forked from mindspore-Ecosystem/mindspore
Refator eltwisegrad cpu ops
This commit is contained in:
parent
d346a861bc
commit
1d5f77d075
|
@ -14,15 +14,16 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
#include <cmath>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <map>
|
||||
#include "backend/kernel_compiler/cpu/eltwise_grad_cpu_kernel.h"
|
||||
#include "common/thread_pool.h"
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
template <typename T>
|
||||
void EltWiseGradCPUKernel::ReluGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
void EltWiseGradCPUKernel<T>::ReluGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
if (input2[i] > 0) {
|
||||
out[i] = input1[i];
|
||||
|
@ -33,7 +34,7 @@ void EltWiseGradCPUKernel::ReluGrad(const T *input1, const T *input2, T *out, si
|
|||
}
|
||||
|
||||
template <typename T>
|
||||
void EltWiseGradCPUKernel::ReLU6Grad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
void EltWiseGradCPUKernel<T>::ReLU6Grad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
if (input2[i] > 0 && input2[i] <= 6) {
|
||||
out[i] = input1[i];
|
||||
|
@ -44,7 +45,7 @@ void EltWiseGradCPUKernel::ReLU6Grad(const T *input1, const T *input2, T *out, s
|
|||
}
|
||||
|
||||
template <typename T>
|
||||
void EltWiseGradCPUKernel::AbsGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
void EltWiseGradCPUKernel<T>::AbsGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
if (input1[i] > 0) {
|
||||
out[i] = input2[i];
|
||||
|
@ -57,21 +58,21 @@ void EltWiseGradCPUKernel::AbsGrad(const T *input1, const T *input2, T *out, siz
|
|||
}
|
||||
|
||||
template <typename T>
|
||||
void EltWiseGradCPUKernel::SigmoidGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
void EltWiseGradCPUKernel<T>::SigmoidGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
out[i] = input2[i] * input1[i] * (1 - input1[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void EltWiseGradCPUKernel::SqrtGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
void EltWiseGradCPUKernel<T>::SqrtGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
out[i] = input2[i] / (input1[i] * 2);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void EltWiseGradCPUKernel::TanhGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
void EltWiseGradCPUKernel<T>::TanhGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
T tmp = input1[i] * input1[i];
|
||||
out[i] = input2[i] * (1 - tmp);
|
||||
|
@ -79,7 +80,7 @@ void EltWiseGradCPUKernel::TanhGrad(const T *input1, const T *input2, T *out, si
|
|||
}
|
||||
|
||||
template <typename T>
|
||||
void EltWiseGradCPUKernel::GeluGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
void EltWiseGradCPUKernel<T>::GeluGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
T x = input2[i];
|
||||
auto double_x = static_cast<T>(x);
|
||||
|
@ -91,7 +92,7 @@ void EltWiseGradCPUKernel::GeluGrad(const T *input1, const T *input2, T *out, si
|
|||
}
|
||||
|
||||
template <typename T>
|
||||
void EltWiseGradCPUKernel::AsinGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
void EltWiseGradCPUKernel<T>::AsinGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
T dividend = input2[i];
|
||||
T divisor = sqrt(1 - input1[i] * input1[i]);
|
||||
|
@ -112,7 +113,7 @@ void EltWiseGradCPUKernel::AsinGrad(const T *input1, const T *input2, T *out, si
|
|||
}
|
||||
|
||||
template <typename T>
|
||||
void EltWiseGradCPUKernel::ACosGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
void EltWiseGradCPUKernel<T>::ACosGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
T dividend = -input2[i];
|
||||
T divisor = sqrt(1 - input1[i] * input1[i]);
|
||||
|
@ -133,7 +134,7 @@ void EltWiseGradCPUKernel::ACosGrad(const T *input1, const T *input2, T *out, si
|
|||
}
|
||||
|
||||
template <typename T>
|
||||
void EltWiseGradCPUKernel::AtanGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
void EltWiseGradCPUKernel<T>::AtanGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
T dividend = input2[i];
|
||||
T divisor = 1 + input1[i] * input1[i];
|
||||
|
@ -154,7 +155,7 @@ void EltWiseGradCPUKernel::AtanGrad(const T *input1, const T *input2, T *out, si
|
|||
}
|
||||
|
||||
template <typename T>
|
||||
void EltWiseGradCPUKernel::AsinhGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
void EltWiseGradCPUKernel<T>::AsinhGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
T dividend = input2[i];
|
||||
T divisor = sqrt(1 + input1[i] * input1[i]);
|
||||
|
