forked from mindspore-Ecosystem/mindspore
!8919 [MSLITE][Develop] fix code review
From: @sunsuodong Reviewed-by: @zhang_xue_tong,@ddwsky Signed-off-by: @zhang_xue_tong
This commit is contained in:
commit
1a7347d29f
|
@ -38,17 +38,13 @@ void ArgMinMaxTopk1(const void *input, void *output, const int *shape, ArgMinMax
|
|||
int axis_count = 1;
|
||||
int after_axis_count = 1;
|
||||
GetCalcParameter(shape, param->dims_size_, param->axis_, &pre_axis_count, &axis_count, &after_axis_count);
|
||||
switch (param->data_type_) {
|
||||
case FLOAT_DATA_TYPE: {
|
||||
if (param->get_max_) {
|
||||
ArgMax(input, output, param, pre_axis_count, axis_count, after_axis_count);
|
||||
} else {
|
||||
ArgMin(input, output, param, pre_axis_count, axis_count, after_axis_count);
|
||||
}
|
||||
break;
|
||||
}
|
||||
default:
|
||||
break;
|
||||
if (param->data_type_ != FLOAT_DATA_TYPE) {
|
||||
return;
|
||||
}
|
||||
if (param->get_max_) {
|
||||
ArgMax(input, output, param, pre_axis_count, axis_count, after_axis_count);
|
||||
} else {
|
||||
ArgMin(input, output, param, pre_axis_count, axis_count, after_axis_count);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -35,6 +35,8 @@ void Fp16Crop(const float16_t *input, float16_t *output, int task_id, CropParame
|
|||
case 4:
|
||||
Fp16Crop4D(input, output, task_id, para);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -16,16 +16,16 @@
|
|||
|
||||
#include "nnacl/fp16/matmul_fp16.h"
|
||||
|
||||
void ColMajor2Row8MajorFp16(void *src_ptr, float16_t *dst_ptr, size_t row, size_t col, bool src_float16) {
|
||||
void ColMajor2Row8MajorFp16(const void *src_ptr, float16_t *dst_ptr, size_t row, size_t col, bool src_float16) {
|
||||
int row_c8 = row / C8NUM * C8NUM;
|
||||
int col_c8 = col / C8NUM * C8NUM;
|
||||
int ci = 0;
|
||||
if (src_float16) {
|
||||
float16_t *src = (float16_t *)src_ptr;
|
||||
const float16_t *src = (const float16_t *)src_ptr;
|
||||
for (; ci < col_c8; ci += C8NUM) {
|
||||
int ri = 0;
|
||||
for (; ri < row_c8; ri += C8NUM) {
|
||||
float16_t *src_ptr1 = src + ci * row + ri;
|
||||
const float16_t *src_ptr1 = src + ci * row + ri;
|
||||
float16_t *dst_ptr1 = dst_ptr + ci * row + ri * C8NUM;
|
||||
#ifdef ENABLE_ARM64
|
||||
size_t strid_row = row * 2;
|
||||
|
@ -93,7 +93,7 @@ void ColMajor2Row8MajorFp16(void *src_ptr, float16_t *dst_ptr, size_t row, size_
|
|||
#endif
|
||||
}
|
||||
for (; ri < row; ++ri) {
|
||||
float16_t *src_ptr1 = src + ci * row;
|
||||
const float16_t *src_ptr1 = src + ci * row;
|
||||
float16_t *dst_ptr1 = dst_ptr + ci * row;
|
||||
for (int tc = 0; tc < C8NUM; ++tc) {
|
||||
dst_ptr1[ri * C8NUM + tc] = src_ptr1[tc * row + ri];
|
||||
|
@ -108,11 +108,11 @@ void ColMajor2Row8MajorFp16(void *src_ptr, float16_t *dst_ptr, size_t row, size_
|
|||
}
|
||||
}
|
||||
} else {
|
||||
float *src = (float *)src_ptr;
|
||||
const float *src = (const float *)src_ptr;
|
||||
for (; ci < col_c8; ci += C8NUM) {
|
||||
int ri = 0;
|
||||
for (; ri < row_c8; ri += C8NUM) {
|
||||
float *src_ptr1 = src + ci * row + ri;
|
||||
const float *src_ptr1 = src + ci * row + ri;
|
||||
float16_t *dst_ptr1 = dst_ptr + ci * row + ri * C8NUM;
|
||||
#ifdef ENABLE_ARM64
|
||||
