forked from mindspore-Ecosystem/mindspore
fix mistakes in docstring
This commit is contained in:
parent
c84253d9cd
commit
1c4ab31231
|
@ -16,10 +16,8 @@
|
|||
|
||||
import numpy as np
|
||||
|
||||
from mindspore import Tensor
|
||||
from .metric import LabelAgnosticMetric
|
||||
from ... import _operators as ops
|
||||
from ...explanation._attribution.attribution import Attribution
|
||||
from ..._utils import calc_correlation
|
||||
|
||||
|
||||
|
@ -35,12 +33,12 @@ class ClassSensitivity(LabelAgnosticMetric):
|
|||
|
||||
"""
|
||||
|
||||
def evaluate(self, explainer: Attribution, inputs: Tensor) -> np.ndarray:
|
||||
def evaluate(self, explainer, inputs):
|
||||
"""
|
||||
Evaluate class sensitivity on a single data sample.
|
||||
|
||||
Args:
|
||||
explainer (Attribution): The explainer to be evaluated, see `mindspore.explainer.explanation`.
|
||||
explainer (Explanation): The explainer to be evaluated, see `mindspore.explainer.explanation`.
|
||||
inputs (Tensor): A data sample, a 4D tensor of shape :math:`(N, C, H, W)`.
|
||||
|
||||
Returns:
|
||||
|
@ -49,7 +47,8 @@ class ClassSensitivity(LabelAgnosticMetric):
|
|||
Examples:
|
||||
>>> import mindspore as ms
|
||||
>>> from mindspore.explainer.explanation import Gradient
|
||||
>>> gradient = Gradient()
|
||||
>>> model = resnet(10)
|
||||
>>> gradient = Gradient(model)
|
||||
>>> x = ms.Tensor(np.random.rand(1, 3, 224, 224), ms.float32)
|
||||
>>> class_sensitivity = ClassSensitivity()
|
||||
>>> res = class_sensitivity.evaluate(gradient, x)
|
||||
|
|
|
@ -14,21 +14,14 @@
|
|||
# ============================================================================
|
||||
"""Robustness."""
|
||||
|
||||
from typing import Optional, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import log
|
||||
from .metric import LabelSensitiveMetric
|
||||
from ...explanation._attribution import Attribution
|
||||
from ...explanation._attribution._perturbation.replacement import RandomPerturb
|
||||
|
||||
_Array = np.ndarray
|
||||
_Label = Union[ms.Tensor, int]
|
||||
|
||||
|
||||
class Robustness(LabelSensitiveMetric):
|
||||
"""
|
||||
|
@ -39,12 +32,12 @@ class Robustness(LabelSensitiveMetric):
|
|||
num_labels (int): Number of classes in the dataset.
|
||||
|
||||
Examples:
|
||||
>>> from mindspore.explainer.benchmark import Robustness
|
||||
>>> num_labels = 100
|
||||
>>> robustness = Robustness(num_labels)
|
||||
>>> from mindspore.explainer.benchmark import Robustness
|
||||
>>> num_labels = 100
|
||||
>>> robustness = Robustness(num_labels)
|
||||
"""
|
||||
|
||||
def __init__(self, num_labels: int, activation_fn=nn.Softmax()):
|
||||
def __init__(self, num_labels, activation_fn=nn.Softmax()):
|
||||
super().__init__(num_labels)
|
||||
|
||||
self._perturb = RandomPerturb()
|
||||
|
@ -52,12 +45,7 @@ class Robustness(LabelSensitiveMetric):
|
|||
self._threshold = 0.1 # threshold to generate perturbation
|
||||
self._activation_fn = activation_fn
|
||||
|
||||
def evaluate(self,
|
||||
explainer: Attribution,
|
||||
inputs: Tensor,
|
||||
targets: _Label,
|
||||
saliency: Optional[Tensor] = None
|
||||
) -> _Array:
|
||||
def evaluate(self, explainer, inputs, targets, saliency=None):
|
||||
"""
|
||||
Evaluate robustness on single sample.
|
||||
|
||||
|
|
|
@ -48,7 +48,7 @@ class Ablation:
|
|||
inputs (np.ndarray): Input array to perturb. The first dim of inputs is assumed to be the batch size, i.e.,
|
||||
number of samples.
|
||||
reference (np.ndarray or float): Array of values to replace the elements in the original inputs. The shape
|
||||
of reference must math the inputs. If scalar is provided, the perturbed elements will be assigned the
|
||||
of reference must match the inputs. If scalar is provided, the perturbed elements will be assigned the
|
||||
given value..
|
||||
masks (np.ndarray): Several boolean array to mark the perturbed positions. True marks the pixels to be
|
||||
perturbed, otherwise the pixels will be kept. The shape of masks is assumed to be
|
||||
|
@ -134,9 +134,9 @@ class AblationWithSaliency(Ablation):
|
|||
saliency is expected to be: [batch_size, optional(num_channels), *spatial_size]. If multi-channel
|
||||
saliency is provided, an averaged saliency will be taken to calculate pixel order in spatial dimension.
