forked from mindspore-Ecosystem/mindspore
!13290 Add a base class for Mappable source ops
From: @hfarahat Reviewed-by: Signed-off-by:
This commit is contained in:
commit
1edbbe56ba
|
@ -14,6 +14,7 @@ set(DATASET_ENGINE_DATASETOPS_SOURCE_SRC_FILES
|
|||
clue_op.cc
|
||||
csv_op.cc
|
||||
album_op.cc
|
||||
mappable_leaf_op.cc
|
||||
)
|
||||
|
||||
set(DATASET_ENGINE_DATASETOPS_SOURCE_SRC_FILES
|
||||
|
|
|
@ -72,17 +72,15 @@ Status AlbumOp::Builder::SanityCheck() {
|
|||
AlbumOp::AlbumOp(int32_t num_wkrs, int32_t rows_per_buffer, std::string file_dir, int32_t queue_size, bool do_decode,
|
||||
const std::set<std::string> &exts, std::unique_ptr<DataSchema> data_schema,
|
||||
std::shared_ptr<SamplerRT> sampler)
|
||||
: ParallelOp(num_wkrs, queue_size, std::move(sampler)),
|
||||
rows_per_buffer_(rows_per_buffer),
|
||||
: MappableLeafOp(num_wkrs, queue_size, std::move(sampler), rows_per_buffer),
|
||||
folder_path_(file_dir),
|
||||
decode_(do_decode),
|
||||
extensions_(exts),
|
||||
data_schema_(std::move(data_schema)),
|
||||
row_cnt_(0),
|
||||
buf_cnt_(0),
|
||||
sampler_ind_(0),
|
||||
dirname_offset_(0),
|
||||
sample_ids_(nullptr) {
|
||||
sample_ids_(nullptr),
|
||||
curr_row_(0) {
|
||||
// Set the column name map (base class field)
|
||||
for (int32_t i = 0; i < data_schema_->NumColumns(); ++i) {
|
||||
column_name_id_map_[data_schema_->column(i).name()] = i;
|
||||
|
@ -131,97 +129,6 @@ Status AlbumOp::PrescanEntry() {
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
// Main logic, Register Queue with TaskGroup, launch all threads and do the functor's work
|
||||
Status AlbumOp::operator()() {
|
||||
RETURN_IF_NOT_OK(this->PrescanEntry());
|
||||
RETURN_IF_NOT_OK(LaunchThreadsAndInitOp());
|
||||
std::unique_ptr<DataBuffer> sampler_buffer;
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
while (true) { // each iterator is 1 epoch
|
||||
std::vector<int64_t> keys;
|
||||
keys.reserve(rows_per_buffer_);
|
||||
while (sampler_buffer->eoe() == false) {
|
||||
TensorRow sample_row;
|
||||
RETURN_IF_NOT_OK(sampler_buffer->PopRow(&sample_row));
|
||||
TensorPtr sample_ids = sample_row[0];
|
||||
for (auto itr = sample_ids->begin<int64_t>(); itr != sample_ids->end<int64_t>(); ++itr) {
|
||||
if ((*itr) >= num_rows_) continue; // index out of bound, skipping
|
||||
keys.push_back(*itr);
|
||||
row_cnt_++;
|
||||
if (row_cnt_ % rows_per_buffer_ == 0) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[buf_cnt_++ % num_workers_]->Add(std::make_unique<IOBlock>(keys, IOBlock::kDeIoBlockNone)));
|
||||
keys.clear();
|
||||
}
|
||||
}
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
}
|
||||
if (keys.empty() == false) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(keys, IOBlock::kDeIoBlockNone)));
|
||||
}
|
||||
if (IsLastIteration()) {
|
||||
std::unique_ptr<IOBlock> eoe_block = std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe);
|
||||
std::unique_ptr<IOBlock> eof_block = std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEof);
|
||||
RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::move(eoe_block)));
|
||||
RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::move(eof_block)));
|
||||
for (int32_t i = 0; i < num_workers_; ++i) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[i]->Add(std::make_unique<IOBlock>(std::vector<int64_t>(), IOBlock::kDeIoBlockNone)));
|
||||
}
|
||||
return Status::OK();
|
||||
} else { // not the last repeat.
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe)));
|
||||
}
|
||||
|
||||
if (epoch_sync_flag_) {
|
||||
// If epoch_sync_flag_ is set, then master thread sleeps until all the worker threads have finished their job for
|
||||
// the current epoch.
|
||||
RETURN_IF_NOT_OK(WaitForWorkers());
|
||||
}
|
||||
// If not the last repeat, self-reset and go to loop again.
|
||||
if (!IsLastIteration()) {
|
||||
RETURN_IF_NOT_OK(Reset());
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
}
|
||||
UpdateRepeatAndEpochCounter();
|
||||
}
|
||||
}
|
||||
|
||||
// contains the main logic of pulling a IOBlock from IOBlockQueue, load a buffer and push the buffer to out_connector_
|
||||
// IMPORTANT: 1 IOBlock produces 1 DataBuffer
|
||||
Status AlbumOp::WorkerEntry(int32_t worker_id) {
|
||||
TaskManager::FindMe()->Post();
|
||||
int64_t buffer_id = worker_id;
|
||||
std::unique_ptr<IOBlock> io_block;
|
||||
RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block));
|
||||
while (io_block != nullptr) {
|
||||
if (io_block->wait() == true) {
|
||||
// Sync io_block is a signal that master thread wants us to pause and sync with other workers.
|
||||
// The last guy who comes to this sync point should reset the counter and wake up the master thread.
|
||||
if (++num_workers_paused_ == num_workers_) {
|
||||
wait_for_workers_post_.Set();
|
||||
}
|
||||
} else if (io_block->eoe() == true) {
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE)));
|
||||
buffer_id = worker_id;
|
||||
} else if (io_block->eof() == true) {
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF)));
|
||||
} else {
|
||||
std::vector<int64_t> keys;
|
||||
RETURN_IF_NOT_OK(io_block->GetKeys(&keys));
|
||||
if (keys.empty() == true) return Status::OK(); // empty key is a quit signal for workers
|
||||
std::unique_ptr<DataBuffer> db = std::make_unique<DataBuffer>(buffer_id, DataBuffer::kDeBFlagNone);
|
||||
RETURN_IF_NOT_OK(LoadBuffer(keys, &db));
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(db)));
|
||||
buffer_id += num_workers_;
|
||||
}
|
||||
RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block));
|
||||
}
|
||||
RETURN_STATUS_UNEXPECTED("Unexpected nullptr received in worker.");
|
||||
}
|
||||
|
||||
// Only support JPEG/PNG/GIF/BMP
|
||||
// Optimization: Could take in a tensor
|
||||
// This function does not return status because we want to just skip bad input, not crash
|
||||
|
@ -443,7 +350,8 @@ Status AlbumOp::LoadIntTensor(const nlohmann::json &json_obj, uint32_t col_num,
|
|||
// to take a reference to a column descriptor?
|
||||
// the design of this class is to make the code more readable, forgoing minor performance gain like
|
||||
// getting rid of duplicated checks
|
||||
Status AlbumOp::LoadTensorRow(row_id_type row_id, const std::string &file, TensorRow *row) {
|
||||
Status AlbumOp::LoadTensorRow(row_id_type row_id, TensorRow *row) {
|
||||
std::string file = image_rows_[row_id];
|
||||
// testing here is to just print out file path
|
||||
(*row) = TensorRow(row_id, {});
|
||||
MS_LOG(INFO) << "Image row file: " << file << ".";
|
||||
|
@ -531,19 +439,6 @@ Status AlbumOp::loadColumnData(const std::string &file, int32_t index, nlohmann:
|
|||
}
|
||||
}
|
||||
|
||||
// Looping over LoadTensorRow to make 1 DataBuffer. 1 function call produces 1 buffer
|
||||
Status AlbumOp::LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db) {
|
||||
std::unique_ptr<TensorQTable> deq = std::make_unique<TensorQTable>();
|
||||
TensorRow trow;
|
||||
|
||||
for (const int64_t &key : keys) {
|
||||
RETURN_IF_NOT_OK(this->LoadTensorRow(key, image_rows_[key], &trow));
|
||||
deq->push_back(std::move(trow));
|
||||
}
|
||||
(*db)->set_tensor_table(std::move(deq));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
void AlbumOp::Print(std::ostream &out, bool show_all) const {
|
||||
// Always show the id and name as first line regardless if this summary or detailed print
|
||||
out << "(" << std::setw(2) << operator_id_ << ") <AlbumOp>:";
|
||||
|
@ -561,24 +456,12 @@ void AlbumOp::Print(std::ostream &out, bool show_all) const {
|
|||
}
|
||||
}
|
||||
|
||||
// Reset Sampler and wakeup Master thread (functor)
|
||||
Status AlbumOp::Reset() {
|
||||
MS_LOG(DEBUG) << Name() << " performing a self-reset.";
|
||||
RETURN_IF_NOT_OK(sampler_->ResetSampler());
|
||||
row_cnt_ = 0;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// hand shake with Sampler, allow Sampler to call RandomAccessOp's functions to get NumRows
|
||||
Status AlbumOp::InitSampler() {
|
||||
RETURN_IF_NOT_OK(sampler_->HandshakeRandomAccessOp(this));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AlbumOp::LaunchThreadsAndInitOp() {
|
||||
if (tree_ == nullptr) {
|
||||
return Status(StatusCode::kMDUnexpectedError, __LINE__, __FILE__, "Pipeline init failed, Execution tree not set.");
|
||||
}
|
||||
RETURN_IF_NOT_OK(this->PrescanEntry());
|
||||
|
||||
// registers QueueList and individual Queues for interrupt services
|
||||
RETURN_IF_NOT_OK(io_block_queues_.Register(tree_->AllTasks()));
|
||||
RETURN_IF_NOT_OK(wait_for_workers_post_.Register(tree_->AllTasks()));
|
||||
|
@ -612,13 +495,13 @@ Status AlbumOp::GetNextRow(TensorRow *row) {
|
|||
RETURN_IF_NOT_OK(sample_buffer->PopRow(&sample_row));
|
||||
sample_ids_ = sample_row[0];
|
||||
}
|
||||
if (row_cnt_ + 1 > sample_ids_->Size()) {
|
||||
if (curr_row_ + 1 > sample_ids_->Size()) {
|
||||
return Status::OK();
|
||||
}
|
||||
int64_t key;
|
||||
sample_ids_->GetItemAt(&key, {row_cnt_});
|
||||
RETURN_IF_NOT_OK(LoadTensorRow(key, image_rows_[key], row));
|
||||
row_cnt_++;
|
||||
RETURN_IF_NOT_OK(sample_ids_->GetItemAt(&key, {curr_row_}));
|
||||
RETURN_IF_NOT_OK(LoadTensorRow(key, row));
|
||||
curr_row_++;
|
||||
return Status::OK();
|
||||
}
|
||||
} // namespace dataset
|
||||
|
|
|
@ -30,6 +30,7 @@
|
|||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/parallel_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
|
||||
#include "minddata/dataset/util/path.h"
|
||||
#include "minddata/dataset/util/queue.h"
|
||||
|
@ -47,7 +48,7 @@ class Queue;
|
|||
using FolderImages = std::shared_ptr<std::pair<std::string, std::queue<std::string>>>;
|
||||
|
||||
/// \class AlbumOp album_op.h
|
||||
class AlbumOp : public ParallelOp, public RandomAccessOp {
|
||||
class AlbumOp : public MappableLeafOp {
|
||||
public:
|
||||
class Builder {
|
||||
public:
|
||||
|
@ -171,17 +172,6 @@ class AlbumOp : public ParallelOp, public RandomAccessOp {
|
|||
/// \return Status The status code returned
|
||||
Status PrescanEntry();
|
||||
|
||||
/// \brief Worker thread pulls a number of IOBlock from IOBlock Queue, make a buffer and push it to Connector
|
||||
/// \param[in] int32_t workerId - id of each worker
|
||||
/// \return Status The status code returned
|
||||
Status WorkerEntry(int32_t worker_id) override;
|
||||
|
||||
/// \brief Main Loop of AlbumOp
|
||||
/// Master thread: Fill IOBlockQueue, then goes to sleep
|
||||
/// Worker thread: pulls IOBlock from IOBlockQueue, work on it then put buffer to mOutConnector
|
||||
/// \return Status The status code returned
|
||||
Status operator()() override;
|
||||
|
||||
/// \brief A print method typically used for debugging
|
||||
/// \param[in] out
|
||||
/// \param[in] show_all
|
||||
|
@ -197,10 +187,6 @@ class AlbumOp : public ParallelOp, public RandomAccessOp {
|
|||
std::string Name() const override { return "AlbumOp"; }
|
||||
|
||||
private:
|
||||
/// \brief Initialize Sampler, calls sampler->Init() within
|
||||
/// \return Status The status code returned
|
||||
Status InitSampler();
|
||||
|
||||
/// \brief Load image to tensor row
|
||||
/// \param[in] image_file Image name of file
|
||||
/// \param[in] col_num Column num in schema
|
||||
|
@ -265,10 +251,9 @@ class AlbumOp : public ParallelOp, public RandomAccessOp {
|
|||
|
||||
/// \brief Load a tensor row according to a json file
|
||||
/// \param[in] row_id_type row_id - id for this tensor row
|
||||
/// \param[in] ImageColumns file Json file location
|
||||
/// \param[in, out] TensorRow row Json content stored into a tensor row
|
||||
/// \return Status The status code returned
|
||||
Status LoadTensorRow(row_id_type row_id, const std::string &file, TensorRow *row);
|
||||
Status LoadTensorRow(row_id_type row_id, TensorRow *row) override;
|
||||
|
||||
/// \brief Load a tensor column according to a json file
|
||||
/// \param[in] ImageColumns file Json file location
|
||||
|
@ -278,23 +263,14 @@ class AlbumOp : public ParallelOp, public RandomAccessOp {
|
|||
/// \return Status The status code returned
|
||||
Status loadColumnData(const std::string &file, int32_t index, nlohmann::json js, TensorRow *row);
|
||||
|
||||
/// \param[in] const std::vector<int64_t> &keys Keys in ioblock
|
||||
/// \param[in, out] std::unique_ptr<DataBuffer> db Databuffer to push to
|
||||
/// \return Status The status code returned
|
||||
Status LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db);
|
||||
|
||||
/// \brief Called first when function is called
|
||||
/// \return Status The status code returned
|
||||
Status LaunchThreadsAndInitOp();
|
||||
|
||||
/// \brief reset Op
|
||||
/// \return Status The status code returned
|
||||
Status Reset() override;
|
||||
Status LaunchThreadsAndInitOp() override;
|
||||
|
||||
Status GetNextRow(TensorRow *row) override;
|
||||
|
||||
// Private function for computing the assignment of the column name map.
|
||||
// @return Status The status code returned
|
||||
/// Private function for computing the assignment of the column name map.