size_t strid_row = row * 4;
|
||||
|
@ -197,7 +197,7 @@ void ColMajor2Row8MajorFp16(void *src_ptr, float16_t *dst_ptr, size_t row, size_
|
|||
#endif
|
||||
}
|
||||
for (; ri < row; ++ri) {
|
||||
float *src_ptr1 = src + ci * row;
|
||||
const float *src_ptr1 = src + ci * row;
|
||||
float16_t *dst_ptr1 = dst_ptr + ci * row;
|
||||
for (int tc = 0; tc < C8NUM; ++tc) {
|
||||
dst_ptr1[ri * C8NUM + tc] = (float16_t)(src_ptr1[tc * row + ri]);
|
||||
|
@ -274,18 +274,18 @@ void MatVecMulFp16(const float16_t *a, const float16_t *b, float16_t *c, const f
|
|||
MatVecMulFp16Neon64(a, b, c, bias, (int)act_type, depth, col);
|
||||
}
|
||||
|
||||
void RowMajor2Col16MajorFp16Opt(float16_t *src_ptr, float16_t *dst_ptr, size_t row, size_t col) {
|
||||
void RowMajor2Col16MajorFp16Opt(const float16_t *src_ptr, float16_t *dst_ptr, size_t row, size_t col) {
|
||||
size_t row_up_16 = UP_ROUND(row, C16NUM);
|
||||
size_t row16 = row / C16NUM * C16NUM;
|
||||
size_t col8 = col / C8NUM * C8NUM;
|
||||
float16_t *src_r = src_ptr;
|
||||
const float16_t *src_r = src_ptr;
|
||||
float16_t *dst_r = dst_ptr;
|
||||
|
||||
size_t ri = 0;
|
||||
for (; ri < row16; ri += C16NUM) {
|
||||
size_t ci = 0;
|
||||
for (; ci < col8; ci += C8NUM) {
|
||||
float16_t *src_c = src_r + ci;
|
||||
const float16_t *src_c = src_r + ci;
|
||||
float16_t *dst_c = dst_r + ci * C16NUM;
|
||||
|
||||
#ifdef ENABLE_ARM64
|
||||
|
@ -403,7 +403,7 @@ void RowMajor2Col16MajorFp16Opt(float16_t *src_ptr, float16_t *dst_ptr, size_t r
|
|||
#endif
|
||||
}
|
||||
for (; ci < col; ci++) {
|
||||
float16_t *src_c = src_r + ci;
|
||||
const float16_t *src_c = src_r + ci;
|
||||
float16_t *dst_c = dst_r + ci * C16NUM;
|
||||
for (size_t i = 0; i < C16NUM; i++) {
|
||||
dst_c[i] = src_c[i * col];
|
||||
|
@ -428,57 +428,57 @@ void RowMajor2Col16MajorFp16Opt(float16_t *src_ptr, float16_t *dst_ptr, size_t r
|
|||
return;
|
||||
}
|
||||
|
||||
void RowMajor2Col16MajorFp16(void *src, float16_t *dst, int row, int col, bool is_fp32_src) {
|
||||
void RowMajor2Col16MajorFp16(const void *src, float16_t *dst, int row, int col, bool is_fp32_src) {
|
||||
for (int r = 0; r < row; r++) {
|
||||
for (int c = 0; c < col; c++) {
|
||||
int r_div16 = r / 16;
|
||||
int r_mod16 = r % 16;
|
||||
if (is_fp32_src) {
|
||||
dst[r_div16 * 16 * col + c * 16 + r_mod16] = (float16_t)(((float *)src)[r * col + c]);
|
||||
dst[r_div16 * 16 * col + c * 16 + r_mod16] = (float16_t)(((const float *)src)[r * col + c]);
|
||||
} else {
|
||||
dst[r_div16 * 16 * col + c * 16 + r_mod16] = ((float16_t *)src)[r * col + c];
|
||||
dst[r_div16 * 16 * col + c * 16 + r_mod16] = ((const float16_t *)src)[r * col + c];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void RowMajor2Row16MajorFp16(void *src, float16_t *dst, int row, int col, bool is_fp32_src) {
|
||||
void RowMajor2Row16MajorFp16(const void *src, float16_t *dst, int row, int col, bool is_fp32_src) {
|
||||
for (int r = 0; r < row; r++) {
|
||||
for (int c = 0; c < col; c++) {
|
||||
int c_div16 = c / 16;
|
||||
int c_mod16 = c % 16;
|
||||
if (is_fp32_src) {
|
||||
dst[c_div16 * 16 * row + r * 16 + c_mod16] = (float16_t)(((float *)src)[r * col + c]);
|
||||
