_real))
|
||||
|
@ -589,10 +592,10 @@ class _Executor:
|
|||
def del_net_res(self, net_id):
|
||||
self._executor.del_net_res(net_id)
|
||||
|
||||
def _get_func_graph_proto(self, exec_id, ir_type="onnx_ir", use_prefix=False):
|
||||
def _get_func_graph_proto(self, obj, exec_id, ir_type="onnx_ir", use_prefix=False):
|
||||
"""Get graph proto from pipeline."""
|
||||
if use_prefix:
|
||||
exec_id = self.phase_prefix + exec_id
|
||||
exec_id = obj.phase_prefix + exec_id
|
||||
if self._executor.has_compiled(exec_id) is False:
|
||||
return None
|
||||
return self._executor.get_func_graph_proto(exec_id, ir_type)
|
||||
|
|
|
@ -570,8 +570,8 @@ def set_context(**kwargs):
|
|||
>>> context.set_context(reserve_class_name_in_scope=True)
|
||||
>>> context.set_context(variable_memory_max_size="6GB")
|
||||
>>> context.set_context(mode=context.GRAPH_MODE,
|
||||
>>> device_target="Ascend",device_id=0, save_graphs=True,
|
||||
>>> save_graphs_path="/mindspore")
|
||||
... device_target="Ascend",device_id=0, save_graphs=True,
|
||||
... save_graphs_path="/mindspore")
|
||||
>>> context.set_context(enable_profiling=True, profiling_options="training_trace")
|
||||
>>> context.set_context(max_device_memory="3.5GB")
|
||||
>>> context.set_context(print_file_path="print.pb")
|
||||
|
|
|
@ -87,6 +87,7 @@ class Cell(Cell_):
|
|||
self._phase = 'train'
|
||||
self._parameter_layout_dict = {}
|
||||
self._create_time = int(time.time() * 1e9)
|
||||
self.phase_prefix = ""
|
||||
init_backend()
|
||||
|
||||
# call gc to release GE session resources used by non-used cell objects
|
||||
|
@ -237,7 +238,7 @@ class Cell(Cell_):
|
|||
|
||||
def get_func_graph_proto(self):
|
||||
"""Return graph binary proto."""
|
||||
return _executor._get_func_graph_proto(self.phase + "." + str(self.create_time), "anf_ir", True)
|
||||
return _executor._get_func_graph_proto(self, self.phase + "." + str(self.create_time), "anf_ir", True)
|
||||
|
||||
def __getattr__(self, name):
|
||||
if '_params' in self.__dict__:
|
||||
|
|
|
@ -556,7 +556,7 @@ def _export(net, file_name, file_format, *inputs):
|
|||
elif file_format == 'ONNX': # file_format is 'ONNX'
|
||||
phase_name = 'export.onnx'
|
||||
graph_id, _ = _executor.compile(net, *inputs, phase=phase_name, do_convert=False)
|
||||
onnx_stream = _executor._get_func_graph_proto(graph_id)
|
||||
onnx_stream = _executor._get_func_graph_proto(net, graph_id)
|
||||
file_name += ".onnx"
|
||||
with open(file_name, 'wb') as f:
|
||||
os.chmod(file_name, stat.S_IWUSR | stat.S_IRUSR)
|
||||
|
@ -564,7 +564,7 @@ def _export(net, file_name, file_format, *inputs):
|
|||
elif file_format == 'MINDIR': # file_format is 'MINDIR'
|
||||
phase_name = 'export.mindir'
|
||||
graph_id, _ = _executor.compile(net, *inputs, phase=phase_name, do_convert=False)
|
||||
onnx_stream = _executor._get_func_graph_proto(graph_id, 'mind_ir')
|
||||
onnx_stream = _executor._get_func_graph_proto(net, graph_id, 'mind_ir')
|
||||
file_name += ".mindir"
|
||||
with open(file_name, 'wb') as f:
|
||||
os.chmod(file_name, stat.S_IWUSR | stat.S_IRUSR)
|
||||
|
|
|
@ -0,0 +1,22 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
LOCAL_HIAI=/usr/local/HiAI
|
||||
export TBE_IMPL_PATH=${LOCAL_HIAI}/runtime/ops/op_impl/built-in/ai_core/tbe/impl/
|
||||
export LD_LIBRARY_PATH=${LOCAL_HIAI}/runtime/lib64/:${LD_LIBRARY_PATH}
|
||||
export PATH=${LOCAL_HIAI}/runtime/ccec_compiler/bin/:${PATH}
|
||||
export PYTHONPATH=${LOCAL_HIAI}/runtime/ops/op_impl/built-in/ai_core/tbe/:${PYTHONPATH}
