!6155 modify path of ut and st of mdp

Merge pull request !6155 from byweng/master
This commit is contained in:
mindspore-ci-bot 2020-09-14 22:30:52 +08:00 committed by Gitee
commit 1b956c77e0
11 changed files with 68 additions and 8 deletions

View File

@ -452,14 +452,14 @@ for eval_data in ds_eval.create_dict_iterator():
### Examples
Examples in [mindspore/tests/st/probability](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability) are as follows:
- [Bayesian LeNet](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_bnn_layer.py). How to construct and train a LeNet by bnn layers.
- [Transform whole DNN model to BNN](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_transform_bnn_model.py): How to transform whole DNN model to BNN.
- [Transform DNN layer to BNN](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_transform_bnn_layer.py): How to transform one certainty type of layer in DNN model to corresponding Bayesian layer.
- [Variational Auto-Encoder](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_gpu_svi_vae.py): Variational Auto-Encoder (VAE) model trained with MNIST to generate sample images.
- [Conditional Variational Auto-Encoder](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_gpu_svi_cvae.py): Conditional Variational Auto-Encoder (CVAE) model trained with MNIST to generate sample images.
- [VAE-GAN](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_gpu_vae_gan.py): VAE-GAN model trained with MNIST to generate sample images.
- [Uncertainty Estimation](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_uncertainty.py): Evaluate uncertainty of model and data..
- [Bayesian LeNet](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/bnn_layers/test_bnn_layer.py). How to construct and train a LeNet by bnn layers.
- [Transform whole DNN model to BNN](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/transforms/test_transform_bnn_model.py): How to transform whole DNN model to BNN.
- [Transform DNN layer to BNN](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/transforms/test_transform_bnn_layer.py): How to transform one certainty type of layer in DNN model to corresponding Bayesian layer.
- [Variational Auto-Encoder](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/dpn/test_gpu_svi_vae.py): Variational Auto-Encoder (VAE) model trained with MNIST to generate sample images.
- [Conditional Variational Auto-Encoder](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/dpn/test_gpu_svi_cvae.py): Conditional Variational Auto-Encoder (CVAE) model trained with MNIST to generate sample images.
- [VAE-GAN](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/dpn/test_gpu_vae_gan.py): VAE-GAN model trained with MNIST to generate sample images.
- [Uncertainty Estimation](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/toobox/test_uncertainty.py): Evaluate uncertainty of model and data..
### Community
As part of MindSpore, we are committed to creating an open and friendly environment.
- [Gitee](https://gitee.com/mindspore/mindspore/issues): Report bugs or make feature requests.
- [Gitee](https://gitee.com/mindspore/mindspore/issues): Report bugs or make feature requests.

View File

@ -0,0 +1,60 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Produce the dataset
"""
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as CV
import mindspore.dataset.transforms.c_transforms as C
from mindspore.dataset.vision import Inter
from mindspore.common import dtype as mstype
def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
"""
create dataset for train or test
"""
# define dataset
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081
# define map operations
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32)
# apply map operations on images
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
# apply DatasetOps
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size)
return mnist_ds