dst[c_div16 * 16 * row + r * 16 + c_mod16] = (float16_t)(((const float *)src)[r * col + c]);
|
||||
} else {
|
||||
dst[c_div16 * 16 * row + r * 16 + c_mod16] = ((float16_t *)src)[r * col + c];
|
||||
dst[c_div16 * 16 * row + r * 16 + c_mod16] = ((const float16_t *)src)[r * col + c];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void RowMajor2Row8MajorFp16(void *src, float16_t *dst, int row, int col, bool is_fp32_src) {
|
||||
void RowMajor2Row8MajorFp16(const void *src, float16_t *dst, int row, int col, bool is_fp32_src) {
|
||||
for (int r = 0; r < row; r++) {
|
||||
for (int c = 0; c < col; c++) {
|
||||
int c_div8 = c / 8;
|
||||
int c_mod8 = c % 8;
|
||||
if (is_fp32_src) {
|
||||
dst[c_div8 * 8 * row + r * 8 + c_mod8] = (float16_t)(((float *)src)[r * col + c]);
|
||||
dst[c_div8 * 8 * row + r * 8 + c_mod8] = (float16_t)(((const float *)src)[r * col + c]);
|
||||
} else {
|
||||
dst[c_div8 * 8 * row + r * 8 + c_mod8] = ((float16_t *)src)[r * col + c];
|
||||
dst[c_div8 * 8 * row + r * 8 + c_mod8] = ((const float16_t *)src)[r * col + c];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void RowMajor2Col8MajorFp16(void *src, float16_t *dst, int row, int col, bool is_fp32_src) {
|
||||
void RowMajor2Col8MajorFp16(const void *src, float16_t *dst, int row, int col, bool is_fp32_src) {
|
||||
for (int r = 0; r < row; r++) {
|
||||
for (int c = 0; c < col; c++) {
|
||||
int r_div8 = r / 8;
|
||||
int r_mod8 = r % 8;
|
||||
if (is_fp32_src) {
|
||||
dst[r_div8 * 8 * col + c * 8 + r_mod8] = (float16_t)(((float *)src)[r * col + c]);
|
||||
dst[r_div8 * 8 * col + c * 8 + r_mod8] = (float16_t)(((const float *)src)[r * col + c]);
|
||||
} else {
|
||||
dst[r_div8 * 8 * col + c * 8 + r_mod8] = ((float16_t *)src)[r * col + c];
|
||||
dst[r_div8 * 8 * col + c * 8 + r_mod8] = ((const float16_t *)src)[r * col + c];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -38,9 +38,9 @@ void MatMulFp16(const float16_t *a, const float16_t *b, float16_t *c, const floa
|
|||
void MatVecMulFp16(const float16_t *a, const float16_t *b, float16_t *c, const float16_t *bias, ActType act_type,
|
||||
int depth, int col);
|
||||
|
||||
void ColMajor2Row8MajorFp16(void *src_ptr, float16_t *dst_ptr, size_t row, size_t col, bool src_float16);
|
||||
void ColMajor2Row8MajorFp16(const void *src_ptr, float16_t *dst_ptr, size_t row, size_t col, bool src_float16);
|
||||
|
||||
void RowMajor2Col16MajorFp16Opt(float16_t *src_ptr, float16_t *dst_ptr, size_t row, size_t col);
|
||||
void RowMajor2Col16MajorFp16Opt(const float16_t *src_ptr, float16_t *dst_ptr, size_t row, size_t col);
|
||||
|
||||
void MatmulFp16Neon64(const float16_t *a, const float16_t *b, float16_t *c, const float16_t *bias, int act_type,
|
||||
size_t depth, size_t row, size_t col, size_t stride, bool write_nhwc);
|
||||
|
@ -51,13 +51,13 @@ void MatmulFp16Neon64Opt(const float16_t *a, const float16_t *b, float16_t *c, c
|
|||
void MatVecMulFp16Neon64(const float16_t *a, const float16_t *b, float16_t *c, const float16_t *bias, int act_type,
|
||||
int depth, int col);
|
||||
|
||||
void RowMajor2Col16MajorFp16(void *src, float16_t *dst, int row, int col, bool is_fp32_src);
|
||||