@ -175,7 +176,7 @@ void EltWiseGradCPUKernel::AsinhGrad(const T *input1, const T *input2, T *out, s
|
|||
}
|
||||
|
||||
template <typename T>
|
||||
void EltWiseGradCPUKernel::AcoshGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
void EltWiseGradCPUKernel<T>::AcoshGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
T dividend = input2[i];
|
||||
T divisor = sqrt(input1[i] * input1[i] - 1);
|
||||
|
@ -195,132 +196,46 @@ void EltWiseGradCPUKernel::AcoshGrad(const T *input1, const T *input2, T *out, s
|
|||
}
|
||||
}
|
||||
|
||||
void EltWiseGradCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
template <typename T>
|
||||
void EltWiseGradCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node);
|
||||
if (kernel_name == "ReluGrad") {
|
||||
operate_type_ = RELUGRAD;
|
||||
} else if (kernel_name == "ReLU6Grad") {
|
||||
operate_type_ = RELU6GRAD;
|
||||
} else if (kernel_name == "SigmoidGrad") {
|
||||
operate_type_ = SIGMOIDGRAD;
|
||||
} else if (kernel_name == "AbsGrad") {
|
||||
operate_type_ = ABSGRAD;
|
||||
} else if (kernel_name == "TanhGrad") {
|
||||
operate_type_ = TANHGRAD;
|
||||
} else if (kernel_name == "SqrtGrad") {
|
||||
operate_type_ = SQRTGRAD;
|
||||
} else if (kernel_name == "GeLUGrad") {
|
||||
operate_type_ = GELUGRAD;
|
||||
} else if (kernel_name == "AsinGrad") {
|
||||
operate_type_ = ASINGRAD;
|
||||
} else if (kernel_name == "ACosGrad") {
|
||||
operate_type_ = ACOSGRAD;
|
||||
} else if (kernel_name == "AtanGrad") {
|
||||
operate_type_ = ATANGRAD;
|
||||
} else if (kernel_name == "AsinhGrad") {
|
||||
operate_type_ = ASINHGRAD;
|
||||
} else if (kernel_name == "AcoshGrad") {
|
||||
operate_type_ = ACOSHGRAD;
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "Not support " << kernel_name;
|
||||
}
|
||||
|
||||
input_shape0_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
input_shape1_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
output_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
if (output_shape_.size() == 0) {
|
||||
output_shape_.insert(output_shape_.begin(), 1);
|
||||
}
|
||||
size_t l = input_shape0_.size();
|
||||
for (size_t i = 0; i < output_shape_.size() - l; ++i) {
|
||||
input_shape0_.insert(input_shape0_.begin(), 1);
|
||||
}
|
||||
l = input_shape1_.size();
|
||||
for (size_t i = 0; i < output_shape_.size() - l; ++i) {
|
||||
input_shape1_.insert(input_shape1_.begin(), 1);
|
||||
}
|
||||
CPUKernelUtils::GetElementNumEveryDim(input_shape0_, &input_element_num0_);
|
||||
CPUKernelUtils::GetElementNumEveryDim(input_shape1_, &input_element_num1_);
|
||||
CPUKernelUtils::GetElementNumEveryDim(output_shape_, &output_element_num_);
|
||||
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||
if (dtype_ != AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 1)) {
|
||||
MS_LOG(EXCEPTION) << "Input0 and input1 must has the same data type";
|
||||
}
|
||||
}
|
||||
|
||||
bool EltWiseGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (dtype_ == kNumberTypeInt32 || dtype_ == kNumberTypeInt16) {
|
||||
LaunchKernel<int>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat32 || dtype_ == kNumberTypeFloat16 || dtype_ == kNumberTypeFloat64) {
|
||||
LaunchKernel<float>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeInt64) {
|
||||
LaunchKernel<int64_t>(inputs, outputs);
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "Data type is " << TypeIdLabel(dtype_) << "is not support.";
|
||||
}
|
||||
return true;
|
||||
kernel_name_ = AnfAlgo::GetCNodeName(kernel_node);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void EltWiseGradCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
|
||||
bool EltWiseGradCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
static const std::map<std::string,
|
||||
std::function<void(EltWiseGradCPUKernel *, const T *, const T *, T *, size_t, size_t)>>
|
||||
elt_map{{"ReluGrad", &EltWiseGradCPUKernel<T>::ReluGrad}, {"ReLU6Grad", &EltWiseGradCPUKernel<T>::ReLU6Grad},
|
||||
{"SigmoidGrad", &EltWiseGradCPUKernel<T>::SigmoidGrad}, {"AbsGrad", &EltWiseGradCPUKernel<T>::AbsGrad},
|
||||
{"TanhGrad", &EltWiseGradCPUKernel<T>::TanhGrad}, {"SqrtGrad", &EltWiseGradCPUKernel<T>::SqrtGrad},
|
||||
{"GeLUGrad", &EltWiseGradCPUKernel<T>::GeluGrad}, {"AsinGrad", &EltWiseGradCPUKernel<T>::AsinGrad},
|
||||
{"ACosGrad", &EltWiseGradCPUKernel<T>::ACosGrad}, {"AtanGrad", &EltWiseGradCPUKernel<T>::AtanGrad},
|
||||
{"AsinhGrad", &EltWiseGradCPUKernel<T>::AsinhGrad}, {"AcoshGrad", &EltWiseGradCPUKernel<T>::AcoshGrad}};
|
||||