|
||||
num_channels (optional[int]): Number of channels of the input data. In order to match the shape of inputs,
|
||||
num_channels should be provided when input data have channels dimension, even if num_channel. If None is
|
||||
provided, the inputs is assumed to be no-channel data, and the generated mask will have no channel
|
||||
dimension. Default: None.
|
||||
num_channels should be provided when input data have channels dimension, even if num_channel is 1.
|
||||
If None is provided, the inputs is assumed to be no-channel data, and the generated mask will have
|
||||
no channel dimension. Default: None.
|
||||
|
||||
Return:
|
||||
mask (np.ndarray): boolen mask for generate perturbations.
|
||||
|
|
|
@ -15,7 +15,6 @@
|
|||
"""Occlusion explainer."""
|
||||
|
||||
import math
|
||||
from typing import Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
from numpy.lib.stride_tricks import as_strided
|
||||
|
@ -23,15 +22,11 @@ from numpy.lib.stride_tricks import as_strided
|
|||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn import Cell
|
||||
from .ablation import Ablation
|
||||
from .perturbation import PerturbationAttribution
|
||||
from .replacement import Constant
|
||||
from ...._utils import abs_max
|
||||
|
||||
_Array = np.ndarray
|
||||
_Label = Union[int, Tensor]
|
||||
|
||||
|
||||
def _generate_patches(array, window_size, stride):
|
||||
"""View as windows."""
|
||||
|
@ -67,25 +62,26 @@ class Occlusion(PerturbationAttribution):
|
|||
network (Cell): Specify the black-box model to be explained.
|
||||
|
||||
Inputs:
|
||||
inputs (Tensor): The input data to be explained, a 4D tensor of shape :math:`(N, C, H, W)`.
|
||||
targets (Tensor, int): The label of interest. It should be a 1D or 0D tensor, or an integer.
|
||||
If it is a 1D tensor, its length should be the same as `inputs`.
|
||||
inputs (Tensor): The input data to be explained, a 4D tensor of shape :math:`(N, C, H, W)`.
|
||||
targets (Tensor, int): The label of interest. It should be a 1D or 0D tensor, or an integer.
|
||||
If it is a 1D tensor, its length should be the same as `inputs`.
|
||||
|
||||
Outputs:
|
||||
Tensor, a 4D tensor of shape :math:`(N, 1, H, W)`.
|
||||
Tensor, a 4D tensor of shape :math:`(N, 1, H, W)`.
|
||||
|
||||
Example:
|
||||
>>> from mindspore.explainer.explanation import Occlusion
|
||||
>>> net = resnet50(10)
|
||||
>>> from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
>>> network = resnet50(10)
|
||||
>>> param_dict = load_checkpoint("resnet50.ckpt")
|
||||
>>> load_param_into_net(net, param_dict)
|
||||
>>> occlusion = Occlusion(net)
|
||||
>>> x = ms.Tensor(np.random.rand([1, 3, 224, 224]), ms.float32)
|
||||
>>> load_param_into_net(network, param_dict)
|
||||
>>> occlusion = Occlusion(network)
|
||||
>>> x = Tensor(np.random.rand([1, 3, 224, 224]), ms.float32)
|
||||
>>> label = 1
|
||||
>>> saliency = occlusion(x, label)
|
||||
"""
|
||||
|
||||
def __init__(self, network: Cell, activation_fn: Cell = nn.Softmax()):
|
||||
def __init__(self, network, activation_fn=nn.Softmax()):
|
||||
super().__init__(network, activation_fn)
|
||||
|
||||
self._ablation = Ablation(perturb_mode='Deletion')
|
||||
|
@ -94,7 +90,7 @@ class Occlusion(PerturbationAttribution):
|
|||
self._num_sample_per_dim = 32 # specify the number of perturbations each dimension.
|
||||
self._num_per_eval = 32 # number of perturbations each evaluation step.
|
||||
|
||||
def __call__(self, inputs: Tensor, targets: _Label) -> Tensor:
|
||||
def __call__(self, inputs, targets):
|
||||
"""Call function for 'Occlusion'."""
|
||||
self._verify_data(inputs, targets)
|
||||
|
||||
|
@ -145,11 +141,11 @@ class Occlusion(PerturbationAttribution):
|
|||
outputs_diff.reshape(outputs_diff.shape + (1,) * (len(masks.shape) - 2)) * masks).sum(axis=1).clip(1e-6)
|
||||
weights += masks.sum(axis=1)
|
||||
|
||||
attribution = self._aggregation_fn(ms.Tensor(total_attribution / weights))
|
||||
attribution = self._aggregation_fn(Tensor(total_attribution / weights))
|
||||
return attribution
|
||||
|
||||
@staticmethod
|
||||
def _generate_masks(inputs: Tensor, window_size: Tuple[int, ...], strides: Tuple[int, ...]) -> _Array:
|
||||
def _generate_masks(inputs, window_size, strides):
|
||||
"""Generate masks to perturb contiguous regions."""
|
||||
total_dim = np.prod(inputs.shape[1:]).item()
|
||||
template = np.arange(total_dim).reshape(inputs.shape[1:])
|
||||
|
|
Loading…
Reference in New Issue