void RowMajor2Col16MajorFp16(const void *src, float16_t *dst, int row, int col, bool is_fp32_src);
|
||||
|
||||
void RowMajor2Row16MajorFp16(void *src, float16_t *dst, int row, int col, bool is_fp32_src);
|
||||
void RowMajor2Row16MajorFp16(const void *src, float16_t *dst, int row, int col, bool is_fp32_src);
|
||||
|
||||
void RowMajor2Row8MajorFp16(void *src, float16_t *dst, int row, int col, bool is_fp32_src);
|
||||
void RowMajor2Row8MajorFp16(const void *src, float16_t *dst, int row, int col, bool is_fp32_src);
|
||||
|
||||
void RowMajor2Col8MajorFp16(void *src, float16_t *dst, int row, int col, bool is_fp32_src);
|
||||
void RowMajor2Col8MajorFp16(const void *src, float16_t *dst, int row, int col, bool is_fp32_src);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
#include "nnacl/fp32/arithmetic_fp32.h"
|
||||
#include <math.h>
|
||||
#include <float.h>
|
||||
|
||||
#define ACCURACY_DATA 0.00000001
|
||||
|
||||
|
@ -964,7 +965,7 @@ int ElementNotEqual(const float *input0, const float *input1, float *output, con
|
|||
}
|
||||
#endif
|
||||
for (; index < element_size; index++) {
|
||||
output[index] = (float)(input0[index] != input1[index]);
|
||||
output[index] = (float)(fabsf(input0[index] - input1[index]) > FLT_EPSILON);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
@ -996,7 +997,7 @@ int ElementEqual(const float *input0, const float *input1, float *output, const
|
|||
}
|
||||
#endif
|
||||
for (; index < element_size; index++) {
|
||||
output[index] = (float)(input0[index] == input1[index]);
|
||||
output[index] = (float)(fabsf(input0[index] - input1[index]) <= FLT_EPSILON);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
|
|
@ -17,6 +17,7 @@
|
|||
#include "nnacl/fp32/broadcast_to_fp32.h"
|
||||
#include <string.h>
|
||||
#include "nnacl/op_base.h"
|
||||
#include "nnacl/errorcode.h"
|
||||
|
||||
void PadBroadcastShapeInfo(BroadcastShapeInfo *shape_info) {
|
||||
if (shape_info->input_shape_size_ < DIMENSION_4D) {
|
||||
|
@ -51,7 +52,7 @@ void PadBroadcastShapeInfo(BroadcastShapeInfo *shape_info) {
|
|||
|
||||
int BroadcastTo(const float *input, BroadcastShapeInfo *shape_info, float *output) {
|
||||
if (shape_info->input_shape_size_ > DIMENSION_4D || shape_info->output_shape_size_ > DIMENSION_4D) {
|
||||
return -1;
|
||||
return NNACL_ERR;
|
||||
}
|
||||
PadBroadcastShapeInfo(shape_info);
|
||||
size_t input_dim_offset[DIMENSION_4D - 1];
|
||||
|
@ -98,5 +99,5 @@ int BroadcastTo(const float *input, BroadcastShapeInfo *shape_info, float *outpu
|
|||
memcpy(out_base + output_dim_offset[0] * dim0, out_base, output_dim_offset[0]);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
|
|
@ -116,11 +116,10 @@ void WinogradTransRight(const float *S, const float *B, float *M, size_t w, size
|
|||
}
|
||||
#endif
|
||||
|
||||
union float32_bits {
|
||||
typedef union float32_bits {
|
||||
unsigned int u;
|
||||
float f;
|
||||
};
|
||||
typedef union float32_bits float32_bits;
|
||||
} float32_bits;
|
||||
|
||||
float ShortToFloat32(uint16_t src_value) {
|
||||
const float32_bits magic = {113 << 23};
|
||||
|
|
|
@ -93,19 +93,21 @@ void InitSlidingParam(SlidingWindowParam *sliding, const ConvParameter *conv_par
|
|||
int top = 0;
|
||||