|
||||
/// \return Status The status code returned
|
||||
Status ComputeColMap() override;
|
||||
|
||||
int32_t rows_per_buffer_;
|
||||
|
@ -303,12 +279,12 @@ class AlbumOp : public ParallelOp, public RandomAccessOp {
|
|||
std::set<std::string> extensions_; // extensions allowed
|
||||
std::unordered_map<std::string, int32_t> col_name_map_;
|
||||
std::unique_ptr<DataSchema> data_schema_;
|
||||
int64_t row_cnt_;
|
||||
int64_t buf_cnt_;
|
||||
int64_t sampler_ind_;
|
||||
int64_t dirname_offset_;
|
||||
std::vector<std::string> image_rows_;
|
||||
TensorPtr sample_ids_;
|
||||
|
||||
int32_t curr_row_;
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -79,8 +79,7 @@ Status CelebAOp::Builder::SanityCheck() {
|
|||
CelebAOp::CelebAOp(int32_t num_workers, int32_t rows_per_buffer, const std::string &dir, int32_t queue_size,
|
||||
bool decode, const std::string &usage, const std::set<std::string> &exts,
|
||||
std::unique_ptr<DataSchema> schema, std::shared_ptr<SamplerRT> sampler)
|
||||
: ParallelOp(num_workers, queue_size, std::move(sampler)),
|
||||
rows_per_buffer_(rows_per_buffer),
|
||||
: MappableLeafOp(num_workers, queue_size, std::move(sampler), rows_per_buffer),
|
||||
folder_path_(dir),
|
||||
decode_(decode),
|
||||
extensions_(exts),
|
||||
|
@ -269,121 +268,8 @@ std::vector<std::string> CelebAOp::Split(const std::string &line) {
|
|||
return split;
|
||||
}
|
||||
|
||||
// Main logic, Register Queue with TaskGroup, launch all threads and do the functor's work
|
||||
Status CelebAOp::operator()() {
|
||||
RETURN_IF_NOT_OK(LaunchThreadsAndInitOp());
|
||||
std::unique_ptr<DataBuffer> data_buffer;
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&data_buffer));
|
||||
RETURN_IF_NOT_OK(AddIOBlock(&data_buffer));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status CelebAOp::AddIOBlock(std::unique_ptr<DataBuffer> *data_buffer) {
|
||||
int64_t buff_count = 0;
|
||||
while (true) {
|
||||
std::vector<int64_t> keys;
|
||||
keys.reserve(rows_per_buffer_);
|
||||
int64_t row_count = 0;
|
||||
while (!(*data_buffer)->eoe()) {
|
||||
TensorRow sample_row;
|
||||
RETURN_IF_NOT_OK((*data_buffer)->PopRow(&sample_row));
|
||||
std::shared_ptr<Tensor> sample_ids = sample_row[0];
|
||||
for (auto itr = sample_ids->begin<int64_t>(); itr != sample_ids->end<int64_t>(); ++itr) {
|
||||
if ((*itr) >= num_rows_) {
|
||||
MS_LOG(WARNING) << "Sample Id (" << *itr << ") is out of bounds, skipping. Max id is " << num_rows_ << ".";
|
||||
continue;
|
||||
}
|
||||
keys.push_back(*itr);
|
||||
row_count++;
|
||||
if (row_count % rows_per_buffer_ == 0) {
|
||||
RETURN_IF_NOT_OK(io_block_queues_[buff_count++ % num_workers_]->Add(
|
||||
std::make_unique<IOBlock>(IOBlock(keys, IOBlock::kDeIoBlockNone))));
|
||||
keys.clear();
|
||||
}
|
||||
}
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(data_buffer));
|
||||
}
|
||||
|
||||
if (!keys.empty()) {
|
||||
RETURN_IF_NOT_OK(io_block_queues_[(buff_count++) % num_workers_]->Add(
|
||||
std::make_unique<IOBlock>(IOBlock(keys, IOBlock::kDeIoBlockNone))));
|
||||
}
|
||||
if (IsLastIteration()) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buff_count++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe)));
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buff_count++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEof)));
|
||||
for (int32_t i = 0; i < num_workers_; i++) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[i]->Add(std::make_unique<IOBlock>(std::vector<int64_t>(), IOBlock::kDeIoBlockNone)));
|
||||
}
|
||||
return Status::OK();
|
||||
} else { // not the last repeat.
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buff_count++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe)));
|
||||
}
|
||||
|
||||
if (epoch_sync_flag_) {
|
||||
// If epoch_sync_flag_ is set, then master thread sleeps until all the worker threads have finished their job for
|
||||
// the current epoch.
|
||||
RETURN_IF_NOT_OK(WaitForWorkers());
|
||||
}
|
||||
// If not the last repeat, self-reset and go to loop again.
|
||||
if (!IsLastIteration()) {
|
||||
RETURN_IF_NOT_OK(Reset());
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(data_buffer));
|
||||
}
|
||||
UpdateRepeatAndEpochCounter();
|
||||
}
|
||||
}
|
||||
|
||||
Status CelebAOp::WorkerEntry(int32_t worker_id) {
|
||||
TaskManager::FindMe()->Post();
|
||||
int64_t buffer_id = worker_id;
|
||||
std::unique_ptr<IOBlock> io_block;
|
||||
RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block));
|
||||
while (io_block != nullptr) {
|
||||
if (io_block->wait() == true) {
|
||||
// Sync io_block is a signal that master thread wants us to pause and sync with other workers.
|
||||
// The last guy who comes to this sync point should reset the counter and wake up the master thread.
|
||||
if (++num_workers_paused_ == num_workers_) {
|
||||
wait_for_workers_post_.Set();
|
||||
}
|
||||
} else if (io_block->eoe() == true) {
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE)));
|
||||
buffer_id = worker_id;
|
||||
} else if (io_block->eof() == true) {
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF)));
|
||||
} else {
|
||||
std::vector<int64_t> keys;
|
||||
RETURN_IF_NOT_OK(io_block->GetKeys(&keys));
|
||||
if (keys.empty()) {
|
||||
return Status::OK(); // empty key is a quit signal for workers
|
||||
}
|
||||
std::unique_ptr<DataBuffer> db = std::make_unique<DataBuffer>(buffer_id, DataBuffer::kDeBFlagNone);
|
||||
RETURN_IF_NOT_OK(LoadBuffer(keys, &db));
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(db)));
|
||||
buffer_id += num_workers_;
|
||||
}
|
||||
RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block));
|
||||
}
|
||||
return Status(StatusCode::kMDUnexpectedError, __LINE__, __FILE__, "Unexpected nullptr received in worker.");
|
||||
}
|
||||
|
||||
Status CelebAOp::LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db) {
|
||||
std::unique_ptr<TensorQTable> deq = std::make_unique<TensorQTable>();
|
||||
for (const auto &key : keys) {
|
||||
TensorRow row;
|
||||
RETURN_IF_NOT_OK(LoadTensorRow(key, image_labels_vec_[key], &row));
|
||||
deq->push_back(std::move(row));
|
||||
}
|
||||
|
||||
(*db)->set_tensor_table(std::move(deq));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status CelebAOp::LoadTensorRow(row_id_type row_id, const std::pair<std::string, std::vector<int32_t>> &image_label,
|
||||
TensorRow *row) {
|
||||
Status CelebAOp::LoadTensorRow(row_id_type row_id, TensorRow *row) {
|
||||
std::pair<std::string, std::vector<int32_t>> &image_label = image_labels_vec_[row_id];
|
||||
std::shared_ptr<Tensor> image;
|
||||
std::shared_ptr<Tensor> label;
|
||||
|
||||
|
@ -432,13 +318,6 @@ void CelebAOp::Print(std::ostream &out, bool show_all) const {
|
|||
}
|
||||
}
|
||||
|
||||
// Reset Sampler and wakeup Master thread (functor)
|
||||
Status CelebAOp::Reset() {
|
||||
MS_LOG(DEBUG) << Name() << " performing a self-reset.";
|
||||
RETURN_IF_NOT_OK(sampler_->ResetSampler());
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status CelebAOp::ComputeColMap() {
|
||||
// Set the column name map (base class field)
|
||||
if (column_name_id_map_.empty()) {
|
||||
|
|
|
@ -27,6 +27,7 @@
|
|||
#include "minddata/dataset/util/status.h"
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/parallel_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
|
||||
#include "minddata/dataset/util/queue.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/io_block.h"
|
||||
|
@ -41,7 +42,7 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
class CelebAOp : public ParallelOp, RandomAccessOp {
|
||||
class CelebAOp : public MappableLeafOp {
|
||||
public:
|
||||
class Builder {
|
||||
public:
|
||||
|
@ -148,27 +149,11 @@ class CelebAOp : public ParallelOp, RandomAccessOp {
|
|||
|
||||
~CelebAOp() override = default;
|
||||
|
||||
// Main Loop of CelebAOp
|
||||
// Master thread: Fill IOBlockQueue, then goes to sleep
|
||||
// Worker thread: pulls IOBlock from IOBlockQueue, work on it then put buffer to mOutConnector
|
||||
// @return Status The status code returned
|
||||
Status operator()() override;
|
||||
|
||||
// Worker thread pulls a number of IOBlock from IOBlock Queue, make a buffer and push it to Connector
|
||||
// @param int32_t worker_id - id of each worker
|
||||
// @return Status The status code returned
|
||||
Status WorkerEntry(int32_t worker_id) override;
|
||||
|
||||
// A print method typically used for debugging
|
||||
// @param out
|
||||
// @param show_all
|
||||
void Print(std::ostream &out, bool show_all) const override;
|
||||
|
||||
// Method in operator(), to fill IOBlockQueue
|
||||
// @param std::unique_ptr<DataBuffer> sampler_buffer - to fill IOBlockQueue
|
||||
// @return Status The status code returned
|
||||
Status AddIOBlock(std::unique_ptr<DataBuffer> *data_buffer);
|
||||
|
||||
// Op name getter
|
||||
// @return Name of the current Op
|
||||
std::string Name() const override { return "CelebAOp"; }
|
||||
|
@ -176,7 +161,7 @@ class CelebAOp : public ParallelOp, RandomAccessOp {
|
|||
private:
|
||||
// Called first when function is called
|
||||
// @return
|
||||
Status LaunchThreadsAndInitOp();
|
||||
Status LaunchThreadsAndInitOp() override;
|
||||
|
||||
// Parse attribute file
|
||||
// @return
|
||||
|
@ -191,32 +176,21 @@ class CelebAOp : public ParallelOp, RandomAccessOp {
|
|||
// @return std::vector<std::string> - string after split
|
||||
std::vector<std::string> Split(const std::string &line);
|
||||
|
||||
// @param const std::vector<int64_t> &keys - keys in ioblock
|
||||
// @param std::unique_ptr<DataBuffer> db
|
||||
// @return Status The status code returned
|
||||
Status LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db);
|
||||
|
||||
// Load a tensor row according to a pair
|
||||
// @param row_id_type row_id - id for this tensor row
|
||||
// @param std::pair - <image_file,<label>>
|
||||
// @param TensorRow row - image & label read into this tensor row
|
||||
// @return Status The status code returned
|
||||
Status LoadTensorRow(row_id_type row_id, const std::pair<std::string, std::vector<int32_t>> &image_label,
|
||||
TensorRow *row);
|
||||
Status LoadTensorRow(row_id_type row_id, TensorRow *row) override;
|
||||
|
||||
// Check if need read according to dataset type
|
||||
// @return bool - if need read
|
||||
bool CheckDatasetTypeValid();
|
||||
|
||||
// reset Op
|
||||
// @return Status The status code returned
|
||||
Status Reset() override;
|
||||
|
||||
// Private function for computing the assignment of the column name map.
|
||||
// @return - Status
|
||||
Status ComputeColMap() override;
|
||||
|
||||
int32_t rows_per_buffer_;
|
||||
std::string folder_path_; // directory of celeba folder
|
||||
bool decode_;
|
||||
std::set<std::string> extensions_; // extensions allowed
|
||||
|
|
|
@ -88,76 +88,16 @@ Status CifarOp::Builder::SanityCheck() {
|
|||
CifarOp::CifarOp(CifarType type, const std::string &usage, int32_t num_works, int32_t rows_per_buf,
|
||||
const std::string &file_dir, int32_t queue_size, std::unique_ptr<DataSchema> data_schema,
|
||||
std::shared_ptr<SamplerRT> sampler)
|
||||
: ParallelOp(num_works, queue_size, std::move(sampler)),
|
||||
: MappableLeafOp(num_works, queue_size, std::move(sampler), rows_per_buf),
|
||||
cifar_type_(type),
|
||||
usage_(usage),
|
||||
rows_per_buffer_(rows_per_buf),
|
||||
folder_path_(file_dir),
|
||||
data_schema_(std::move(data_schema)),
|
||||
row_cnt_(0),
|
||||
buf_cnt_(0) {
|
||||
data_schema_(std::move(data_schema)) {
|
||||
constexpr uint64_t kUtilQueueSize = 512;
|
||||
cifar_raw_data_block_ = std::make_unique<Queue<std::vector<unsigned char>>>(kUtilQueueSize);
|
||||
io_block_queues_.Init(num_workers_, queue_size);
|
||||
}
|
||||
|
||||
// Main logic, Register Queue with TaskGroup, launch all threads and do the functor's work
|
||||
Status CifarOp::operator()() {
|
||||
RETURN_IF_NOT_OK(LaunchThreadsAndInitOp());
|
||||
std::unique_ptr<DataBuffer> sampler_buffer;
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
while (true) { // each iterator is 1 epoch
|
||||
std::vector<int64_t> keys;
|
||||
keys.reserve(rows_per_buffer_);
|
||||
while (sampler_buffer->eoe() == false) {
|
||||
TensorRow sample_row;
|
||||
RETURN_IF_NOT_OK(sampler_buffer->PopRow(&sample_row));
|
||||
std::shared_ptr<Tensor> sample_ids = sample_row[0];
|
||||
for (auto itr = sample_ids->begin<int64_t>(); itr != sample_ids->end<int64_t>(); itr++) {
|
||||
keys.push_back(*itr);
|
||||
row_cnt_++;
|
||||
if ((*itr) >= num_rows_) continue; // index out of bound, skipping
|
||||
if (row_cnt_ % rows_per_buffer_ == 0) {
|
||||
RETURN_IF_NOT_OK(io_block_queues_[buf_cnt_++ % num_workers_]->Add(
|
||||
std::make_unique<IOBlock>(IOBlock(keys, IOBlock::kDeIoBlockNone))));
|
||||
keys.clear();
|
||||
}
|
||||
}
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
}
|
||||
if (keys.empty() == false) {
|
||||
RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(
|
||||
std::make_unique<IOBlock>(IOBlock(keys, IOBlock::kDeIoBlockNone))));
|
||||
}
|
||||
if (IsLastIteration()) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe)));
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEof)));
|
||||
for (int32_t i = 0; i < num_workers_; i++) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[i]->Add(std::make_unique<IOBlock>(std::vector<int64_t>(), IOBlock::kDeIoBlockNone)));
|
||||
}
|
||||
return Status::OK();
|
||||
} else { // not the last repeat.
