!7421 export script for GCN GAT Network

Merge pull request !7421 from 于振华/master
This commit is contained in:
mindspore-ci-bot 2020-10-17 17:58:47 +08:00 committed by Gitee
commit 1ebcca1259
3 changed files with 125 additions and 8 deletions

View File

@ -210,9 +210,9 @@ class FakeQuantWithMinMaxVars(PrimitiveWithInfer):
raise ValueError(f"For '{self.name}', the shape of \'min\' cannot broadcast to the shape of \'x\'.")
def infer_shape(self, x_shape, min_shape, max_shape):
validator.check_integer("x rank", len(x_shape), 1, Rel.GE, self.name)
validator.check_int(len(x_shape), 1, Rel.GE, "x rank", self.name)
validator.check("min shape", min_shape, "max shape", max_shape, Rel.EQ, self.name)
validator.check_integer("min shape", len(min_shape), 1, Rel.EQ, self.name)
validator.check_int(len(min_shape), 1, Rel.EQ, "min shape", self.name)
self.check_broadcast(min_shape, x_shape)
return x_shape
@ -273,10 +273,10 @@ class FakeQuantWithMinMaxVarsGradient(PrimitiveWithInfer):
raise ValueError(f"For '{self.name}', the shape of \'min\' cannot broadcast to the shape of \'x\'.")
def infer_shape(self, dout_shape, x_shape, min_shape, max_shape):
validator.check_integer("x rank", len(x_shape), 1, Rel.GE, self.name)
validator.check_int(len(x_shape), 1, Rel.GE, "x rank", self.name)
validator.check("dout shape", dout_shape, "x shape", x_shape, Rel.EQ, self.name)
validator.check("min shape", min_shape, "max shape", max_shape, Rel.EQ, self.name)
validator.check_integer("min shape", len(min_shape), 1, Rel.EQ, self.name)
validator.check_int(len(min_shape), 1, Rel.EQ, "min shape", self.name)
self.check_broadcast(min_shape, x_shape)
return x_shape, min_shape, max_shape
@ -325,9 +325,9 @@ class FakeQuantWithMinMaxVarsPerChannel(PrimitiveWithInfer):
'narrow_range', narrow_range, (bool,), self.name)
def infer_shape(self, x_shape, min_shape, max_shape):
validator.check_integer("x rank", len(x_shape), 1, Rel.GE, self.name)
validator.check_int(len(x_shape), 1, Rel.GE, "x rank", self.name)
validator.check("min shape", min_shape, "max shape", max_shape, Rel.EQ, self.name)
validator.check_integer("min shape", len(min_shape), 1, Rel.EQ, self.name)
validator.check_int(len(min_shape), 1, Rel.EQ, "min shape", self.name)
validator.check("min shape", min_shape[0], "x shape", x_shape[-1], Rel.EQ, self.name)
return x_shape
@ -382,10 +382,10 @@ class FakeQuantWithMinMaxVarsPerChannelGradient(PrimitiveWithInfer):
'narrow_range', narrow_range, (bool,), self.name)
def infer_shape(self, dout_shape, x_shape, min_shape, max_shape):
validator.check_integer("x rank", len(x_shape), 1, Rel.GE, self.name)
validator.check_int(len(x_shape), 1, Rel.GE, "x rank", self.name)
validator.check("dout shape", dout_shape, "x shape", x_shape, Rel.EQ, self.name)
validator.check("min shape", min_shape, "max shape", max_shape, Rel.EQ, self.name)
validator.check_integer("min shape", len(min_shape), 1, Rel.EQ, self.name)
validator.check_int(len(min_shape), 1, Rel.EQ, "min shape", self.name)
validator.check("min shape", min_shape[0], "x shape", x_shape[-1], Rel.EQ, self.name)
return x_shape, min_shape, max_shape

View File

@ -0,0 +1,64 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""export checkpoint file into air models"""
import argparse
import numpy as np
from mindspore import Tensor, context
from mindspore.train.serialization import load_checkpoint, export
from src.gat import GAT
from src.config import GatConfig
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='GAT_export')
parser.add_argument('--ckpt_file', type=str, default='./ckpts/gat.ckpt', help='GAT ckpt file.')
parser.add_argument('--output_file', type=str, default='gat.air', help='GAT output air name.')
parser.add_argument('--dataset', type=str, default='cora', help='GAT dataset name.')
args_opt = parser.parse_args()
if args_opt.dataset == "citeseer":
feature_size = [1, 3312, 3703]
biases_size = [1, 3312, 3312]
num_classes = 6
else:
feature_size = [1, 2708, 1433]
biases_size = [1, 2708, 2708]
num_classes = 7
hid_units = GatConfig.hid_units
n_heads = GatConfig.n_heads
feature = np.random.uniform(0.0, 1.0, size=feature_size).astype(np.float32)
biases = np.random.uniform(0.0, 1.0, size=biases_size).astype(np.float64)
feature_size = feature.shape[2]
num_nodes = feature.shape[1]
gat_net = GAT(feature_size,
num_classes,
num_nodes,
hid_units,
n_heads,
attn_drop=0.0,
ftr_drop=0.0)
gat_net.set_train(False)
load_checkpoint(args_opt.ckpt_file, net=gat_net)
gat_net.add_flags_recursive(fp16=True)
export(gat_net, Tensor(feature), Tensor(biases), file_name=args_opt.output_file, file_format="AIR")

View File

@ -0,0 +1,53 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""export checkpoint file into air models"""
import argparse
import numpy as np
from mindspore import Tensor, context
from mindspore.train.serialization import load_checkpoint, export
from src.gcn import GCN
from src.config import ConfigGCN
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='GCN_export')
parser.add_argument('--ckpt_file', type=str, default='', help='GCN ckpt file.')
parser.add_argument('--output_file', type=str, default='gcn.air', help='GCN output air name.')
parser.add_argument('--dataset', type=str, default='cora', help='GCN dataset name.')
args_opt = parser.parse_args()
config = ConfigGCN()
if args_opt.dataset == "cora":
input_dim = 1433
class_num = 7
adj = Tensor(np.zeros((2708, 2708), np.float64))
feature = Tensor(np.zeros((2708, 1433), np.float32))
else:
input_dim = 3703
class_num = 6
adj = Tensor(np.zeros((3312, 3312), np.float64))
feature = Tensor(np.zeros((3312, 3703), np.float32))
gcn_net = GCN(config, input_dim, class_num)
gcn_net.set_train(False)
load_checkpoint(args_opt.ckpt_file, net=gcn_net)
gcn_net.add_flags_recursive(fp16=True)
export(gcn_net, adj, feature, file_name=args_opt.output_file, file_format="AIR")