int bottom = conv_param->output_h_;
|
||||
|
||||
for (; left * conv_param->stride_w_ < conv_param->pad_l_; left++) {
|
||||
while (left * conv_param->stride_w_ < conv_param->pad_l_) {
|
||||
left++;
|
||||
}
|
||||
for (; (right - 1) * conv_param->stride_w_ - conv_param->pad_l_ + conv_param->kernel_w_ * conv_param->dilation_w_ >
|
||||
while ((right - 1) * conv_param->stride_w_ - conv_param->pad_l_ + conv_param->kernel_w_ * conv_param->dilation_w_ >
|
||||
conv_param->input_w_ &&
|
||||
right > left;
|
||||
right--) {
|
||||
right > left) {
|
||||
right--;
|
||||
}
|
||||
for (; top * conv_param->stride_h_ < conv_param->pad_u_; top++) {
|
||||
while (top * conv_param->stride_h_ < conv_param->pad_u_) {
|
||||
top++;
|
||||
}
|
||||
for (; (bottom - 1) * conv_param->stride_h_ - conv_param->pad_u_ + conv_param->kernel_h_ * conv_param->dilation_h_ >
|
||||
while ((bottom - 1) * conv_param->stride_h_ - conv_param->pad_u_ + conv_param->kernel_h_ * conv_param->dilation_h_ >
|
||||
conv_param->input_h_ &&
|
||||
bottom > top;
|
||||
bottom--) {
|
||||
bottom > top) {
|
||||
bottom--;
|
||||
}
|
||||
sliding->left_ = left;
|
||||
sliding->right_ = right;
|
||||
|
|
|
@ -28,11 +28,10 @@ inline int Stride(const int *shape, int rank, int index) {
|
|||
|
||||
int Gather(float *input, int outer_size, int inner_size, int limit, const int *indices, int indices_element_size,
|
||||
float *output) {
|
||||
int i, m;
|
||||
for (m = 0; m < outer_size; ++m) {
|
||||
for (int m = 0; m < outer_size; ++m) {
|
||||
float *inputm = input + inner_size * m * limit;
|
||||
float *outputm = output + inner_size * m * indices_element_size;
|
||||
for (i = 0; i < indices_element_size; ++i) {
|
||||
for (int i = 0; i < indices_element_size; ++i) {
|
||||
if (indices[i] < 0 || indices[i] > limit) {
|
||||
return NNACL_ERR;
|
||||
}
|
||||
|
@ -44,11 +43,10 @@ int Gather(float *input, int outer_size, int inner_size, int limit, const int *i
|
|||
|
||||
int GatherInt32(const int32_t *input, int outer_size, int inner_size, int limit, const int *indices,
|
||||
int indices_element_size, int32_t *output) {
|
||||
int i, m;
|
||||
for (m = 0; m < outer_size; ++m) {
|
||||
for (int m = 0; m < outer_size; ++m) {
|
||||
const int32_t *inputm = input + inner_size * m * limit;
|
||||
int32_t *outputm = output + inner_size * m * indices_element_size;
|
||||
for (i = 0; i < indices_element_size; ++i) {
|
||||
for (int i = 0; i < indices_element_size; ++i) {
|
||||
if (indices[i] < 0 || indices[i] > limit) {
|
||||
return NNACL_ERR;
|
||||
}
|
||||
|
|
|
@ -24,14 +24,13 @@ int InstanceNorm(const int outer_size, const int inner_size, const float *src_da
|
|||
if (src_data == NULL || dst_data == NULL || scale_data == NULL || bias_data == NULL) {
|
||||
return NNACL_NULL_PTR;
|
||||
}
|
||||
int i, j;
|
||||
for (j = task_id; j < outer_size; j += thread_num) {
|
||||
for (int j = task_id; j < outer_size; j += thread_num) {
|
||||
int offset = (j / param->channel_) * inner_size * param->channel_;
|
||||
const float *src = src_data + offset;
|
||||
float *dst = dst_data + offset;
|
||||
float mean = 0.0f;
|
||||
float square_mean = 0.0f;
|
||||
for (i = 0; i < inner_size; i++) {
|
||||
for (int i = 0; i < inner_size; i++) {