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe)));
|
||||
}
|
||||
|
||||
if (epoch_sync_flag_) {
|
||||
// If epoch_sync_flag_ is set, then master thread sleeps until all the worker threads have finished their job for
|
||||
// the current epoch.
|
||||
RETURN_IF_NOT_OK(WaitForWorkers());
|
||||
}
|
||||
// If not the last repeat, self-reset and go to loop again.
|
||||
if (!IsLastIteration()) {
|
||||
RETURN_IF_NOT_OK(Reset());
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
}
|
||||
UpdateRepeatAndEpochCounter();
|
||||
}
|
||||
}
|
||||
|
||||
Status CifarOp::LaunchThreadsAndInitOp() {
|
||||
if (tree_ == nullptr) {
|
||||
RETURN_STATUS_UNEXPECTED("Pipeline init failed, Execution tree not set.");
|
||||
|
@ -175,43 +115,8 @@ Status CifarOp::LaunchThreadsAndInitOp() {
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
// contains the main logic of pulling a IOBlock from IOBlockQueue, load a buffer and push the buffer to out_connector_
|
||||
// IMPORTANT: 1 IOBlock produces 1 DataBuffer
|
||||
Status CifarOp::WorkerEntry(int32_t worker_id) {
|
||||
TaskManager::FindMe()->Post();
|
||||
int64_t buffer_id = worker_id;
|
||||
std::unique_ptr<IOBlock> io_block;
|
||||
RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block));
|
||||
while (io_block != nullptr) {
|
||||
if (io_block->wait() == true) {
|
||||
// Sync io_block is a signal that master thread wants us to pause and sync with other workers.
|
||||
// The last guy who comes to this sync point should reset the counter and wake up the master thread.
|
||||
if (++num_workers_paused_ == num_workers_) {
|
||||
wait_for_workers_post_.Set();
|
||||
}
|
||||
} else if (io_block->eoe() == true) {
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE)));
|
||||
buffer_id = worker_id;
|
||||
} else if (io_block->eof() == true) {
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF)));
|
||||
} else {
|
||||
std::vector<int64_t> keys;
|
||||
RETURN_IF_NOT_OK(io_block->GetKeys(&keys));
|
||||
if (keys.empty() == true) {
|
||||
return Status::OK(); // empty key is a quit signal for workers
|
||||
}
|
||||
std::unique_ptr<DataBuffer> db = std::make_unique<DataBuffer>(buffer_id, DataBuffer::kDeBFlagNone);
|
||||
RETURN_IF_NOT_OK(LoadBuffer(keys, &db));
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(db)));
|
||||
buffer_id += num_workers_;
|
||||
}
|
||||
RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block));
|
||||
}
|
||||
RETURN_STATUS_UNEXPECTED("Unexpected nullptr received in worker.");
|
||||
}
|
||||
|
||||
// Load 1 TensorRow (image,label). 1 function call produces 1 TensorTow in a DataBuffer
|
||||
Status CifarOp::LoadTensorRow(uint64_t index, TensorRow *trow) {
|
||||
Status CifarOp::LoadTensorRow(row_id_type index, TensorRow *trow) {
|
||||
std::shared_ptr<Tensor> label;
|
||||
std::shared_ptr<Tensor> fine_label;
|
||||
std::shared_ptr<Tensor> ori_image = cifar_image_label_pairs_[index].first;
|
||||
|
@ -234,18 +139,6 @@ Status CifarOp::LoadTensorRow(uint64_t index, TensorRow *trow) {
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
// Looping over LoadTensorRow to make 1 DataBuffer. 1 function call produces 1 buffer
|
||||
Status CifarOp::LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db) {
|
||||
std::unique_ptr<TensorQTable> deq = std::make_unique<TensorQTable>();
|
||||
for (const int64_t &key : keys) {
|
||||
TensorRow trow;
|
||||
RETURN_IF_NOT_OK(LoadTensorRow(key, &trow));
|
||||
deq->push_back(std::move(trow));
|
||||
}
|
||||
(*db)->set_tensor_table(std::move(deq));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
void CifarOp::Print(std::ostream &out, bool show_all) const {
|
||||
if (!show_all) {
|
||||
// Call the super class for displaying any common 1-liner info
|
||||
|
@ -260,20 +153,6 @@ void CifarOp::Print(std::ostream &out, bool show_all) const {
|
|||
}
|
||||
}
|
||||
|
||||
// Reset Sampler and wakeup Master thread (functor)
|
||||
Status CifarOp::Reset() {
|
||||
MS_LOG(DEBUG) << Name() << " performing a self-reset.";
|
||||
RETURN_IF_NOT_OK(sampler_->ResetSampler());
|
||||
row_cnt_ = 0;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// hand shake with Sampler, allow Sampler to call RandomAccessOp's functions to get NumRows
|
||||
Status CifarOp::InitSampler() {
|
||||
RETURN_IF_NOT_OK(sampler_->HandshakeRandomAccessOp(this));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status CifarOp::ReadCifarBlockDataAsync() {
|
||||
TaskManager::FindMe()->Post();
|
||||
RETURN_IF_NOT_OK(GetCifarFiles());
|
||||
|
|
|
@ -26,6 +26,7 @@
|
|||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/parallel_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
|
||||
#include "minddata/dataset/util/path.h"
|
||||
#include "minddata/dataset/util/queue.h"
|
||||
|
@ -35,7 +36,7 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
class CifarOp : public ParallelOp, public RandomAccessOp {
|
||||
class CifarOp : public MappableLeafOp {
|
||||
public:
|
||||
enum CifarType { kCifar10, kCifar100 };
|
||||
|
||||
|
@ -142,17 +143,6 @@ class CifarOp : public ParallelOp, public RandomAccessOp {
|
|||
// Destructor.
|
||||
~CifarOp() = default;
|
||||
|
||||
// Worker thread pulls a number of IOBlock from IOBlock Queue, make a buffer and push it to Connector
|
||||
// @param uint32_t workerId - id of each worker
|
||||
// @return Status The status code returned
|
||||
Status WorkerEntry(int32_t worker_id) override;
|
||||
|
||||
// Main Loop of CifarOp
|
||||
// Master thread: Fill IOBlockQueue, then goes to sleep
|
||||
// Worker thread: pulls IOBlock from IOBlockQueue, work on it then put buffer to mOutConnector
|
||||
// @return Status The status code returned
|
||||
Status operator()() override;
|
||||
|
||||
// A print method typically used for debugging
|
||||
// @param out
|
||||
// @param show_all
|
||||
|
@ -170,32 +160,20 @@ class CifarOp : public ParallelOp, public RandomAccessOp {
|
|||
std::string Name() const override { return "CifarOp"; }
|
||||
|
||||
private:
|
||||
// Initialize Sampler, calls sampler->Init() within
|
||||
// @return Status The status code returned
|
||||
Status InitSampler();
|
||||
|
||||
// Load a tensor row according to a pair
|
||||
// @param uint64_t index - index need to load
|
||||
// @param TensorRow row - image & label read into this tensor row
|
||||
// @return Status The status code returned
|
||||
Status LoadTensorRow(uint64_t index, TensorRow *row);
|
||||
|
||||
// @param const std::vector<uint64_t> &keys - keys in ioblock
|
||||
// @param std::unique_ptr<DataBuffer> db
|
||||
// @return Status The status code returned
|
||||
Status LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db);
|
||||
Status LoadTensorRow(row_id_type index, TensorRow *trow) override;
|
||||
|
||||
private:
|
||||
// Read block data from cifar file
|
||||
// @return
|
||||
Status ReadCifarBlockDataAsync();
|
||||
|
||||
// Called first when function is called
|
||||
// @return
|
||||
Status LaunchThreadsAndInitOp();
|
||||
|
||||
// reset Op
|
||||
// @return Status The status code returned
|
||||
Status Reset() override;
|
||||
Status LaunchThreadsAndInitOp() override;
|
||||
|
||||
// Get cifar files in dir
|
||||
// @return
|
||||
|
@ -223,12 +201,9 @@ class CifarOp : public ParallelOp, public RandomAccessOp {
|
|||
Status ComputeColMap() override;
|
||||
|
||||
CifarType cifar_type_;
|
||||
int32_t rows_per_buffer_;
|
||||
std::string folder_path_;
|
||||
std::unique_ptr<DataSchema> data_schema_;
|
||||
|
||||
int64_t row_cnt_;
|
||||
int64_t buf_cnt_;
|
||||
const std::string usage_; // can only be either "train" or "test"
|
||||
std::unique_ptr<Queue<std::vector<unsigned char>>> cifar_raw_data_block_;
|
||||
std::vector<std::string> cifar_files_;
|
||||
|
|
|
@ -124,82 +124,15 @@ Status CocoOp::Builder::SanityCheck() {
|
|||
CocoOp::CocoOp(const TaskType &task_type, const std::string &image_folder_path, const std::string &annotation_path,
|
||||
int32_t num_workers, int32_t rows_per_buffer, int32_t queue_size, bool decode,
|
||||
std::unique_ptr<DataSchema> data_schema, std::shared_ptr<SamplerRT> sampler)
|
||||
: ParallelOp(num_workers, queue_size, std::move(sampler)),
|
||||
: MappableLeafOp(num_workers, queue_size, std::move(sampler), rows_per_buffer),
|
||||
decode_(decode),
|
||||
row_cnt_(0),
|
||||
buf_cnt_(0),
|
||||
task_type_(task_type),
|
||||
image_folder_path_(image_folder_path),
|
||||
annotation_path_(annotation_path),
|
||||
rows_per_buffer_(rows_per_buffer),
|
||||
data_schema_(std::move(data_schema)) {
|
||||
io_block_queues_.Init(num_workers_, queue_size);
|
||||
}
|
||||
|
||||
Status CocoOp::TraverseSampleIds(const std::shared_ptr<Tensor> &sample_ids, std::vector<int64_t> *keys) {
|
||||
for (auto itr = sample_ids->begin<int64_t>(); itr != sample_ids->end<int64_t>(); ++itr) {
|
||||
if ((*itr) > num_rows_) continue;
|
||||
keys->push_back(*itr);
|
||||
row_cnt_++;
|
||||
if (row_cnt_ % rows_per_buffer_ == 0) {
|
||||
RETURN_IF_NOT_OK(io_block_queues_[buf_cnt_++ % num_workers_]->Add(
|
||||
std::make_unique<IOBlock>(IOBlock(*keys, IOBlock::kDeIoBlockNone))));
|
||||
keys->clear();
|
||||
}
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status CocoOp::operator()() {
|
||||
RETURN_IF_NOT_OK(LaunchThreadsAndInitOp());
|
||||
std::unique_ptr<DataBuffer> sampler_buffer;
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
while (true) {
|
||||
std::vector<int64_t> keys;
|
||||
keys.reserve(rows_per_buffer_);
|
||||
while (sampler_buffer->eoe() == false) {
|
||||
std::shared_ptr<Tensor> sample_ids;
|
||||
RETURN_IF_NOT_OK(sampler_buffer->GetTensor(&sample_ids, 0, 0));
|
||||
if (sample_ids->type() != DataType(DataType::DE_INT64)) {
|
||||
RETURN_STATUS_UNEXPECTED("Invalid parameter, data type of Sampler Tensor isn't int64, got " +
|
||||
sample_ids->type().ToString());
|
||||
}
|
||||
RETURN_IF_NOT_OK(TraverseSampleIds(sample_ids, &keys));
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
}
|
||||
if (keys.empty() == false) {
|
||||
RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(
|
||||
std::make_unique<IOBlock>(IOBlock(keys, IOBlock::kDeIoBlockNone))));
|
||||
}
|
||||
if (IsLastIteration()) {
|
||||
std::unique_ptr<IOBlock> eoe_block = std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe);
|
||||
std::unique_ptr<IOBlock> eof_block = std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEof);
|
||||
RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::move(eoe_block)));
|
||||
RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::move(eof_block)));
|
||||
for (int32_t i = 0; i < num_workers_; i++) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[i]->Add(std::make_unique<IOBlock>(std::vector<int64_t>(), IOBlock::kDeIoBlockNone)));
|
||||
}
|
||||
return Status::OK();
|
||||
} else {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe)));
|
||||
}
|
||||
|
||||
if (epoch_sync_flag_) {
|
||||
// If epoch_sync_flag_ is set, then master thread sleeps until all the worker threads have finished their job for
|
||||
// the current epoch.
|
||||
RETURN_IF_NOT_OK(WaitForWorkers());
|
||||
}
|
||||
// If not the last repeat, self-reset and go to loop again.
|
||||
if (!IsLastIteration()) {
|
||||
RETURN_IF_NOT_OK(Reset());
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
}
|
||||
UpdateRepeatAndEpochCounter();
|
||||
}
|
||||
}
|
||||
|
||||
void CocoOp::Print(std::ostream &out, bool show_all) const {
|
||||
if (!show_all) {
|
||||
// Call the super class for displaying any common 1-liner info
|
||||
|
@ -215,14 +148,8 @@ void CocoOp::Print(std::ostream &out, bool show_all) const {
|
|||
}
|
||||
}
|
||||
|
||||
Status CocoOp::Reset() {
|
||||
MS_LOG(DEBUG) << Name() << " performing a self-reset.";
|
||||
RETURN_IF_NOT_OK(sampler_->ResetSampler());
|
||||
row_cnt_ = 0;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status CocoOp::LoadTensorRow(row_id_type row_id, const std::string &image_id, TensorRow *trow) {
|
||||
Status CocoOp::LoadTensorRow(row_id_type row_id, TensorRow *trow) {
|
||||
std::string image_id = image_ids_[row_id];
|
||||
std::shared_ptr<Tensor> image, coordinate;
|
||||
auto itr = coordinate_map_.find(image_id);
|
||||
if (itr == coordinate_map_.end()) {
|
||||
|
@ -374,48 +301,6 @@ Status CocoOp::LoadMixTensorRow(row_id_type row_id, const std::string &image_id,
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status CocoOp::LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db) {
|
||||
std::unique_ptr<TensorQTable> deq = std::make_unique<TensorQTable>();
|
||||
TensorRow trow;
|
||||
for (const int64_t &key : keys) {
|
||||
RETURN_IF_NOT_OK(this->LoadTensorRow(key, image_ids_[key], &trow));
|
||||
deq->push_back(std::move(trow));
|
||||
}
|
||||
(*db)->set_tensor_table(std::move(deq));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status CocoOp::WorkerEntry(int32_t worker_id) {
|
||||
TaskManager::FindMe()->Post();
|
||||
int64_t buffer_id = worker_id;
|
||||
std::unique_ptr<IOBlock> io_block;
|
||||
RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block));
|
||||
while (io_block != nullptr) {
|
||||
if (io_block->wait() == true) {
|
||||
// Sync io_block is a signal that master thread wants us to pause and sync with other workers.
|
||||
// The last guy who comes to this sync point should reset the counter and wake up the master thread.