T *input1 = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
T *input2 = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
T *output = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
|
||||
size_t lens = outputs[0]->size > 0 ? static_cast<size_t>(outputs[0]->size / sizeof(T)) : 1;
|
||||
auto max_thread_num = std::thread::hardware_concurrency();
|
||||
size_t thread_num = lens < 128 * max_thread_num ? std::ceil(lens / 128.0) : max_thread_num;
|
||||
MS_LOG(INFO) << "Lens=" << lens << "; use thread_num=" << thread_num << "; max_thread_num: " << max_thread_num;
|
||||
std::vector<std::thread> threads;
|
||||
if (thread_num < 1) {
|
||||
MS_LOG(ERROR) << "Invalid value: thread_num " << thread_num;
|
||||
return;
|
||||
}
|
||||
threads.reserve(thread_num);
|
||||
size_t count = outputs[0]->size > 0 ? static_cast<size_t>(outputs[0]->size / sizeof(T)) : 1;
|
||||
auto max_thread_num = common::ThreadPool::GetInstance().GetSyncRunThreadNum();
|
||||
const float block_size = 128.0;
|
||||
size_t thread_num = count < block_size * max_thread_num ? std::ceil(count / block_size) : max_thread_num;
|
||||
std::vector<common::Task> tasks;
|
||||
size_t start = 0;
|
||||
size_t once_compute_size = (lens + thread_num - 1) / thread_num;
|
||||
if (once_compute_size < 1) {
|
||||
MS_LOG(ERROR) << "Invalid value: once_compute_size " << once_compute_size;
|
||||
return;
|
||||
}
|
||||
while (start < lens) {
|
||||
size_t end = (start + once_compute_size) > lens ? lens : (start + once_compute_size);
|
||||
if (operate_type_ == RELUGRAD) {
|
||||
threads.emplace_back(std::thread(&EltWiseGradCPUKernel::ReluGrad<T>, this, input1, input2, output, start, end));
|
||||
} else if (operate_type_ == RELU6GRAD) {
|
||||
threads.emplace_back(std::thread(&EltWiseGradCPUKernel::ReLU6Grad<T>, this, input1, input2, output, start, end));
|
||||
} else if (operate_type_ == ABSGRAD) {
|
||||
threads.emplace_back(std::thread(&EltWiseGradCPUKernel::AbsGrad<T>, this, input1, input2, output, start, end));
|
||||
} else if (operate_type_ == SIGMOIDGRAD) {
|
||||
threads.emplace_back(
|
||||
std::thread(&EltWiseGradCPUKernel::SigmoidGrad<T>, this, input1, input2, output, start, end));
|
||||
} else if (operate_type_ == TANHGRAD) {
|
||||
threads.emplace_back(std::thread(&EltWiseGradCPUKernel::TanhGrad<T>, this, input1, input2, output, start, end));
|
||||
} else if (operate_type_ == SQRTGRAD) {
|
||||
threads.emplace_back(std::thread(&EltWiseGradCPUKernel::SqrtGrad<T>, this, input1, input2, output, start, end));
|
||||
} else if (operate_type_ == GELUGRAD) {
|
||||
threads.emplace_back(std::thread(&EltWiseGradCPUKernel::GeluGrad<T>, this, input1, input2, output, start, end));
|
||||
} else if (operate_type_ == ASINGRAD) {
|
||||
threads.emplace_back(std::thread(&EltWiseGradCPUKernel::AsinGrad<T>, this, input1, input2, output, start, end));
|
||||
} else if (operate_type_ == ACOSGRAD) {
|
||||
threads.emplace_back(std::thread(&EltWiseGradCPUKernel::ACosGrad<T>, this, input1, input2, output, start, end));
|
||||
} else if (operate_type_ == ATANGRAD) {
|
||||
threads.emplace_back(std::thread(&EltWiseGradCPUKernel::AtanGrad<T>, this, input1, input2, output, start, end));
|
||||
} else if (operate_type_ == ASINHGRAD) {
|
||||
threads.emplace_back(std::thread(&EltWiseGradCPUKernel::AsinhGrad<T>, this, input1, input2, output, start, end));
|
||||
} else if (operate_type_ == ACOSHGRAD) {
|
||||
threads.emplace_back(std::thread(&EltWiseGradCPUKernel::AcoshGrad<T>, this, input1, input2, output, start, end));
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "Not support " << operate_type_;
|
||||
}
|
||||
size_t once_compute_size = (count + thread_num - 1) / thread_num;
|
||||
while (start < count) {
|
||||
size_t end = (start + once_compute_size) > count ? count : (start + once_compute_size);
|
||||
auto block = [&, start, end]() {
|
||||
elt_map.at(kernel_name_)(this, input1, input2, output, start, end);
|
||||
return common::SUCCESS;
|
||||
};
|
||||
tasks.emplace_back(block);
|
||||
start += once_compute_size;
|
||||
}
|
||||
for (size_t i = 0; i < threads.size(); ++i) {
|
||||
threads[i].join();
|
||||
}
|
||||
common::ThreadPool::GetInstance().SyncRun(tasks);
|
||||
return true;
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -18,11 +18,13 @@
|
|||
#include <memory>
|
||||
#include <vector>
|
||||
#include <limits>
|
||||
#include <string>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class EltWiseGradCPUKernel : public CPUKernel {
|
