forked from mindspore-Ecosystem/mindspore
!2578 Add case for precision of bert network
Merge pull request !2578 from ddwolf/add_case_for_precisoin_of_bert_to_r0.5
This commit is contained in:
commit
1aedd6cee1
|
@ -276,11 +276,11 @@ bool AkgKernelBuild::CreateInputDescJson(const AnfNodePtr &anf_node, nlohmann::j
|
|||
input_desc_json[kName] = op_input_name;
|
||||
input_desc_json[kTensorName] = "input_" + std::to_string(GetInputTensorIdxInc(anf_node, real_input_index));
|
||||
auto input_shape = AnfAlgo::GetInputDeviceShape(anf_node, real_input_index);
|
||||
if (GetInputTensorValue(anf_node, real_input_index, &input_desc_json)) {
|
||||
if (anf_node->func_graph() != nullptr && anf_node->func_graph()->has_attr(FUNC_GRAPH_ATTR_GRAPH_KERNEL) &&
|
||||
GetInputTensorValue(anf_node, real_input_index, &input_desc_json)) {
|
||||
MS_LOG(WARNING) << "we take input[" << real_input_index << "] of [" << anf_node->DebugString(2)
|
||||
<< "] as const tensor, shape: [" << Vector2Str(input_shape)
|
||||
<< "], value: " << input_desc_json[kValue];
|
||||
|
||||
input_shape.clear();
|
||||
}
|
||||
if (input_shape.empty()) {
|
||||
|
|
|
@ -0,0 +1,194 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""train bert network without lossscale"""
|
||||
|
||||
import os
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset.engine.datasets as de
|
||||
import mindspore.dataset.transforms.c_transforms as C
|
||||
from mindspore import context
|
||||
from mindspore import log as logger
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.nn.optim import Lamb
|
||||
from mindspore.train.callback import Callback
|
||||
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
|
||||
from mindspore.train.model import Model
|
||||
from src.bert_for_pre_training import BertNetworkWithLoss, BertTrainOneStepWithLossScaleCell
|
||||
from src.bert_model import BertConfig
|
||||
|
||||
DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"]
|
||||
SCHEMA_DIR = "/home/workspace/mindspore_dataset/bert/example/datasetSchema.json"
|
||||
|
||||
def get_config(version='base', batch_size=1):
|
||||
"""get config"""
|
||||
if version == 'base':
|
||||
bert_config = BertConfig(
|
||||
batch_size=batch_size,
|
||||
seq_length=128,
|
||||
vocab_size=21136,
|
||||
hidden_size=768,
|
||||
num_hidden_layers=2,
|
||||
num_attention_heads=12,
|
||||
intermediate_size=3072,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=2,
|
||||
initializer_range=0.02,
|
||||
use_relative_positions=True,
|
||||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float32)
|
||||
elif version == 'large':
|
||||
bert_config = BertConfig(
|
||||
batch_size=batch_size,
|
||||
seq_length=128,
|
||||
vocab_size=30522,
|
||||
hidden_size=1024,
|
||||
num_hidden_layers=2,
|
||||
num_attention_heads=16,
|
||||
intermediate_size=4096,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.0,
|
||||
attention_probs_dropout_prob=0.0,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=2,
|
||||
initializer_range=0.02,
|
||||
use_relative_positions=True,
|
||||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float16,
|
||||
enable_fused_layernorm=True)
|
||||
else:
|
||||
bert_config = BertConfig(batch_size=batch_size)
|
||||
return bert_config
|
||||
|
||||
|
||||
def me_de_train_dataset():
|
||||
"""test me de train dataset"""
|
||||
# apply repeat operations
|
||||
repeat_count = 1
|
||||
ds = de.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids",
|
||||
"next_sentence_labels", "masked_lm_positions",
|
||||
"masked_lm_ids", "masked_lm_weights"], shuffle=False)
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="input_mask", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="input_ids", operations=type_cast_op)
|
||||
# apply batch operations
|
||||
batch_size = int(os.getenv('BATCH_SIZE', '16'))
|
||||
ds = ds.batch(batch_size, drop_remainder=True)
|
||||
ds = ds.repeat(repeat_count)