|
||||
if (++num_workers_paused_ == num_workers_) {
|
||||
wait_for_workers_post_.Set();
|
||||
}
|
||||
} else if (io_block->eoe() == true) {
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE)));
|
||||
buffer_id = worker_id;
|
||||
} else if (io_block->eof() == true) {
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, (std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF))));
|
||||
} else {
|
||||
std::vector<int64_t> keys;
|
||||
RETURN_IF_NOT_OK(io_block->GetKeys(&keys));
|
||||
if (keys.empty() == true) return Status::OK();
|
||||
std::unique_ptr<DataBuffer> db = std::make_unique<DataBuffer>(buffer_id, DataBuffer::kDeBFlagNone);
|
||||
RETURN_IF_NOT_OK(LoadBuffer(keys, &db));
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(db)));
|
||||
buffer_id += num_workers_;
|
||||
}
|
||||
RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block));
|
||||
}
|
||||
RETURN_STATUS_UNEXPECTED("Unexpected nullptr received in worker");
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Status CocoOp::SearchNodeInJson(const nlohmann::json &input_tree, std::string node_name, T *output_node) {
|
||||
auto node = input_tree.find(node_name);
|
||||
|
@ -627,11 +512,6 @@ Status CocoOp::CategoriesColumnLoad(const nlohmann::json &categories_tree) {
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status CocoOp::InitSampler() {
|
||||
RETURN_IF_NOT_OK(sampler_->HandshakeRandomAccessOp(this));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status CocoOp::LaunchThreadsAndInitOp() {
|
||||
if (tree_ == nullptr) {
|
||||
RETURN_STATUS_UNEXPECTED("Pipeline init failed, Execution tree not set.");
|
||||
|
|
|
@ -27,6 +27,7 @@
|
|||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/parallel_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
|
||||
#ifndef ENABLE_ANDROID
|
||||
#include "minddata/dataset/kernels/image/image_utils.h"
|
||||
|
@ -46,7 +47,7 @@ class Queue;
|
|||
|
||||
using CoordinateRow = std::vector<std::vector<float>>;
|
||||
|
||||
class CocoOp : public ParallelOp, public RandomAccessOp {
|
||||
class CocoOp : public MappableLeafOp {
|
||||
public:
|
||||
enum class TaskType { Detection = 0, Stuff = 1, Panoptic = 2, Keypoint = 3 };
|
||||
|
||||
|
@ -171,17 +172,6 @@ class CocoOp : public ParallelOp, public RandomAccessOp {
|
|||
// Destructor
|
||||
~CocoOp() = default;
|
||||
|
||||
// Worker thread pulls a number of IOBlock from IOBlock Queue, make a buffer and push it to Connector
|
||||
// @param int32_t workerId - id of each worker
|
||||
// @return Status The status code returned
|
||||
Status WorkerEntry(int32_t worker_id) override;
|
||||
|
||||
// Main Loop of CocoOp
|
||||
// Master thread: Fill IOBlockQueue, then goes to sleep
|
||||
// Worker thread: pulls IOBlock from IOBlockQueue, work on it the put buffer to mOutConnector
|
||||
// @return Status The status code returned
|
||||
Status operator()() override;
|
||||
|
||||
// A print method typically used for debugging
|
||||
// @param out
|
||||
// @param show_all
|
||||
|
@ -212,16 +202,12 @@ class CocoOp : public ParallelOp, public RandomAccessOp {
|
|||
Status GetClassIndexing(std::vector<std::pair<std::string, std::vector<int32_t>>> *output_class_indexing) override;
|
||||
|
||||
private:
|
||||
// Initialize Sampler, calls sampler->Init() within
|
||||
// @return Status The status code returned
|
||||
Status InitSampler();
|
||||
|
||||
// Load a tensor row according to image id
|
||||
// @param row_id_type row_id - id for this tensor row
|
||||
// @param std::string image_id - image id
|
||||
// @param TensorRow row - image & target read into this tensor row
|
||||
// @return Status The status code returned
|
||||
Status LoadTensorRow(row_id_type row_id, const std::string &image_id, TensorRow *row);
|
||||
Status LoadTensorRow(row_id_type row_id, TensorRow *row) override;
|
||||
|
||||
// Load a tensor row with vector which a vector to a tensor
|
||||
// @param row_id_type row_id - id for this tensor row
|
||||
|
@ -259,27 +245,13 @@ class CocoOp : public ParallelOp, public RandomAccessOp {
|
|||
// @return Status The status code returned
|
||||
Status ReadImageToTensor(const std::string &path, const ColDescriptor &col, std::shared_ptr<Tensor> *tensor);
|
||||
|
||||
// @param const std::vector<uint64_t> &keys - keys in ioblock
|
||||
// @param std::unique_ptr<DataBuffer> db
|
||||
// @return Status The status code returned
|
||||
Status LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db);
|
||||
|
||||
// Read annotation from Annotation folder
|
||||
// @return Status The status code returned
|
||||
Status ParseAnnotationIds();
|
||||
|
||||
// @param const std::shared_ptr<Tensor> &sample_ids - sample ids of tensor
|
||||
// @param std::vector<int64_t> *keys - image id
|
||||
// @return Status The status code returned
|
||||
Status TraverseSampleIds(const std::shared_ptr<Tensor> &sample_ids, std::vector<int64_t> *keys);
|
||||
|
||||
// Called first when function is called
|
||||
// @return Status The status code returned
|
||||
Status LaunchThreadsAndInitOp();
|
||||
|
||||
// Reset dataset state
|
||||
// @return Status The status code returned
|
||||
Status Reset() override;
|
||||
Status LaunchThreadsAndInitOp() override;
|
||||
|
||||
// @param nlohmann::json image_tree - image tree of json
|
||||
// @param std::vector<std::string> *image_vec - image id list of json
|
||||
|
@ -323,12 +295,9 @@ class CocoOp : public ParallelOp, public RandomAccessOp {
|
|||
Status ComputeColMap() override;
|
||||
|
||||
bool decode_;
|
||||
int64_t row_cnt_;
|
||||
int64_t buf_cnt_;
|
||||
std::string image_folder_path_;
|
||||
std::string annotation_path_;
|
||||
TaskType task_type_;
|
||||
int32_t rows_per_buffer_;
|
||||
std::unique_ptr<DataSchema> data_schema_;
|
||||
|
||||
std::vector<std::string> image_ids_;
|
||||
|
|
|
@ -68,16 +68,13 @@ ImageFolderOp::ImageFolderOp(int32_t num_wkrs, int32_t rows_per_buffer, std::str
|
|||
bool recursive, bool do_decode, const std::set<std::string> &exts,
|
||||
const std::map<std::string, int32_t> &map, std::unique_ptr<DataSchema> data_schema,
|
||||
std::shared_ptr<SamplerRT> sampler)
|
||||
: ParallelOp(num_wkrs, queue_size, std::move(sampler)),
|
||||
rows_per_buffer_(rows_per_buffer),
|
||||
: MappableLeafOp(num_wkrs, queue_size, std::move(sampler), rows_per_buffer),
|
||||
folder_path_(file_dir),
|
||||
recursive_(recursive),
|
||||
decode_(do_decode),
|
||||
extensions_(exts),
|
||||
class_index_(map),
|
||||
data_schema_(std::move(data_schema)),
|
||||
row_cnt_(0),
|
||||
buf_cnt_(0),
|
||||
sampler_ind_(0),
|
||||
dirname_offset_(0) {
|
||||
folder_name_queue_ = std::make_unique<Queue<std::string>>(num_wkrs * queue_size);
|
||||
|
@ -125,98 +122,9 @@ Status ImageFolderOp::PrescanMasterEntry(const std::string &filedir) {
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
// Main logic, Register Queue with TaskGroup, launch all threads and do the functor's work
|
||||
Status ImageFolderOp::operator()() {
|
||||
RETURN_IF_NOT_OK(LaunchThreadsAndInitOp());
|
||||
std::unique_ptr<DataBuffer> sampler_buffer;
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
while (true) { // each iterator is 1 epoch
|
||||
std::vector<int64_t> keys;
|
||||
keys.reserve(rows_per_buffer_);
|
||||
while (sampler_buffer->eoe() == false) {
|
||||
TensorRow sample_row;
|
||||
RETURN_IF_NOT_OK(sampler_buffer->PopRow(&sample_row));
|
||||
std::shared_ptr<Tensor> sample_ids = sample_row[0];
|
||||
for (auto itr = sample_ids->begin<int64_t>(); itr != sample_ids->end<int64_t>(); ++itr) {
|
||||
if ((*itr) >= num_rows_) continue; // index out of bound, skipping
|
||||
keys.push_back(*itr);
|
||||
row_cnt_++;
|
||||
if (row_cnt_ % rows_per_buffer_ == 0) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[buf_cnt_++ % num_workers_]->Add(std::make_unique<IOBlock>(keys, IOBlock::kDeIoBlockNone)));
|
||||
keys.clear();
|
||||
}
|
||||
}
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
}
|
||||
if (keys.empty() == false) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(keys, IOBlock::kDeIoBlockNone)));
|
||||
}
|
||||
if (IsLastIteration()) {
|
||||
std::unique_ptr<IOBlock> eoe_block = std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe);
|
||||
std::unique_ptr<IOBlock> eof_block = std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEof);
|
||||
RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::move(eoe_block)));
|
||||
RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::move(eof_block)));
|
||||
for (int32_t i = 0; i < num_workers_; ++i) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[i]->Add(std::make_unique<IOBlock>(std::vector<int64_t>(), IOBlock::kDeIoBlockNone)));
|
||||
}
|
||||
return Status::OK();
|
||||
} else { // not the last repeat.
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe)));
|
||||
}
|
||||
|
||||
if (epoch_sync_flag_) {
|
||||
// If epoch_sync_flag_ is set, then master thread sleeps until all the worker threads have finished their job for
|
||||
// the current epoch.
|
||||
RETURN_IF_NOT_OK(WaitForWorkers());
|
||||
}
|
||||
// If not the last repeat, self-reset and go to loop again.
|
||||
if (!IsLastIteration()) {
|
||||
RETURN_IF_NOT_OK(Reset());
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
}
|
||||
UpdateRepeatAndEpochCounter();
|
||||
}
|
||||
}
|
||||
|
||||
// contains the main logic of pulling a IOBlock from IOBlockQueue, load a buffer and push the buffer to out_connector_
|
||||
// IMPORTANT: 1 IOBlock produces 1 DataBuffer
|
||||
Status ImageFolderOp::WorkerEntry(int32_t worker_id) {
|
||||
TaskManager::FindMe()->Post();
|
||||
int64_t buffer_id = worker_id;
|
||||
std::unique_ptr<IOBlock> io_block;
|
||||
RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block));
|
||||
while (io_block != nullptr) {
|
||||
if (io_block->wait() == true) {
|
||||
// Sync io_block is a signal that master thread wants us to pause and sync with other workers.
|
||||
// The last guy who comes to this sync point should reset the counter and wake up the master thread.
|
||||
if (++num_workers_paused_ == num_workers_) {
|
||||
wait_for_workers_post_.Set();
|
||||
}
|
||||
} else if (io_block->eoe() == true) {
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE)));
|
||||
buffer_id = worker_id;
|
||||
} else if (io_block->eof() == true) {
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF)));
|
||||
} else {
|
||||
std::vector<int64_t> keys;
|
||||
RETURN_IF_NOT_OK(io_block->GetKeys(&keys));
|
||||
if (keys.empty() == true) return Status::OK(); // empty key is a quit signal for workers
|
||||
std::unique_ptr<DataBuffer> db = std::make_unique<DataBuffer>(buffer_id, DataBuffer::kDeBFlagNone);
|
||||
RETURN_IF_NOT_OK(LoadBuffer(keys, &db));
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(db)));
|
||||
buffer_id += num_workers_;
|
||||
}
|
||||
RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block));
|
||||
}
|
||||
RETURN_STATUS_UNEXPECTED("Unexpected nullptr received in worker");
|
||||
}
|
||||
|
||||
// Load 1 TensorRow (image,label) using 1 ImageLabelPair. 1 function call produces 1 TensorTow in a DataBuffer
|
||||
Status ImageFolderOp::LoadTensorRow(row_id_type row_id, ImageLabelPair pairPtr, TensorRow *trow) {
|
||||
Status ImageFolderOp::LoadTensorRow(row_id_type row_id, TensorRow *trow) {
|
||||
ImageLabelPair pairPtr = image_label_pairs_[row_id];
|
||||
std::shared_ptr<Tensor> image, label;
|
||||
RETURN_IF_NOT_OK(Tensor::CreateScalar(pairPtr->second, &label));
|
||||
RETURN_IF_NOT_OK(Tensor::CreateFromFile(folder_path_ + (pairPtr->first), &image));
|
||||
|
@ -233,18 +141,6 @@ Status ImageFolderOp::LoadTensorRow(row_id_type row_id, ImageLabelPair pairPtr,
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
// Looping over LoadTensorRow to make 1 DataBuffer. 1 function call produces 1 buffer
|
||||
Status ImageFolderOp::LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db) {
|
||||
std::unique_ptr<TensorQTable> deq = std::make_unique<TensorQTable>();
|
||||
TensorRow trow;
|
||||
for (const int64_t &key : keys) {
|
||||
RETURN_IF_NOT_OK(this->LoadTensorRow(key, image_label_pairs_[key], &trow));
|
||||
deq->push_back(std::move(trow));
|
||||
}
|
||||
(*db)->set_tensor_table(std::move(deq));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
void ImageFolderOp::Print(std::ostream &out, bool show_all) const {
|
||||
if (!show_all) {
|
||||
// Call the super class for displaying any common 1-liner info
|
||||
|
@ -260,20 +156,6 @@ void ImageFolderOp::Print(std::ostream &out, bool show_all) const {
|
|||
}
|
||||
}
|
||||
|
||||
// Reset Sampler and wakeup Master thread (functor)
|
||||
Status ImageFolderOp::Reset() {
|
||||
MS_LOG(DEBUG) << Name() << " performing a self-reset.";
|
||||
RETURN_IF_NOT_OK(sampler_->ResetSampler());
|
||||
row_cnt_ = 0;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// hand shake with Sampler, allow Sampler to call RandomAccessOp's functions to get NumRows
|
||||
Status ImageFolderOp::InitSampler() {
|
||||
RETURN_IF_NOT_OK(sampler_->HandshakeRandomAccessOp(this));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Derived from RandomAccessOp
|
||||
Status ImageFolderOp::GetClassIds(std::map<int32_t, std::vector<int64_t>> *cls_ids) const {
|
||||
if (cls_ids == nullptr || !cls_ids->empty() || image_label_pairs_.empty()) {
|
||||
|
|
|
@ -29,6 +29,7 @@
|
|||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/parallel_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
|
||||
#ifndef ENABLE_ANDROID
|
||||
#include "minddata/dataset/kernels/image/image_utils.h"
|
||||
|
@ -50,7 +51,7 @@ class Queue;
|
|||
using ImageLabelPair = std::shared_ptr<std::pair<std::string, int32_t>>;
|
||||
using FolderImagesPair = std::shared_ptr<std::pair<std::string, std::queue<ImageLabelPair>>>;
|
||||
|
||||
class ImageFolderOp : public ParallelOp, public RandomAccessOp {
|
||||
class ImageFolderOp : public MappableLeafOp {
|
||||
public:
|
||||
class Builder {
|
||||
public:
|
||||
|
@ -175,22 +176,11 @@ class ImageFolderOp : public ParallelOp, public RandomAccessOp {
|
|||
// @return Status The status code returned
|
||||
Status PrescanMasterEntry(const std::string &dir);
|
||||
|
||||
// Worker thread pulls a number of IOBlock from IOBlock Queue, make a buffer and push it to Connector
|
||||
// @param int32_t workerId - id of each worker
|
||||
// @return Status The status code returned
|
||||
Status WorkerEntry(int32_t worker_id) override;
|
||||
|
||||
// Worker thread pulls a number of IOBlock from IOBlock Queue, make a buffer and push it to Connector
|
||||
// @param int32_t workerId - id of each worker
|
||||
// @return Status The status code returned
|
||||
Status PrescanWorkerEntry(int32_t worker_id);
|
||||
|
||||
// Main Loop of ImageFolderOp
|
||||
// Master thread: Fill IOBlockQueue, then goes to sleep
|
||||
// Worker thread: pulls IOBlock from IOBlockQueue, work on it then put buffer to mOutConnector
|
||||
// @return Status The status code returned
|
||||
Status operator()() override;
|
||||
|
||||
// Method derived from RandomAccess Op, enable Sampler to get all ids for each class
|
||||
// @param (std::map<int64_t, std::vector<int64_t >> * map - key label, val all ids for this class
|
||||
// @return Status The status code returned
|
||||
|
@ -217,21 +207,12 @@ class ImageFolderOp : public ParallelOp, public RandomAccessOp {
|
|||
Status GetNumClasses(int64_t *num_classes) override;
|
||||
|
||||
private:
|
||||
// Initialize Sampler, calls sampler->Init() within
|
||||
// @return Status The status code returned
|
||||
Status InitSampler();
|
||||
|
||||
// Load a tensor row according to a pair
|
||||
// @param row_id_type row_id - id for this tensor row
|
||||
// @param ImageLabelPair pair - <imagefile,label>
|
||||
// @param TensorRow row - image & label read into this tensor row
|
||||
// @return Status The status code returned
|
||||
Status LoadTensorRow(row_id_type row_id, ImageLabelPair pair, TensorRow *row);
|
||||
|
||||
// @param const std::vector<int64_t> &keys - keys in ioblock
|
||||
// @param std::unique_ptr<DataBuffer> db
|
||||
// @return Status The status code returned
|
||||
Status LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db);
|
||||
Status LoadTensorRow(row_id_type row_id, TensorRow *row) override;
|
||||
|
||||
// @param std::string & dir - dir to walk all images
|
||||
// @param int64_t * cnt - number of non folder files under the current dir
|
||||
|
@ -244,25 +225,18 @@ class ImageFolderOp : public ParallelOp, public RandomAccessOp {
|
|||
|
||||
// Called first when function is called
|
||||
// @return
|
||||
Status LaunchThreadsAndInitOp();
|
||||
|
||||
// reset Op
|
||||
// @return Status The status code returned
|
||||
Status Reset() override;
|
||||
Status LaunchThreadsAndInitOp() override;
|
||||
|
||||
// Private function for computing the assignment of the column name map.