|
||||
export DEVICE_MEMORY_CAPACITY=1073741824000
|
||||
export NOT_FULLY_USE_DEVICES=off
|
|
@ -0,0 +1,61 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore.communication.management as distributedTool
|
||||
import mindspore.nn as nn
|
||||
from mindspore import context
|
||||
from mindspore.nn.metrics import Accuracy
|
||||
from mindspore.train import Model
|
||||
from mindspore.train.callback import LossMonitor, TimeMonitor
|
||||
from model_zoo.official.cv.lenet.src.dataset import create_dataset
|
||||
from model_zoo.official.cv.lenet.src.lenet import LeNet5
|
||||
|
||||
np.set_printoptions(threshold=np.inf)
|
||||
device_num = 2
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
rank_id = 0
|
||||
|
||||
|
||||
def setup_module():
|
||||
global device_num
|
||||
global rank_id
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
context.set_context(device_id=device_id)
|
||||
distributedTool.init()
|
||||
rank_id = distributedTool.get_rank()
|
||||
device_num = distributedTool.get_group_size()
|
||||
context.set_auto_parallel_context(device_num=device_num, global_rank=device_id, parameter_broadcast=True)
|
||||
|
||||
|
||||
def teardown_module():
|
||||
distributedTool.release()
|
||||
|
||||
|
||||
def test_all_trains():
|
||||
ds_train = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "train"), 32, 1)
|
||||
|
||||
network = LeNet5(10)
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
|
||||
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
|
||||
|
||||
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
||||
|
||||
print("============== Starting Training ==============")
|
||||
model.train(1, ds_train, callbacks=[time_cb, LossMonitor()])
|
|
@ -0,0 +1,53 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
set -e
|
||||
BASE_PATH=$(
|
||||
cd "$(dirname $0)"
|
||||
pwd
|
||||
)
|
||||
CONFIG_PATH=/home/workspace/mindspore_config
|
||||
export DEVICE_NUM=8
|
||||
export RANK_SIZE=$DEVICE_NUM
|
||||
source ${BASE_PATH}/env.sh
|
||||
unset SLOG_PRINT_TO_STDOUT
|
||||
export MINDSPORE_HCCL_CONFIG_PATH=$CONFIG_PATH/hccl/rank_table_${DEVICE_NUM}p.json
|
||||
|
||||
process_pid=()
|
||||
for ((i = 0; i < $DEVICE_NUM; i++)); do
|
||||
rm -rf ${BASE_PATH}/lenet_broadcast${i}
|
||||
mkdir ${BASE_PATH}/lenet_broadcast${i}
|
||||
cp -r ${BASE_PATH}/lenet_broadcast_auto_parallel.py ${BASE_PATH}/lenet_broadcast${i}/
|
||||
cd ${BASE_PATH}/lenet_broadcast${i}
|
||||
export RANK_ID=${i}
|
||||
export DEVICE_ID=${i}
|
||||
echo "start training for device $i"
|
||||
env >env$i.log
|
||||
pytest -s -v lenet_broadcast_auto_parallel.py >test_lenet_auto_parallel_broadcast_8p_log$i.log 2>&1 &
|
||||
process_pid[${i}]=$(echo $!)
|
||||
done
|
||||
|
||||
for ((i = 0; i < ${DEVICE_NUM}; i++)); do
|
||||
wait ${process_pid[i]}
|
||||
status=$(echo $?)
|
||||
if [ "${status}" != "0" ]; then
|
||||
echo "[ERROR] test_broadcast_auto_parallel failed. status: ${status}"
|
||||
exit 1
|
||||
else
|
||||
echo "[INFO] test_broadcast_auto_parallel success."
|
||||
fi
|
||||
done
|
||||
|
||||
exit 0
|
|
@ -0,0 +1,27 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import os
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_single
|
||||
def test_broadcast_auto_parallel():
|
||||
sh_path = os.path.split(os.path.realpath(__file__))[0]
|
||||
ret = os.system(f"sh {sh_path}/run_broadcast_auto_parallel.sh")
|
||||
assert ret == 0
|
Loading…
Reference in New Issue