|
||||
int idx = j % param->channel_ + i * param->channel_;
|
||||
mean += src[idx];
|
||||
square_mean += src[idx] * src[idx];
|
||||
|
@ -39,7 +38,7 @@ int InstanceNorm(const int outer_size, const int inner_size, const float *src_da
|
|||
mean /= (float)inner_size;
|
||||
square_mean /= (float)inner_size;
|
||||
const float deno = 1 / sqrtf(square_mean - mean * mean + param->epsilon_);
|
||||
for (i = 0; i < inner_size; ++i) {
|
||||
for (int i = 0; i < inner_size; ++i) {
|
||||
int idx = j % param->channel_ + i * param->channel_;
|
||||
int scale_idx = (j / param->channel_) * param->channel_ + j % param->channel_;
|
||||
dst[idx] = ((src[idx] - mean) * deno) * scale_data[scale_idx] + bias_data[scale_idx];
|
||||
|
|
|
@ -27,20 +27,19 @@ int LayerNorm(const int outer_size, const int inner_size, const float *src_data,
|
|||
if (affine && (gamma_data == NULL || beta_data == NULL)) {
|
||||
return NNACL_NULL_PTR;
|
||||
}
|
||||
int i, j;
|
||||
for (j = tid; j < outer_size; j += thread_num) {
|
||||
for (int j = tid; j < outer_size; j += thread_num) {
|
||||
const float *src = src_data + j * inner_size;
|
||||
float *dst = dst_data + j * inner_size;
|
||||
float mean = 0.0f;
|
||||
float square_mean = 0.0f;
|
||||
for (i = 0; i < inner_size; i++) {
|
||||
for (int i = 0; i < inner_size; i++) {
|
||||
mean += src[i];
|
||||
square_mean += src[i] * src[i];
|
||||
}
|
||||
mean /= (float)inner_size;
|
||||
square_mean /= (float)inner_size;
|
||||
const float deno = 1 / sqrtf(square_mean - mean * mean + epsilon);
|
||||
for (i = 0; i < inner_size; ++i) {
|
||||
for (int i = 0; i < inner_size; ++i) {
|
||||
dst[i] = (src[i] - mean) * deno;
|
||||
if (affine) {
|
||||
dst[i] = dst[i] * gamma_data[i] + beta_data[i];
|
||||
|
|
|
@ -19,24 +19,21 @@
|
|||
|
||||
int LocalResponseNorm(float *input_ptr, int out_size, int channel, float *output_ptr,
|
||||
LocalResponseNormParameter *param) {
|
||||
int i, j, k;
|
||||
int left, right;
|
||||
|
||||
int depth_radius = param->depth_radius_;
|
||||
float bias = param->bias_;
|
||||
float alpha = param->alpha_;
|
||||
float beta = param->beta_;
|
||||
|
||||
for (i = 0; i < out_size; i++) {
|
||||
for (int i = 0; i < out_size; i++) {
|
||||
float *in_data = input_ptr + i * channel;
|
||||
float *out_data = output_ptr + i * channel;
|
||||
|
||||
for (j = 0; j < channel; j++) {
|
||||
left = MSMAX(0, j - depth_radius);
|
||||
right = MSMIN(channel - 1, j + depth_radius);
|
||||
for (int j = 0; j < channel; j++) {
|
||||
int left = MSMAX(0, j - depth_radius);
|
||||
int right = MSMIN(channel - 1, j + depth_radius);
|
||||
|
||||
float sum = 0.0;
|
||||
for (k = left; k <= right; k++) {
|
||||
for (int k = left; k <= right; k++) {
|
||||
const float in_val = in_data[k];
|
||||
sum += in_val * in_val;
|
||||
}
|
||||
|
|
|
@ -148,7 +148,7 @@ void TransposeCommInt8(const int8_t *in_data, int8_t *out_data, const int *strid
|
|||
}
|
||||
}
|
||||
|
||||
int DoTransposeInt8(const int8_t *in_data, int8_t *out_data, int *input_shape, const int *output_shape,
|
||||
int DoTransposeInt8(const int8_t *in_data, int8_t *out_data, const int *output_shape,
|
||||