|
||||
// @return - Status
|
||||
Status ComputeColMap() override;
|
||||
|
||||
int32_t rows_per_buffer_;
|
||||
std::string folder_path_; // directory of image folder
|
||||
bool recursive_;
|
||||
bool decode_;
|
||||
std::set<std::string> extensions_; // extensions allowed
|
||||
std::map<std::string, int32_t> class_index_;
|
||||
std::unique_ptr<DataSchema> data_schema_;
|
||||
int64_t row_cnt_;
|
||||
int64_t buf_cnt_;
|
||||
int64_t sampler_ind_;
|
||||
int64_t dirname_offset_;
|
||||
std::vector<ImageLabelPair> image_label_pairs_;
|
||||
|
|
|
@ -67,82 +67,18 @@ Status ManifestOp::Builder::SanityCheck() {
|
|||
ManifestOp::ManifestOp(int32_t num_works, int32_t rows_per_buffer, std::string file, int32_t queue_size, bool decode,
|
||||
const std::map<std::string, int32_t> &class_index, std::unique_ptr<DataSchema> data_schema,
|
||||
std::shared_ptr<SamplerRT> sampler, std::string usage)
|
||||
: ParallelOp(num_works, queue_size, std::move(sampler)),
|
||||
rows_per_buffer_(rows_per_buffer),
|
||||
: MappableLeafOp(num_works, queue_size, std::move(sampler), rows_per_buffer),
|
||||
io_block_pushed_(0),
|
||||
row_cnt_(0),
|
||||
sampler_ind_(0),
|
||||
data_schema_(std::move(data_schema)),
|
||||
file_(file),
|
||||
class_index_(class_index),
|
||||
decode_(decode),
|
||||
usage_(usage),
|
||||
buf_cnt_(0) {
|
||||
usage_(usage) {
|
||||
io_block_queues_.Init(num_workers_, queue_size);
|
||||
(void)std::transform(usage_.begin(), usage_.end(), usage_.begin(), ::tolower);
|
||||
}
|
||||
|
||||
// Main logic, Register Queue with TaskGroup, launch all threads and do the functor's work
|
||||
Status ManifestOp::operator()() {
|
||||
RETURN_IF_NOT_OK(LaunchThreadsAndInitOp());
|
||||
std::unique_ptr<DataBuffer> sampler_buffer;
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
return AddIoBlock(&sampler_buffer);
|
||||
}
|
||||
|
||||
Status ManifestOp::AddIoBlock(std::unique_ptr<DataBuffer> *sampler_buffer) {
|
||||
while (true) { // each iterator is 1 epoch
|
||||
std::vector<int64_t> keys;
|
||||
keys.reserve(rows_per_buffer_);
|
||||
while (!(*sampler_buffer)->eoe()) {
|
||||
TensorRow sample_row;
|
||||
RETURN_IF_NOT_OK((*sampler_buffer)->PopRow(&sample_row));
|
||||
std::shared_ptr<Tensor> sample_ids = sample_row[0];
|
||||
for (auto itr = sample_ids->begin<int64_t>(); itr != sample_ids->end<int64_t>(); ++itr) {
|
||||
if ((*itr) >= num_rows_) continue; // index out of bound, skipping
|
||||
keys.push_back(*itr);
|
||||
row_cnt_++;
|
||||
if (row_cnt_ % rows_per_buffer_ == 0) {
|
||||
RETURN_IF_NOT_OK(io_block_queues_[buf_cnt_++ % num_workers_]->Add(
|
||||
std::make_unique<IOBlock>(IOBlock(keys, IOBlock::kDeIoBlockNone))));
|
||||
keys.clear();
|
||||
}
|
||||
}
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(sampler_buffer));
|
||||
}
|
||||
if (keys.empty() == false) {
|
||||
RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(
|
||||
std::make_unique<IOBlock>(IOBlock(keys, IOBlock::kDeIoBlockNone))));
|
||||
}
|
||||
if (IsLastIteration()) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe)));
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEof)));
|
||||
for (int32_t i = 0; i < num_workers_; i++) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[i]->Add(std::make_unique<IOBlock>(std::vector<int64_t>(), IOBlock::kDeIoBlockNone)));
|
||||
}
|
||||
return Status::OK();
|
||||
} else {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe)));
|
||||
}
|
||||
|
||||
if (epoch_sync_flag_) {
|
||||
// If epoch_sync_flag_ is set, then master thread sleeps until all the worker threads have finished their job for
|
||||
// the current epoch.
|
||||
RETURN_IF_NOT_OK(WaitForWorkers());
|
||||
}
|
||||
// If not the last repeat, self-reset and go to loop again.
|
||||
if (!IsLastIteration()) {
|
||||
RETURN_IF_NOT_OK(Reset());
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(sampler_buffer));
|
||||
}
|
||||
UpdateRepeatAndEpochCounter();
|
||||
}
|
||||
}
|
||||
|
||||
Status ManifestOp::LaunchThreadsAndInitOp() {
|
||||
if (tree_ == nullptr) {
|
||||
RETURN_STATUS_UNEXPECTED("Pipeline init failed, Execution tree not set.");
|
||||
|
@ -159,44 +95,9 @@ Status ManifestOp::LaunchThreadsAndInitOp() {
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
// contains the main logic of pulling a IOBlock from IOBlockQueue, load a buffer and push the buffer to out_connector_
|
||||
// IMPORTANT: 1 IOBlock produces 1 DataBuffer
|
||||
Status ManifestOp::WorkerEntry(int32_t worker_id) {
|
||||
TaskManager::FindMe()->Post();
|
||||
int64_t buffer_id = worker_id;
|
||||
std::unique_ptr<IOBlock> io_block;
|
||||
RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block));
|
||||
while (io_block != nullptr) {
|
||||
if (io_block->wait() == true) {
|
||||
// Sync io_block is a signal that master thread wants us to pause and sync with other workers.
|
||||
// The last guy who comes to this sync point should reset the counter and wake up the master thread.
|
||||
if (++num_workers_paused_ == num_workers_) {
|
||||
wait_for_workers_post_.Set();
|
||||
}
|
||||
} else if (io_block->eoe() == true) {
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE)));
|
||||
buffer_id = worker_id;
|
||||
} else if (io_block->eof() == true) {
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF)));
|
||||
} else {
|
||||
std::vector<int64_t> keys;
|
||||
RETURN_IF_NOT_OK(io_block->GetKeys(&keys));
|
||||
if (keys.empty()) {
|
||||
return Status::OK(); // empty key is a quit signal for workers
|
||||
}
|
||||
std::unique_ptr<DataBuffer> db = std::make_unique<DataBuffer>(buffer_id, DataBuffer::kDeBFlagNone);
|
||||
RETURN_IF_NOT_OK(LoadBuffer(keys, &db));
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(db)));
|
||||
buffer_id += num_workers_;
|
||||
}
|
||||
RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block));
|
||||
}
|
||||
RETURN_STATUS_UNEXPECTED("Unexpected nullptr received in worker.");
|
||||
}
|
||||
|
||||
// Load 1 TensorRow (image,label) using 1 ImageLabelPair. 1 function call produces 1 TensorTow in a DataBuffer
|
||||
Status ManifestOp::LoadTensorRow(row_id_type row_id, const std::pair<std::string, std::vector<std::string>> &data,
|
||||
TensorRow *trow) {
|
||||
Status ManifestOp::LoadTensorRow(row_id_type row_id, TensorRow *trow) {
|
||||
std::pair<std::string, std::vector<std::string>> data = image_labelname_[static_cast<size_t>(row_id)];
|
||||
std::shared_ptr<Tensor> image;
|
||||
std::shared_ptr<Tensor> label;
|
||||
std::vector<int32_t> label_index(data.second.size());
|
||||
|
@ -222,18 +123,6 @@ Status ManifestOp::LoadTensorRow(row_id_type row_id, const std::pair<std::string
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
// Looping over LoadTensorRow to make 1 DataBuffer. 1 function call produces 1 buffer
|
||||
Status ManifestOp::LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db) {
|
||||
std::unique_ptr<TensorQTable> deq = std::make_unique<TensorQTable>();
|
||||
for (const auto &key : keys) {
|
||||
TensorRow trow;
|
||||
RETURN_IF_NOT_OK(LoadTensorRow(key, image_labelname_[static_cast<size_t>(key)], &trow));
|
||||
deq->push_back(std::move(trow));
|
||||
}
|
||||
(*db)->set_tensor_table(std::move(deq));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
void ManifestOp::Print(std::ostream &out, bool show_all) const {
|
||||
if (!show_all) {
|
||||
// Call the super class for displaying any common 1-liner info
|
||||
|
@ -249,20 +138,6 @@ void ManifestOp::Print(std::ostream &out, bool show_all) const {
|
|||
}
|
||||
}
|
||||
|
||||
// Reset Sampler and wakeup Master thread (functor)
|
||||
Status ManifestOp::Reset() {
|
||||
MS_LOG(DEBUG) << Name() << " performing a self-reset.";
|
||||
RETURN_IF_NOT_OK(sampler_->ResetSampler());
|
||||
row_cnt_ = 0;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// hand shake with Sampler, allow Sampler to call RandomAccessOp's functions to get NumRows
|
||||
Status ManifestOp::InitSampler() {
|
||||
RETURN_IF_NOT_OK(sampler_->HandshakeRandomAccessOp(this));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Derived from RandomAccessOp
|
||||
Status ManifestOp::GetClassIds(std::map<int32_t, std::vector<int64_t>> *cls_ids) const {
|
||||
if (cls_ids == nullptr || !cls_ids->empty() || image_labelname_.empty()) {
|
||||
|
|
|
@ -26,6 +26,7 @@
|
|||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/parallel_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
|
||||
#include "minddata/dataset/kernels/image/image_utils.h"
|
||||
#include "minddata/dataset/util/queue.h"
|
||||
|
@ -35,7 +36,7 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
class ManifestOp : public ParallelOp, public RandomAccessOp {
|
||||
class ManifestOp : public MappableLeafOp {
|
||||
public:
|
||||
class Builder {
|
||||
public:
|
||||
|
@ -143,17 +144,6 @@ class ManifestOp : public ParallelOp, public RandomAccessOp {
|
|||
// Destructor.
|
||||
~ManifestOp() = default;
|
||||
|
||||
// Worker thread pulls a number of IOBlock from IOBlock Queue, make a buffer and push it to Connector
|
||||
// @param int32_t worker_id - id of each worker
|
||||
// @return Status The status code returned
|
||||
Status WorkerEntry(int32_t worker_id) override;
|
||||
|
||||
// Main Loop of ManifestOp
|
||||
// Master thread: Fill IOBlockQueue, then goes to sleep
|
||||
// Worker thread: pulls IOBlock from IOBlockQueue, work on it then put buffer to mOutConnector
|
||||
// @return Status The status code returned
|
||||
Status operator()() override;
|
||||
|
||||
// Method derived from RandomAccess Op, enable Sampler to get all ids for each class
|
||||
// @param (std::map<int64_t, std::vector<int64_t >> * map - key label, val all ids for this class
|
||||
// @return Status The status code returned
|
||||
|
@ -194,27 +184,12 @@ class ManifestOp : public ParallelOp, public RandomAccessOp {
|
|||
Status GetClassIndexing(std::vector<std::pair<std::string, std::vector<int32_t>>> *output_class_indexing) override;
|
||||
|
||||
private:
|
||||
// Initialize Sampler, calls sampler->Init() within
|
||||
// @return Status The status code returned
|
||||
Status InitSampler();
|
||||
|
||||
// Method in operator(), to fill IOBlockQueue
|
||||
// @param std::unique_ptr<DataBuffer> sampler_buffer - to fill IOBlockQueue
|
||||
// @return Status The status code returned
|
||||
Status AddIoBlock(std::unique_ptr<DataBuffer> *sampler_buffer);
|
||||
|
||||
// Load a tensor row according to a pair
|
||||
// @param row_id_type row_id - id for this tensor row
|
||||
// @param std::pair<std::string, std::vector<std::string>> - <imagefile, <label1, label2...>>
|
||||
// @param TensorRow row - image & label read into this tensor row
|
||||
// @return Status The status code returned
|
||||
Status LoadTensorRow(row_id_type row_id, const std::pair<std::string, std::vector<std::string>> &data,
|
||||
TensorRow *row);
|
||||
|
||||
// @param const std::vector<int64_t> &keys - keys in ioblock
|
||||
// @param std::unique_ptr<DataBuffer> db
|
||||
// @return Status The status code returned
|
||||
Status LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db);
|
||||
Status LoadTensorRow(row_id_type row_id, TensorRow *row) override;
|
||||
|
||||
// Parse manifest file to get image path and label and so on.
|
||||
// @return Status The status code returned
|
||||
|
@ -222,11 +197,7 @@ class ManifestOp : public ParallelOp, public RandomAccessOp {
|
|||
|
||||
// Called first when function is called
|
||||
// @return Status The status code returned
|
||||
Status LaunchThreadsAndInitOp();
|
||||
|
||||
// reset Op
|
||||
// @return Status The status code returned
|
||||
Status Reset() override;
|
||||
Status LaunchThreadsAndInitOp() override;
|
||||
|
||||
// Check if image ia valid.Only support JPEG/PNG/GIF/BMP
|
||||
// @return
|
||||
|
@ -240,16 +211,13 @@ class ManifestOp : public ParallelOp, public RandomAccessOp {
|
|||
// @return - Status
|
||||
Status ComputeColMap() override;
|
||||
|
||||
int32_t rows_per_buffer_;
|
||||
int64_t io_block_pushed_;
|
||||
int64_t row_cnt_;
|
||||
int64_t sampler_ind_;
|
||||
std::unique_ptr<DataSchema> data_schema_;
|
||||
std::string file_; // file that store the information of images
|
||||
std::map<std::string, int32_t> class_index_;
|
||||
bool decode_;
|
||||
std::string usage_;
|
||||
int64_t buf_cnt_;
|
||||
|
||||
std::map<std::string, int32_t> label_index_;
|
||||
std::vector<std::pair<std::string, std::vector<std::string>>> image_labelname_;
|
||||
|
|
|
@ -0,0 +1,152 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h"
|
||||
#include <fstream>
|
||||
#include <unordered_set>
|
||||
#include "utils/ms_utils.h"
|
||||
#include "minddata/dataset/core/config_manager.h"
|
||||
#include "minddata/dataset/core/tensor_shape.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sequential_sampler.h"
|
||||
#include "minddata/dataset/engine/db_connector.h"
|
||||
#include "minddata/dataset/engine/execution_tree.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
||||
MappableLeafOp::MappableLeafOp(int32_t num_wkrs, int32_t queue_size, std::shared_ptr<SamplerRT> sampler,
|
||||
int32_t rows_per_buffer)
|
||||
: ParallelOp(num_wkrs, queue_size, std::move(sampler)),
|
||||
row_cnt_(0),
|
||||
buf_cnt_(0),
|
||||
rows_per_buffer_(rows_per_buffer) {}
|
||||
|
||||
// Main logic, Register Queue with TaskGroup, launch all threads and do the functor's work
|
||||
Status MappableLeafOp::operator()() {
|
||||
RETURN_IF_NOT_OK(LaunchThreadsAndInitOp());
|
||||
std::unique_ptr<DataBuffer> sampler_buffer;
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
while (true) { // each iterator is 1 epoch
|
||||
std::vector<int64_t> keys;
|
||||
keys.reserve(rows_per_buffer_);
|
||||
while (sampler_buffer->eoe() == false) {
|
||||
TensorRow sample_row;
|
||||
RETURN_IF_NOT_OK(sampler_buffer->PopRow(&sample_row));
|
||||
std::shared_ptr<Tensor> sample_ids = sample_row[0];
|
||||
for (auto itr = sample_ids->begin<int64_t>(); itr != sample_ids->end<int64_t>(); ++itr) {
|
||||
if ((*itr) >= num_rows_) continue; // index out of bound, skipping
|
||||
keys.push_back(*itr);
|
||||
row_cnt_++;
|
||||
if (row_cnt_ % rows_per_buffer_ == 0) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[buf_cnt_++ % num_workers_]->Add(std::make_unique<IOBlock>(keys, IOBlock::kDeIoBlockNone)));
|
||||
keys.clear();
|
||||
}
|
||||
}
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
}
|
||||
if (keys.empty() == false) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(keys, IOBlock::kDeIoBlockNone)));
|
||||
}
|
||||
if (IsLastIteration()) {
|
||||
std::unique_ptr<IOBlock> eoe_block = std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe);
|
||||
std::unique_ptr<IOBlock> eof_block = std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEof);
|
||||
RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::move(eoe_block)));
|
||||
RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::move(eof_block)));
|
||||
for (int32_t i = 0; i < num_workers_; ++i) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[i]->Add(std::make_unique<IOBlock>(std::vector<int64_t>(), IOBlock::kDeIoBlockNone)));
|
||||
}
|
||||
return Status::OK();
|
||||
} else { // not the last repeat.