|
||||
return ds
|
||||
|
||||
|
||||
def weight_variable(shape):
|
||||
"""weight variable"""
|
||||
np.random.seed(1)
|
||||
ones = np.random.uniform(-0.1, 0.1, size=shape).astype(np.float32)
|
||||
return Tensor(ones)
|
||||
|
||||
|
||||
class ModelCallback(Callback):
|
||||
def __init__(self):
|
||||
super(ModelCallback, self).__init__()
|
||||
self.loss_list = []
|
||||
self.overflow_list = []
|
||||
self.lossscale_list = []
|
||||
|
||||
def step_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
self.loss_list.append(cb_params.net_outputs[0].asnumpy()[0])
|
||||
self.overflow_list.append(cb_params.net_outputs[1].asnumpy())
|
||||
self.lossscale_list.append(cb_params.net_outputs[2].asnumpy())
|
||||
print("epoch: {}, outputs are: {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs)))
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_bert_tdt():
|
||||
"""test bert tdt"""
|
||||
os.system(f"rm -rf kernel_meta")
|
||||
np.random.seed(0)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False)
|
||||
context.set_context(enable_graph_kernel=True)
|
||||
ds = me_de_train_dataset()
|
||||
config = get_config(version='large', batch_size=16)
|
||||
netwithloss = BertNetworkWithLoss(config, True)
|
||||
optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size()*ds.get_repeat_count(),
|
||||
start_learning_rate=5e-5, end_learning_rate=1e-9,
|
||||
power=10.0, warmup_steps=0, weight_decay=0.01)
|
||||
scale_window = 3
|
||||
scale_manager = DynamicLossScaleManager(262144, 2, scale_window)
|
||||
netwithgrads = BertTrainOneStepWithLossScaleCell(netwithloss, optimizer=optimizer,
|
||||
scale_update_cell=scale_manager.get_update_cell())
|
||||
netwithgrads.set_train(True)
|
||||
model = Model(netwithgrads)
|
||||
callback = ModelCallback()
|
||||
params = netwithloss.trainable_params()
|
||||
for param in params:
|
||||
param.init_data()
|
||||
value = param.default_input
|
||||
name = param.name
|
||||
if isinstance(value, Tensor):
|
||||
if name.split('.')[-1] in ['weight']:
|
||||
if name.split('.')[-3] in ['cls2']:
|
||||
logger.info("***************** BERT param name is 1 {}".format(name))
|
||||
param.default_input = weight_variable(value.asnumpy().shape)
|
||||
else:
|
||||
logger.info("***************** BERT param name is 2 {}".format(name))
|
||||
tempshape = value.asnumpy().shape
|
||||
shape = (tempshape[1], tempshape[0])
|
||||
weight_value = weight_variable(shape).asnumpy()
|
||||
param.default_input = Tensor(np.transpose(weight_value, [1, 0]))
|
||||
else:
|
||||
logger.info("***************** BERT param name is 3 {}".format(name))
|
||||
param.default_input = weight_variable(value.asnumpy().shape)
|
||||
model.train(1, ds, callbacks=callback, dataset_sink_mode=False)
|
||||
|
||||
# assertion occurs while the loss value, overflow state or loss_scale value is wrong
|
||||
loss_value = np.array(callback.loss_list)
|
||||
expect_loss_value = [12.559319, 12.333815, 12.339806, 12.350235, 12.343947, 12.830965, 12.375336, 12.973715,
|
||||
12.57929, 12.7766905]
|
||||
error = loss_value - expect_loss_value
|
||||
print("loss value: {}".format(loss_value))
|
||||
print("error value: {}".format(error))
|
||||
assert np.allclose(loss_value, expect_loss_value, 0, 0.0005)
|
||||
|
||||
overflow = np.array(callback.overflow_list)
|
||||
expect_overflow = [True, True, True, True, False, False, False, True, False, False]
|
||||
print("overflow: {}".format(overflow))
|
||||
assert (overflow == expect_overflow).all()
|
||||
|
||||
loss_scale = np.array(callback.lossscale_list)
|
||||
expect_loss_scale = [131072.0, 65536.0, 32768.0, 16384.0, 16384.0, 16384.0, 32768.0, 16384.0, 16384.0, 16384.0]
|
||||
print("loss scale: {}".format(loss_scale))
|
||||
assert np.allclose(loss_scale, expect_loss_scale, 0, 0)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_bert_tdt()
|
Loading…
Reference in New Issue