||||
public:
|
||||
EltWiseGradCPUKernel() = default;
|
||||
|
@ -32,95 +34,75 @@ class EltWiseGradCPUKernel : public CPUKernel {
|
|||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
template <typename T>
|
||||
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
template <typename T>
|
||||
void ReluGrad(const T *input1, const T *input2, T *out, size_t start, size_t end);
|
||||
template <typename T>
|
||||
void ReLU6Grad(const T *input1, const T *input2, T *out, size_t start, size_t end);
|
||||
template <typename T>
|
||||
void AbsGrad(const T *input1, const T *input2, T *out, size_t start, size_t end);
|
||||
template <typename T>
|
||||
void SigmoidGrad(const T *input1, const T *input2, T *out, size_t start, size_t end);
|
||||
template <typename T>
|
||||
void SqrtGrad(const T *input1, const T *input2, T *out, size_t start, size_t end);
|
||||
template <typename T>
|
||||
void TanhGrad(const T *input1, const T *input2, T *out, size_t start, size_t end);
|
||||
template <typename T>
|
||||
void GeluGrad(const T *input1, const T *input2, T *out, size_t start, size_t end);
|
||||
template <typename T>
|
||||
void AsinGrad(const T *input1, const T *input2, T *out, size_t start, size_t end);
|
||||
template <typename T>
|
||||
void ACosGrad(const T *input1, const T *input2, T *out, size_t start, size_t end);
|
||||
template <typename T>
|
||||
void AtanGrad(const T *input1, const T *input2, T *out, size_t start, size_t end);
|
||||
template <typename T>
|
||||
void AsinhGrad(const T *input1, const T *input2, T *out, size_t start, size_t end);
|
||||
template <typename T>
|
||||
void AcoshGrad(const T *input1, const T *input2, T *out, size_t start, size_t end);
|
||||
std::vector<size_t> input_shape0_;
|
||||
std::vector<size_t> input_shape1_;
|
||||
std::vector<size_t> input_element_num0_;
|
||||
std::vector<size_t> input_element_num1_;
|
||||
std::vector<size_t> output_shape_;
|
||||
std::vector<size_t> output_element_num_;
|
||||
OperateType operate_type_{RELUGRAD};
|
||||
TypeId dtype_{kTypeUnknown};
|
||||
|
||||
std::string kernel_name_ = "";
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
ReluGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
EltWiseGradCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
EltWiseGradCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
ReLU6Grad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
EltWiseGradCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
EltWiseGradCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
AbsGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
EltWiseGradCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
EltWiseGradCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
SigmoidGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
EltWiseGradCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
EltWiseGradCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
SqrtGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
EltWiseGradCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
EltWiseGradCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
TanhGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
EltWiseGradCPUKernel);
|
||||
MS_REG_CPU_KERNEL(GeLUGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
EltWiseGradCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
EltWiseGradCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(GeLUGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
EltWiseGradCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
AsinGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
EltWiseGradCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
EltWiseGradCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
ACosGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
EltWiseGradCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
EltWiseGradCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
AtanGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
EltWiseGradCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
EltWiseGradCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
AsinhGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
EltWiseGradCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
EltWiseGradCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
AcoshGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
EltWiseGradCPUKernel);
|
||||
EltWiseGradCPUKernel, float);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
Loading…
Reference in New Issue