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe)));
|
||||
}
|
||||
|
||||
if (epoch_sync_flag_) {
|
||||
// If epoch_sync_flag_ is set, then master thread sleeps until all the worker threads have finished their job for
|
||||
// the current epoch.
|
||||
RETURN_IF_NOT_OK(WaitForWorkers());
|
||||
}
|
||||
// If not the last repeat, self-reset and go to loop again.
|
||||
if (!IsLastIteration()) {
|
||||
RETURN_IF_NOT_OK(Reset());
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
}
|
||||
UpdateRepeatAndEpochCounter();
|
||||
}
|
||||
}
|
||||
|
||||
// Reset Sampler and wakeup Master thread (functor)
|
||||
Status MappableLeafOp::Reset() {
|
||||
MS_LOG(DEBUG) << Name() << " performing a self-reset.";
|
||||
RETURN_IF_NOT_OK(sampler_->ResetSampler());
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// hand shake with Sampler, allow Sampler to call RandomAccessOp's functions to get NumRows
|
||||
Status MappableLeafOp::InitSampler() {
|
||||
RETURN_IF_NOT_OK(sampler_->HandshakeRandomAccessOp(this));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// contains the main logic of pulling a IOBlock from IOBlockQueue, load a buffer and push the buffer to out_connector_
|
||||
// IMPORTANT: 1 IOBlock produces 1 DataBuffer
|
||||
Status MappableLeafOp::WorkerEntry(int32_t worker_id) {
|
||||
TaskManager::FindMe()->Post();
|
||||
int64_t buffer_id = worker_id;
|
||||
std::unique_ptr<IOBlock> io_block;
|
||||
RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block));
|
||||
while (io_block != nullptr) {
|
||||
if (io_block->wait() == true) {
|
||||
// Sync io_block is a signal that master thread wants us to pause and sync with other workers.
|
||||
// The last guy who comes to this sync point should reset the counter and wake up the master thread.
|
||||
if (++num_workers_paused_ == num_workers_) {
|
||||
wait_for_workers_post_.Set();
|
||||
}
|
||||
} else if (io_block->eoe() == true) {
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE)));
|
||||
buffer_id = worker_id;
|
||||
} else if (io_block->eof() == true) {
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF)));
|
||||
} else {
|
||||
std::vector<int64_t> keys;
|
||||
RETURN_IF_NOT_OK(io_block->GetKeys(&keys));
|
||||
if (keys.empty() == true) return Status::OK(); // empty key is a quit signal for workers
|
||||
std::unique_ptr<DataBuffer> db = std::make_unique<DataBuffer>(buffer_id, DataBuffer::kDeBFlagNone);
|
||||
RETURN_IF_NOT_OK(LoadBuffer(keys, &db));
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(db)));
|
||||
buffer_id += num_workers_;
|
||||
}
|
||||
RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block));
|
||||
}
|
||||
RETURN_STATUS_UNEXPECTED("Unexpected nullptr received in worker");
|
||||
}
|
||||
|
||||
// Looping over LoadTensorRow to make 1 DataBuffer. 1 function call produces 1 buffer
|
||||
Status MappableLeafOp::LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db) {
|
||||
std::unique_ptr<TensorQTable> deq = std::make_unique<TensorQTable>();
|
||||
TensorRow trow;
|
||||
for (const int64_t &key : keys) {
|
||||
RETURN_IF_NOT_OK(this->LoadTensorRow(key, &trow));
|
||||
deq->push_back(std::move(trow));
|
||||
}
|
||||
(*db)->set_tensor_table(std::move(deq));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,110 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_MAPPABLE_LEAF_OP_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_MAPPABLE_LEAF_OP_H_
|
||||
|
||||
#include <deque>
|
||||
#include <memory>
|
||||
#include <queue>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/parallel_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
|
||||
#ifndef ENABLE_ANDROID
|
||||
#include "minddata/dataset/kernels/image/image_utils.h"
|
||||
#else
|
||||
#include "minddata/dataset/kernels/image/lite_image_utils.h"
|
||||
#endif
|
||||
#include "minddata/dataset/util/path.h"
|
||||
#include "minddata/dataset/util/queue.h"
|
||||
#include "minddata/dataset/util/services.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
#include "minddata/dataset/util/wait_post.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
// Forward declares
|
||||
template <typename T>
|
||||
class Queue;
|
||||
|
||||
using ImageLabelPair = std::shared_ptr<std::pair<std::string, int32_t>>;
|
||||
using FolderImagesPair = std::shared_ptr<std::pair<std::string, std::queue<ImageLabelPair>>>;
|
||||
|
||||
class MappableLeafOp : public ParallelOp, public RandomAccessOp {
|
||||
public:
|
||||
// Constructor
|
||||
// @param int32_t num_wkrs - Num of workers reading images in parallel
|
||||
// @param int32_t - rows_per_buffer Number of images (rows) in each buffer
|
||||
// @param std::string - dir directory of ImageNetFolder
|
||||
// @param int32_t queue_size - connector queue size
|
||||
// @param std::set<std::string> exts - set of file extensions to read, if empty, read everything under the dir
|
||||
// @param td::unique_ptr<Sampler> sampler - sampler tells the source what to read
|
||||
MappableLeafOp(int32_t num_wkrs, int32_t queue_size, std::shared_ptr<SamplerRT> sampler, int32_t rows_per_buffer);
|
||||
|
||||
// Destructor.
|
||||
~MappableLeafOp() = default;
|
||||
|
||||
// Main Loop of MappableLeaf
|
||||
// Master thread: Fill IOBlockQueue, then goes to sleep
|
||||
// Worker thread: pulls IOBlock from IOBlockQueue, work on it then put buffer to mOutConnector
|
||||
// @return Status The status code returned
|
||||
Status operator()() override;
|
||||
|
||||
// Op name getter
|
||||
// @return Name of the current Op
|
||||
std::string Name() const override { return "MappableLeafPp"; }
|
||||
|
||||
protected:
|
||||
// Initialize Sampler, calls sampler->Init() within
|
||||
// @return Status The status code returned
|
||||
Status InitSampler();
|
||||
|
||||
// // Called first when function is called
|
||||
// // @return
|
||||
virtual Status LaunchThreadsAndInitOp() = 0;
|
||||
|
||||
Status WorkerEntry(int32_t workerId) override;
|
||||
|
||||
// @param const std::vector<int64_t> &keys - keys in ioblock
|
||||
// @param std::unique_ptr<DataBuffer> db
|
||||
// @return Status The status code returned
|
||||
Status LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db);
|
||||
|
||||
// Load a tensor row according to a pair
|
||||
// @param row_id_type row_id - id for this tensor row
|
||||
// @param ImageLabelPair pair - <imagefile,label>
|
||||
// @param TensorRow row - loaded row
|
||||
// @return Status The status code returned
|
||||
virtual Status LoadTensorRow(row_id_type row_id, TensorRow *row) = 0;
|
||||
|
||||
// reset Op
|
||||
// @return Status The status code returned
|
||||
Status Reset() override;
|
||||
|
||||
int32_t rows_per_buffer_;
|
||||
int64_t row_cnt_;
|
||||
int64_t buf_cnt_;
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_MAPPABLE_LEAF_OP_H_
|
|
@ -27,6 +27,7 @@
|
|||
#include "minddata/dataset/core/global_context.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
#include "minddata/dataset/engine/datasetops/dataset_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sequential_sampler.h"
|
||||
#include "minddata/dataset/engine/db_connector.h"
|
||||
#include "minddata/dataset/engine/execution_tree.h"
|
||||
#include "minddata/dataset/util/log_adapter.h"
|
||||
|
@ -115,16 +116,14 @@ MindRecordOp::MindRecordOp(int32_t num_mind_record_workers, int32_t rows_per_buf
|
|||
const std::vector<std::string> &columns_to_load,
|
||||
const std::vector<std::shared_ptr<ShardOperator>> &operators, int64_t num_padded,
|
||||
const mindrecord::json &sample_json, const std::map<std::string, std::string> &sample_bytes)
|
||||
: ParallelOp(num_mind_record_workers, op_connector_queue_size),
|
||||
rows_per_buffer_(rows_per_buffer),
|
||||
: MappableLeafOp(num_mind_record_workers, op_connector_queue_size, std::make_shared<SequentialSamplerRT>(0, 0),
|
||||
rows_per_buffer),
|
||||
dataset_file_(dataset_file),
|
||||
load_dataset_(load_dataset),
|
||||
columns_to_load_(columns_to_load),
|
||||
operators_(operators),
|
||||
num_mind_record_workers_(num_mind_record_workers),
|
||||
num_rows_(0),
|
||||
buffers_needed_(0),
|
||||
buf_cnt_(0),
|
||||
ended_worker_(0),
|
||||
num_padded_(num_padded),
|
||||
sample_json_(sample_json),
|
||||
|
@ -379,61 +378,19 @@ Status MindRecordOp::LoadTensorRow(TensorRow *tensor_row, const std::vector<uint
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
// Class functor operator () override.
|
||||
// All dataset ops operate by launching a thread (see ExecutionTree). This class functor will
|
||||
// provide the master loop that drives the logic for performing the work
|
||||
// Main logic, Register Queue with TaskGroup, launch all threads and do the functor's work
|
||||
Status MindRecordOp::operator()() {
|
||||
RETURN_IF_NOT_OK(LaunchThreadAndInitOp());
|
||||
num_rows_ = shard_reader_->GetNumRows();
|
||||
// Compute how many buffers we would need to accomplish rowsPerBuffer
|
||||
buffers_needed_ = (num_rows_ + rows_per_buffer_ - 1) / rows_per_buffer_;
|
||||
|
||||
while (true) { // each iterator is 1 epoch
|
||||
for (int32_t i = 0; i < buffers_needed_; ++i) {
|
||||
std::vector<int64_t> keys(1, i);
|
||||
RETURN_IF_NOT_OK(io_block_queues_[buf_cnt_++ % num_workers_]->Add(
|
||||
std::make_unique<IOBlock>(IOBlock(keys, IOBlock::kDeIoBlockNone))));
|
||||
}
|
||||
if (IsLastIteration()) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe)));
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEof)));
|
||||
for (int32_t i = 0; i < num_workers_; i++) {
|
||||
RETURN_IF_NOT_OK(io_block_queues_[i]->Add(
|
||||
std::move(std::make_unique<IOBlock>(std::vector<int64_t>(), IOBlock::kDeIoBlockNone))));
|
||||
}
|
||||
return Status::OK();
|
||||
} else {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe)));
|
||||
}
|
||||
|
||||
if (epoch_sync_flag_) {
|
||||
// If epoch_sync_flag_ is set, then master thread sleeps until all the worker threads have finished their job for
|
||||
// the current epoch.
|
||||
RETURN_IF_NOT_OK(WaitForWorkers());
|
||||
}
|
||||
// If not the last repeat, self-reset and go to loop again.
|
||||
if (!IsLastIteration()) RETURN_IF_NOT_OK(Reset());
|
||||
UpdateRepeatAndEpochCounter();
|
||||
}
|
||||
}
|
||||
|
||||
// Overrides base class reset method. When an operator does a reset, it cleans up any state
|
||||
// info from it's previous execution and then initializes itself so that it can be executed
|
||||
// again.
|
||||
Status MindRecordOp::Reset() {
|
||||
MS_LOG(DEBUG) << Name() << " performing a self-reset.";
|
||||
RETURN_IF_NOT_OK(ParallelOp::Reset()); // Call our super class reset first.
|
||||
RETURN_IF_NOT_OK(MappableLeafOp::Reset()); // Call our super class reset first.
|
||||
|
||||
shard_reader_->ShuffleTask();
|
||||
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status MindRecordOp::LaunchThreadAndInitOp() {
|
||||
Status MindRecordOp::LaunchThreadsAndInitOp() {
|
||||
if (tree_ == nullptr) {
|
||||
RETURN_STATUS_UNEXPECTED("Pipeline init failed, Execution tree not set.");
|
||||
}
|
||||
|
@ -446,6 +403,8 @@ Status MindRecordOp::LaunchThreadAndInitOp() {
|
|||
// Launch main workers that load DataBuffers by reading all images
|
||||
RETURN_IF_NOT_OK(
|
||||
tree_->LaunchWorkers(num_workers_, std::bind(&MindRecordOp::WorkerEntry, this, std::placeholders::_1), "", id()));
|
||||
num_rows_ = shard_reader_->GetNumRows();
|
||||
RETURN_IF_NOT_OK(this->InitSampler()); // pass numRows to Sampler
|
||||
TaskManager::FindMe()->Post();
|
||||
return Status::OK();
|
||||
}
|
||||
|
|
|
@ -28,7 +28,7 @@
|
|||
#include <vector>
|
||||
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/parallel_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h"
|
||||
#include "minddata/dataset/util/queue.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
#include "minddata/mindrecord/include/shard_column.h"
|
||||
|
@ -50,7 +50,7 @@ using ShardTuple = std::vector<std::tuple<std::vector<uint8_t>, mindrecord::json
|
|||
|
||||
const int32_t LOG_INTERVAL = 19;
|
||||
|
||||
class MindRecordOp : public ParallelOp {
|
||||
class MindRecordOp : public MappableLeafOp {
|
||||
public:
|
||||
// The nested builder class inside of the MindRecordOp is used to help manage all of the arguments
|
||||
// for constructing it. Use the builder by setting each argument with the provided set methods,
|
||||
|
@ -167,15 +167,9 @@ class MindRecordOp : public ParallelOp {
|
|||
// @return Status The status code returned
|
||||
Status WorkerEntry(int32_t worker_id) override;
|
||||
|
||||
// Class functor operator () override.
|
||||
// All DatasetOps operate by launching a thread (see ExecutionTree). This class functor will
|
||||
// provide the master loop that drives the logic for performing the work.
|
||||
// @return Status The status code returned
|
||||
Status operator()() override;
|
||||
|
||||
// Called first when function is called
|
||||
// @return
|
||||
Status LaunchThreadAndInitOp();
|
||||
Status LaunchThreadsAndInitOp() override;
|
||||
|
||||
// Overrides base class reset method. When an operator does a reset, it cleans up any state
|
||||
// info from it's previous execution and then initializes itself so that it can be executed
|
||||
|
@ -183,15 +177,9 @@ class MindRecordOp : public ParallelOp {
|
|||
// @return Status The status code returned
|
||||
Status Reset() override;
|
||||
|
||||
// Getter method
|
||||
int32_t num_rows() const { return num_rows_; }
|
||||
|
||||
static Status CountTotalRows(const std::vector<std::string> dataset_path, bool load_dataset,
|
||||
const std::shared_ptr<ShardOperator> &op, int64_t *count, int64_t num_padded);
|
||||
|
||||
// Getter method
|
||||
int32_t rows_per_buffer() const { return rows_per_buffer_; }
|
||||
|
||||
// Getter method
|
||||
std::vector<std::string> dataset_file() const { return dataset_file_; }
|
||||
|
||||
|
@ -216,19 +204,19 @@ class MindRecordOp : public ParallelOp {
|
|||
Status LoadTensorRow(TensorRow *tensor_row, const std::vector<uint8_t> &columns_blob,
|
||||
const mindrecord::json &columns_json, const mindrecord::TaskType task_type);
|
||||
|
||||
Status LoadTensorRow(row_id_type row_id, TensorRow *row) override {
|
||||
return Status(StatusCode::kMDSyntaxError, "Cannot call this method.");
|
||||
}
|
||||
// Private function for computing the assignment of the column name map.
|
||||
// @return - Status
|
||||
Status ComputeColMap() override;
|
||||
|
||||
int32_t rows_per_buffer_; // The number of requested rows per buffer.
|
||||
std::vector<std::string> dataset_file_; // dataset files
|
||||
bool load_dataset_; // load dataset from single file or not
|
||||
std::vector<std::string> columns_to_load_; // Columns to load from dataset
|
||||
std::vector<std::shared_ptr<ShardOperator>> operators_; // ShardOperators to use
|
||||
int32_t num_mind_record_workers_; // number of workers to be spawned by ShardReader
|
||||
int32_t buffers_needed_; // Counter for the buffers that were fetched
|
||||
int64_t buf_cnt_; // Buffer counter
|
||||
int32_t num_rows_; // One more than the last row id in the range for this cache
|
||||
std::atomic<int32_t> ended_worker_;
|
||||
|
||||
int64_t num_padded_;
|
||||
|
|
|
@ -75,117 +75,18 @@ Status MnistOp::Builder::SanityCheck() {
|
|||
|
||||
MnistOp::MnistOp(const std::string &usage, int32_t num_workers, int32_t rows_per_buffer, std::string folder_path,
|
||||
int32_t queue_size, std::unique_ptr<DataSchema> data_schema, std::shared_ptr<SamplerRT> sampler)
|
||||
: ParallelOp(num_workers, queue_size, std::move(sampler)),
|
||||
: MappableLeafOp(num_workers, queue_size, std::move(sampler), rows_per_buffer),
|
||||
usage_(usage),
|
||||
buf_cnt_(0),
|
||||
row_cnt_(0),
|
||||
folder_path_(folder_path),
|
||||
rows_per_buffer_(rows_per_buffer),
|
||||
image_path_({}),
|
||||
label_path_({}),
|
||||
data_schema_(std::move(data_schema)) {
|
||||
io_block_queues_.Init(num_workers, queue_size);
|
||||
}
|
||||
|
||||
Status MnistOp::TraversalSampleIds(const std::shared_ptr<Tensor> &sample_ids, std::vector<int64_t> *keys) {
|
||||
for (auto itr = sample_ids->begin<int64_t>(); itr != sample_ids->end<int64_t>(); ++itr) {
|
||||
if ((*itr) >= num_rows_) continue; // index out of bound, skipping
|
||||
keys->push_back(*itr);
|
||||
row_cnt_++;
|
||||
if (row_cnt_ % rows_per_buffer_ == 0) {
|
||||
RETURN_IF_NOT_OK(io_block_queues_[buf_cnt_++ % num_workers_]->Add(
|
||||
std::make_unique<IOBlock>(IOBlock(*keys, IOBlock::kDeIoBlockNone))));
|
||||
keys->clear();
|
||||
}
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// functor that contains the main logic of MNIST op
|
||||
Status MnistOp::operator()() {
|
||||
RETURN_IF_NOT_OK(LaunchThreadsAndInitOp());
|
||||
std::unique_ptr<DataBuffer> sampler_buffer;
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
while (true) { // each iterator is 1 epoch
|
||||
std::vector<int64_t> keys;
|
||||
keys.reserve(rows_per_buffer_);
|
||||
while (sampler_buffer->eoe() == false) {
|
||||
std::shared_ptr<Tensor> sample_ids;
|
||||
RETURN_IF_NOT_OK(sampler_buffer->GetTensor(&sample_ids, 0, 0));
|
||||
if (sample_ids->type() != DataType(DataType::DE_INT64)) {
|
||||
RETURN_STATUS_UNEXPECTED("Invalid parameter, data type of Sampler Tensor isn't int64, got " +
|
||||
sample_ids->type().ToString());
|
||||
}
|
||||
RETURN_IF_NOT_OK(TraversalSampleIds(sample_ids, &keys));
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
}
|
||||
if (keys.empty() == false) {
|
||||
RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(
|
||||
std::make_unique<IOBlock>(IOBlock(keys, IOBlock::kDeIoBlockNone))));
|
||||
}
|
||||
if (IsLastIteration()) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe)));
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEof)));
|
||||
for (int32_t i = 0; i < num_workers_; ++i) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[i]->Add(std::make_unique<IOBlock>(std::vector<int64_t>(), IOBlock::kDeIoBlockNone)));
|
||||
}
|
||||
return Status::OK();
|
||||
} else {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe)));
|
||||
}
|
||||
|
||||
if (epoch_sync_flag_) {
|
||||
// If epoch_sync_flag_ is set, then master thread sleeps until all the worker threads have finished their job for
|
||||
// the current epoch.
|
||||
RETURN_IF_NOT_OK(WaitForWorkers());
|
||||
}
|
||||
// If not the last repeat, self-reset and go to loop again.
|
||||
if (!IsLastIteration()) {
|
||||
RETURN_IF_NOT_OK(Reset());
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
}
|
||||
UpdateRepeatAndEpochCounter();
|
||||
}
|
||||
}
|
||||
|
||||
// contains the logic of pulling a IOBlock from IOBlockQueue, load a buffer and push the buffer to out_connector_
|
||||
Status MnistOp::WorkerEntry(int32_t worker_id) {
|
||||
TaskManager::FindMe()->Post();
|
||||
int64_t buffer_id = worker_id;
|
||||
std::unique_ptr<IOBlock> iOBlock;
|
||||
RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&iOBlock));
|
||||
while (iOBlock != nullptr) {
|
||||
if (iOBlock->wait() == true) {
|
||||
// Sync io_block is a signal that master thread wants us to pause and sync with other workers.
|
||||
// The last guy who comes to this sync point should reset the counter and wake up the master thread.
|
||||
if (++num_workers_paused_ == num_workers_) {
|
||||
wait_for_workers_post_.Set();
|
||||
}
|
||||
} else if (iOBlock->eoe() == true) {
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE)));
|
||||
buffer_id = worker_id;
|
||||
} else if (iOBlock->eof() == true) {
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF)));
|
||||
} else {
|
||||
std::vector<int64_t> keys;
|
||||
RETURN_IF_NOT_OK(iOBlock->GetKeys(&keys));
|
||||
if (keys.empty() == true) return Status::OK(); // empty key is a quit signal for workers
|
||||
std::unique_ptr<DataBuffer> db = std::make_unique<DataBuffer>(buffer_id, DataBuffer::kDeBFlagNone);
|
||||
RETURN_IF_NOT_OK(LoadBuffer(keys, &db));
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(db)));
|
||||
buffer_id += num_workers_;
|
||||
}
|
||||
RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&iOBlock));
|
||||
}
|
||||
RETURN_STATUS_UNEXPECTED("Unexpected nullptr received in worker.");
|
||||
}
|
||||
|
||||
// Load 1 TensorRow (image,label) using 1 MnistLabelPair.
|
||||
Status MnistOp::LoadTensorRow(row_id_type row_id, const MnistLabelPair &mnist_pair, TensorRow *trow) {
|
||||
Status MnistOp::LoadTensorRow(row_id_type row_id, TensorRow *trow) {
|
||||
MnistLabelPair mnist_pair = image_label_pairs_[row_id];
|
||||
std::shared_ptr<Tensor> image, label;
|
||||
// make a copy of cached tensor
|
||||
RETURN_IF_NOT_OK(Tensor::CreateFromTensor(mnist_pair.first, &image));
|
||||
|
@ -196,18 +97,6 @@ Status MnistOp::LoadTensorRow(row_id_type row_id, const MnistLabelPair &mnist_pa
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
// Looping over LoadTensorRow to make 1 DataBuffer. 1 function call produces 1 buffer
|
||||
Status MnistOp::LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db) {
|
||||
std::unique_ptr<TensorQTable> deq = std::make_unique<TensorQTable>();
|
||||
TensorRow trow;
|
||||
for (const int64_t &key : keys) {
|
||||
RETURN_IF_NOT_OK(this->LoadTensorRow(key, image_label_pairs_[key], &trow));
|
||||
deq->push_back(std::move(trow));
|
||||
}
|
||||
(*db)->set_tensor_table(std::move(deq));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
void MnistOp::Print(std::ostream &out, bool show_all) const {
|
||||
if (!show_all) {
|
||||
// Call the super class for displaying any common 1-liner info
|
||||
|
@ -222,20 +111,6 @@ void MnistOp::Print(std::ostream &out, bool show_all) const {
|
|||
}
|
||||
}
|
||||
|
||||
// Reset Sampler and wakeup Master thread (functor)
|
||||
Status MnistOp::Reset() {
|
||||
MS_LOG(DEBUG) << Name() << " performing a self-reset.";
|
||||
RETURN_IF_NOT_OK(sampler_->ResetSampler());
|
||||
row_cnt_ = 0;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// hand shake with Sampler, allow Sampler to call RandomAccessOp's functions to get NumRows
|
||||
Status MnistOp::InitSampler() {
|
||||
RETURN_IF_NOT_OK(sampler_->HandshakeRandomAccessOp(this));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Derived from RandomAccessOp
|
||||
Status MnistOp::GetClassIds(std::map<int32_t, std::vector<int64_t>> *cls_ids) const {
|
||||
if (cls_ids == nullptr || !cls_ids->empty() || image_label_pairs_.empty()) {
|
||||
|
|
|
@ -27,6 +27,7 @@
|
|||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/parallel_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
|
||||
#include "minddata/dataset/util/path.h"
|
||||
#include "minddata/dataset/util/queue.h"
|
||||
|
@ -41,7 +42,7 @@ class Queue;
|
|||
|
||||
using MnistLabelPair = std::pair<std::shared_ptr<Tensor>, uint32_t>;
|
||||
|
||||
class MnistOp : public ParallelOp, public RandomAccessOp {
|
||||
class MnistOp : public MappableLeafOp {
|
||||
public:
|
||||
class Builder {
|
||||
public:
|
||||
|
@ -131,17 +132,6 @@ class MnistOp : public ParallelOp, public RandomAccessOp {
|
|||
// Destructor.
|
||||
~MnistOp() = default;
|
||||
|
||||
// Worker thread pulls a number of IOBlock from IOBlock Queue, make a buffer and push it to Connector
|
||||
// @param int32_t worker_id - id of each worker
|
||||
// @return Status The status code returned
|
||||
Status WorkerEntry(int32_t worker_id) override;
|
||||
|
||||
// Main Loop of MnistOp
|
||||
// Master thread: Fill IOBlockQueue, then goes to sleep
|
||||
// Worker thread: pulls IOBlock from IOBlockQueue, work on it then put buffer to mOutConnector
|
||||
// @return Status The status code returned
|
||||
Status operator()() override;
|
||||
|
||||
// Method derived from RandomAccess Op, enable Sampler to get all ids for each class
|
||||
// @param (std::map<uint64_t, std::vector<uint64_t >> * map - key label, val all ids for this class
|
||||
// @return Status The status code returned
|
||||
|
@ -163,27 +153,12 @@ class MnistOp : public ParallelOp, public RandomAccessOp {
|
|||
std::string Name() const override { return "MnistOp"; }
|
||||
|
||||
private:
|
||||
// Initialize Sampler, calls sampler->Init() within
|
||||
// @return Status The status code returned
|
||||
Status InitSampler();
|
||||
|
||||
// Load a tensor row according to a pair
|
||||
// @param row_id_type row_id - id for this tensor row
|
||||
// @param ImageLabelPair pair - <imagefile,label>
|
||||
// @param TensorRow row - image & label read into this tensor row
|
||||
// @return Status The status code returned
|
||||
Status LoadTensorRow(row_id_type row_id, const MnistLabelPair &mnist_pair, TensorRow *row);
|
||||
|
||||
// @param const std::vector<int64_t> &keys - keys in ioblock
|
||||
// @param std::unique_ptr<DataBuffer> db
|
||||
// @return Status The status code returned
|
||||
Status LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db);
|
||||
|
||||
// Iterate through all members in sampleIds and fill them into IOBlock.
|
||||
// @param std::shared_ptr<Tensor> sample_ids -
|
||||
// @param std::vector<int64_t> *keys - keys in ioblock
|
||||
// @return Status The status code returned
|
||||
Status TraversalSampleIds(const std::shared_ptr<Tensor> &sample_ids, std::vector<int64_t> *keys);
|
||||
Status LoadTensorRow(row_id_type row_id, TensorRow *row) override;
|
||||
|
||||
// Check image file stream.
|
||||
// @param const std::string *file_name - image file name
|
||||
|
@ -226,20 +201,13 @@ class MnistOp : public ParallelOp, public RandomAccessOp {
|
|||
|
||||
// Called first when function is called
|
||||
// @return Status The status code returned
|
||||
Status LaunchThreadsAndInitOp();
|
||||
|
||||
// reset Op
|
||||
// @return Status The status code returned
|
||||
Status Reset() override;
|
||||
Status LaunchThreadsAndInitOp() override;
|
||||
|
||||
// Private function for computing the assignment of the column name map.
|
||||
// @return - Status
|
||||
Status ComputeColMap() override;
|
||||
|
||||
int64_t buf_cnt_;
|
||||
int64_t row_cnt_;
|
||||
std::string folder_path_; // directory of image folder
|
||||
int32_t rows_per_buffer_;
|
||||
const std::string usage_; // can only be either "train" or "test"
|
||||
std::unique_ptr<DataSchema> data_schema_;
|
||||
std::vector<MnistLabelPair> image_label_pairs_;
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2019 Huawei Technologies Co., Ltd
|
||||
* Copyright 2019-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -26,7 +26,7 @@ Status RandomAccessOp::GetNumRowsInDataset(int64_t *num) const {
|
|||
// after it has interacted with it's storage layers.
|
||||
// Here, it is just a getter method to return the value. However, it is invalid if there is
|
||||
// not a value set for this count, so generate a failure if that is the case.
|
||||
if (num == nullptr || num_rows_ == 0) {
|
||||
if (num == nullptr || num_rows_ == -1) {
|
||||
RETURN_STATUS_UNEXPECTED("RandomAccessOp has not computed its num rows yet.");
|
||||
}
|
||||
(*num) = num_rows_;
|
||||
|
@ -70,9 +70,6 @@ Status SamplerRT::HandshakeRandomAccessOp(const RandomAccessOp *op) {
|
|||
}
|
||||
|
||||
Status SamplerRT::CreateSamplerTensor(std::shared_ptr<Tensor> *sample_ids, int64_t num_elements) {
|
||||
if (num_elements == 0) {
|
||||
RETURN_STATUS_UNEXPECTED("Invalid data, num of elements cannot be 0.");
|
||||
}
|
||||
if (col_desc_ == nullptr) {
|
||||
// a ColDescriptor for Tensor that holds SampleIds
|
||||
col_desc_ = std::make_unique<ColDescriptor>("sampleIds", DataType(DataType::DE_INT64), TensorImpl::kFlexible, 1);
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2019 Huawei Technologies Co., Ltd
|
||||
* Copyright 2019-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -70,7 +70,7 @@ Status SequentialSamplerRT::InitSampler() {
|
|||
CHECK_FAIL_RETURN_UNEXPECTED(start_index_ >= 0,
|
||||
"Invalid parameter, start_index must be greater than or equal to 0, but got " +
|
||||
std::to_string(start_index_) + ".\n");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(start_index_ < num_rows_,
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(start_index_ < num_rows_ || (num_rows_ == 0 && start_index_ == 0),
|
||||
"Invalid parameter, start_index must be less than num_rows, but got start_index: " +
|
||||
std::to_string(start_index_) + ", num_rows: " + std::to_string(num_rows_) + ".\n");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(num_samples_ >= 0,
|
||||
|
@ -83,7 +83,7 @@ Status SequentialSamplerRT::InitSampler() {
|
|||
num_samples_ = available_row_count;
|
||||
}
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(
|
||||
num_samples_ > 0 && samples_per_buffer_ > 0,
|
||||
(num_samples_ > 0 && samples_per_buffer_ > 0) || num_samples_ == 0,
|
||||
"Invalid parameter, samples_per_buffer must be greater than 0, but got " + std::to_string(samples_per_buffer_));
|
||||
samples_per_buffer_ = samples_per_buffer_ > num_samples_ ? num_samples_ : samples_per_buffer_;
|
||||
|
||||
|
|
|
@ -99,83 +99,16 @@ VOCOp::VOCOp(const TaskType &task_type, const std::string &task_mode, const std:
|
|||
const std::map<std::string, int32_t> &class_index, int32_t num_workers, int32_t rows_per_buffer,
|
||||
int32_t queue_size, bool decode, std::unique_ptr<DataSchema> data_schema,
|
||||
std::shared_ptr<SamplerRT> sampler)
|
||||
: ParallelOp(num_workers, queue_size, std::move(sampler)),
|
||||
: MappableLeafOp(num_workers, queue_size, std::move(sampler), rows_per_buffer),
|
||||
decode_(decode),
|
||||
row_cnt_(0),
|
||||
buf_cnt_(0),
|
||||
task_type_(task_type),
|
||||
usage_(task_mode),
|
||||
folder_path_(folder_path),
|
||||
class_index_(class_index),
|
||||
rows_per_buffer_(rows_per_buffer),
|
||||
data_schema_(std::move(data_schema)) {
|
||||
io_block_queues_.Init(num_workers_, queue_size);
|
||||
}
|
||||
|
||||
Status VOCOp::TraverseSampleIds(const std::shared_ptr<Tensor> &sample_ids, std::vector<int64_t> *keys) {
|
||||
for (auto itr = sample_ids->begin<int64_t>(); itr != sample_ids->end<int64_t>(); ++itr) {
|
||||
if ((*itr) > num_rows_) continue;
|
||||
keys->push_back(*itr);
|
||||
row_cnt_++;
|
||||
if (row_cnt_ % rows_per_buffer_ == 0) {
|
||||
RETURN_IF_NOT_OK(io_block_queues_[buf_cnt_++ % num_workers_]->Add(
|
||||
std::make_unique<IOBlock>(IOBlock(*keys, IOBlock::kDeIoBlockNone))));
|
||||
keys->clear();
|
||||
}
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status VOCOp::operator()() {
|
||||
RETURN_IF_NOT_OK(LaunchThreadsAndInitOp());
|
||||
std::unique_ptr<DataBuffer> sampler_buffer;
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
while (true) {
|
||||
std::vector<int64_t> keys;
|
||||
keys.reserve(rows_per_buffer_);
|
||||
while (sampler_buffer->eoe() == false) {
|
||||
std::shared_ptr<Tensor> sample_ids;
|
||||
RETURN_IF_NOT_OK(sampler_buffer->GetTensor(&sample_ids, 0, 0));
|
||||
if (sample_ids->type() != DataType(DataType::DE_INT64)) {
|
||||
RETURN_STATUS_UNEXPECTED("Invalid parameter, data type of Sampler Tensor isn't int64, got " +
|
||||
sample_ids->type().ToString());
|
||||
}
|
||||
RETURN_IF_NOT_OK(TraverseSampleIds(sample_ids, &keys));
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
}
|
||||
if (keys.empty() == false) {
|
||||
RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(
|
||||
std::make_unique<IOBlock>(IOBlock(keys, IOBlock::kDeIoBlockNone))));
|
||||
}
|
||||
if (IsLastIteration()) {
|
||||
std::unique_ptr<IOBlock> eoe_block = std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe);
|
||||
std::unique_ptr<IOBlock> eof_block = std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEof);
|
||||
RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::move(eoe_block)));
|
||||
RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::move(eof_block)));
|
||||
for (int32_t i = 0; i < num_workers_; i++) {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[i]->Add(std::make_unique<IOBlock>(std::vector<int64_t>(), IOBlock::kDeIoBlockNone)));
|
||||
}
|
||||
return Status::OK();
|
||||
} else {
|
||||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe)));
|
||||
}
|
||||
|
||||
if (epoch_sync_flag_) {
|
||||
// If epoch_sync_flag_ is set, then master thread sleeps until all the worker threads have finished their job for
|
||||
// the current epoch.
|
||||
RETURN_IF_NOT_OK(WaitForWorkers());
|
||||
}
|
||||
// If not the last repeat, self-reset and go to loop again.
|
||||
if (!IsLastIteration()) {
|
||||
RETURN_IF_NOT_OK(Reset());
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
}
|
||||
UpdateRepeatAndEpochCounter();
|
||||
}
|
||||
}
|
||||
|
||||
void VOCOp::Print(std::ostream &out, bool show_all) const {
|
||||
if (!show_all) {
|
||||
// Call the super class for displaying any common 1-liner info
|
||||
|
@ -191,14 +124,8 @@ void VOCOp::Print(std::ostream &out, bool show_all) const {
|
|||
}
|
||||
}
|
||||
|
||||
Status VOCOp::Reset() {
|
||||
MS_LOG(DEBUG) << Name() << " performing a self-reset.";
|
||||
RETURN_IF_NOT_OK(sampler_->ResetSampler());
|
||||
row_cnt_ = 0;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status VOCOp::LoadTensorRow(row_id_type row_id, const std::string &image_id, TensorRow *trow) {
|
||||
Status VOCOp::LoadTensorRow(row_id_type row_id, TensorRow *trow) {
|
||||
std::string image_id = image_ids_[row_id];
|
||||
if (task_type_ == TaskType::Segmentation) {
|
||||
std::shared_ptr<Tensor> image, target;
|
||||
const std::string kImageFile =
|
||||
|
@ -226,48 +153,6 @@ Status VOCOp::LoadTensorRow(row_id_type row_id, const std::string &image_id, Ten
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status VOCOp::LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db) {
|
||||
std::unique_ptr<TensorQTable> deq = std::make_unique<TensorQTable>();
|
||||
TensorRow trow;
|
||||
for (const uint64_t &key : keys) {
|
||||
RETURN_IF_NOT_OK(this->LoadTensorRow(key, image_ids_[key], &trow));
|
||||
deq->push_back(std::move(trow));
|
||||
}
|
||||
(*db)->set_tensor_table(std::move(deq));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status VOCOp::WorkerEntry(int32_t worker_id) {
|
||||
TaskManager::FindMe()->Post();
|
||||
int64_t buffer_id = worker_id;
|
||||
std::unique_ptr<IOBlock> io_block;
|
||||
RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block));
|
||||
while (io_block != nullptr) {
|
||||
if (io_block->wait() == true) {
|
||||
// Sync io_block is a signal that master thread wants us to pause and sync with other workers.
|
||||
// The last guy who comes to this sync point should reset the counter and wake up the master thread.
|
||||
if (++num_workers_paused_ == num_workers_) {
|
||||
wait_for_workers_post_.Set();
|
||||
}
|
||||
} else if (io_block->eoe() == true) {
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE)));
|
||||
buffer_id = worker_id;
|
||||
} else if (io_block->eof() == true) {
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, (std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF))));
|
||||
} else {
|
||||
std::vector<int64_t> keys;
|
||||
RETURN_IF_NOT_OK(io_block->GetKeys(&keys));
|
||||
if (keys.empty() == true) return Status::OK();
|
||||
std::unique_ptr<DataBuffer> db = std::make_unique<DataBuffer>(buffer_id, DataBuffer::kDeBFlagNone);
|
||||
RETURN_IF_NOT_OK(LoadBuffer(keys, &db));
|
||||
RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(db)));
|
||||
buffer_id += num_workers_;
|
||||
}
|
||||
RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block));
|
||||
}
|
||||
RETURN_STATUS_UNEXPECTED("Unexpected nullptr received in worker");
|
||||
}
|
||||
|
||||
Status VOCOp::ParseImageIds() {
|
||||
std::string image_sets_file;
|
||||
if (task_type_ == TaskType::Segmentation) {
|
||||
|
@ -378,11 +263,6 @@ Status VOCOp::ParseAnnotationBbox(const std::string &path) {
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status VOCOp::InitSampler() {
|
||||
RETURN_IF_NOT_OK(sampler_->HandshakeRandomAccessOp(this));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status VOCOp::LaunchThreadsAndInitOp() {
|
||||
if (tree_ == nullptr) {
|
||||
RETURN_STATUS_UNEXPECTED("Pipeline init failed, Execution tree not set.");
|
||||
|
|
|
@ -27,6 +27,7 @@
|
|||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/parallel_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
|
||||
#include "minddata/dataset/kernels/image/image_utils.h"
|
||||
#include "minddata/dataset/util/path.h"
|
||||
|
@ -45,7 +46,7 @@ class Queue;
|
|||
|
||||
using Annotation = std::vector<std::pair<std::string, std::vector<float>>>;
|
||||
|
||||
class VOCOp : public ParallelOp, public RandomAccessOp {
|
||||
class VOCOp : public MappableLeafOp {
|
||||
public:
|
||||
enum class TaskType { Segmentation = 0, Detection = 1 };
|
||||
|
||||
|
@ -175,17 +176,6 @@ class VOCOp : public ParallelOp, public RandomAccessOp {
|
|||
// Destructor
|
||||
~VOCOp() = default;
|
||||
|
||||
// Worker thread pulls a number of IOBlock from IOBlock Queue, make a buffer and push it to Connector
|
||||
// @param int32_t workerId - id of each worker
|
||||
// @return Status The status code returned
|
||||
Status WorkerEntry(int32_t worker_id) override;
|
||||
|
||||
// Main Loop of VOCOp
|
||||
// Master thread: Fill IOBlockQueue, then goes to sleep
|
||||
// Worker thread: pulls IOBlock from IOBlockQueue, work on it the put buffer to mOutConnector
|
||||
// @return Status The status code returned
|
||||
Status operator()() override;
|
||||
|
||||
// A print method typically used for debugging
|
||||
// @param out
|
||||
// @param show_all
|
||||
|
@ -219,16 +209,12 @@ class VOCOp : public ParallelOp, public RandomAccessOp {
|
|||
Status GetClassIndexing(std::vector<std::pair<std::string, std::vector<int32_t>>> *output_class_indexing) override;
|
||||
|
||||
private:
|
||||
// Initialize Sampler, calls sampler->Init() within
|
||||
// @return Status The status code returned
|
||||
Status InitSampler();
|
||||
|
||||
// Load a tensor row according to image id
|
||||
// @param row_id_type row_id - id for this tensor row
|
||||
// @param std::string image_id - image id
|
||||
// @param TensorRow row - image & target read into this tensor row
|
||||
// @return Status The status code returned
|
||||
Status LoadTensorRow(row_id_type row_id, const std::string &image_id, TensorRow *row);
|
||||
Status LoadTensorRow(row_id_type row_id, TensorRow *row) override;
|
||||
|
||||
// @param const std::string &path - path to the image file
|
||||
// @param const ColDescriptor &col - contains tensor implementation and datatype
|
||||
|
@ -241,11 +227,6 @@ class VOCOp : public ParallelOp, public RandomAccessOp {
|
|||
// @return Status The status code returned
|
||||
Status ReadAnnotationToTensor(const std::string &path, TensorRow *row);
|
||||
|
||||
// @param const std::vector<uint64_t> &keys - keys in ioblock
|
||||
// @param std::unique_ptr<DataBuffer> db
|
||||
// @return Status The status code returned
|
||||
Status LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db);
|
||||
|
||||
// Read image list from ImageSets
|
||||
// @return Status The status code returned
|
||||
Status ParseImageIds();
|
||||
|
@ -264,18 +245,9 @@ class VOCOp : public ParallelOp, public RandomAccessOp {
|
|||
// @return Status The status code returned
|
||||
void ParseNodeValue(XMLElement *bbox_node, const char *name, float *value);
|
||||
|
||||
// @param const std::shared_ptr<Tensor> &sample_ids - sample ids of tensor
|
||||
// @param std::vector<int64_t> *keys - image id
|
||||
// @return Status The status code returned
|
||||
Status TraverseSampleIds(const std::shared_ptr<Tensor> &sample_ids, std::vector<int64_t> *keys);
|
||||
|
||||
// Called first when function is called
|
||||
// @return Status The status code returned
|
||||
Status LaunchThreadsAndInitOp();
|
||||
|
||||
// Reset dataset state
|
||||
// @return Status The status code returned
|
||||
Status Reset() override;
|
||||
Status LaunchThreadsAndInitOp() override;
|
||||
|
||||
// Private function for computing the assignment of the column name map.
|
||||
// @return - Status
|
||||
|
|
|
@ -154,6 +154,7 @@ if(BUILD_MINDDATA STREQUAL "full")
|
|||
${MINDDATA_DIR}/engine/datasetops/map_op/cpu_map_job.cc
|
||||
${MINDDATA_DIR}/engine/datasetops/source/album_op.cc
|
||||
${MINDDATA_DIR}/engine/datasetops/source/mnist_op.cc
|
||||
${MINDDATA_DIR}/engine/datasetops/source/mappable_leaf_op.cc
|
||||
|
||||
${MINDDATA_DIR}/engine/datasetops/source/io_block.cc
|
||||
${MINDDATA_DIR}/engine/opt/pre/getter_pass.cc
|
||||
|
|
Loading…
Reference in New Issue