TransposeParameter *transpose_param, int h_start, int h_end, int *dim_size, int *position) {
|
||||
if (in_data == NULL || out_data == NULL) {
|
||||
return NNACL_NULL_PTR;
|
||||
|
|
|
@ -25,7 +25,7 @@
|
|||
extern "C" {
|
||||
#endif
|
||||
|
||||
int DoTransposeInt8(const int8_t *in_data, int8_t *out_data, int *input_shape, const int *output_shape,
|
||||
int DoTransposeInt8(const int8_t *in_data, int8_t *out_data, const int *output_shape,
|
||||
TransposeParameter *transpose_param, int h_start, int h_end, int *dim_size, int *position);
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
|
|
@ -32,6 +32,9 @@ int ThreadDivSqrtSum(const float *input_ptr, float *output_ptr, const L2NormPara
|
|||
bool is_relu = param->act_type_ == ActType_Relu;
|
||||
bool is_relu6 = param->act_type_ == ActType_Relu6;
|
||||
int i;
|
||||
if (sqrt_sum == 0) {
|
||||
return NNACL_ERRCODE_DIVISOR_ZERO;
|
||||
}
|
||||
for (i = begin; i < end; i++) {
|
||||
float tmp = input_ptr[i] / sqrt_sum;
|
||||
if (is_relu) {
|
||||
|
|
|
@ -23,7 +23,9 @@ void Polynomial(const float *interval, float *m, int degree) {
|
|||
for (int i = 0; i < degree; ++i) {
|
||||
float mul = 1;
|
||||
for (int j = 0; j < degree; ++j) {
|
||||
if (i == j) continue;
|
||||
if (i == j) {
|
||||
continue;
|
||||
}
|
||||
mul *= (interval[i] - interval[j]);
|
||||
}
|
||||
m[i] = mul;
|
||||
|
@ -35,7 +37,9 @@ void DiagonalPlusMatrix(const float *matrix, float *diagonal_matrix, int degree)
|
|||
memset(diagonal_matrix, 0, data_num * sizeof(float));
|
||||
for (int i = 0; i < degree; ++i) {
|
||||
for (int j = 0; j < degree; ++j) {
|
||||
if (j == i) diagonal_matrix[i * (degree + 1) + j] = matrix[i];
|
||||
if (j == i) {
|
||||
diagonal_matrix[i * (degree + 1) + j] = matrix[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
diagonal_matrix[data_num - 1] = 1;
|
||||
|
@ -207,7 +211,10 @@ int CookToomFilter(float *matrix_a, float *matrix_at, float *matrix_b, float *ma
|
|||
MatrixTranspose(matrix_a, matrix_at, in_unit, out_unit);
|
||||
|
||||
// get matrix B
|
||||
B(interval, matrix_bt, in_unit);
|
||||
int ret = B(interval, matrix_bt, in_unit);
|
||||
if (ret != NNACL_OK) {
|
||||
return ret;
|
||||
}
|
||||
MatrixTranspose(matrix_bt, matrix_b, in_unit, in_unit);
|
||||
MatrixMultiply(diagonal_matrix, matrix_b, matrix_bt, in_unit, in_unit, in_unit);
|
||||
MatrixTranspose(matrix_bt, matrix_b, in_unit, in_unit);
|
||||
|
|
|
@ -17,4 +17,4 @@
|
|||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
void ApproximateZerosLike(float *input, float *output, int number) { memset(output, 0.0, number * sizeof(float)); }
|
||||
void ApproximateZerosLike(float *output, int number) { memset(output, 0.0, number * sizeof(float)); }
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
void ApproximateZerosLike(float *input, float *output, int number);
|
||||
void ApproximateZerosLike(float *output, int number);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -79,7 +79,7 @@ Registry ApplyMomentumRegistry(schema::PrimitiveType_ApplyMomentum, ApplyMomentu
|
|||
#endif
|
||||
|
||||
int ApplyMomentum::InferShape(std::vector<lite::Tensor *> inputs, std::vector<lite::Tensor *> outputs) {
|
||||
if (5 != inputs.size()) {
|
||||
if (inputs.size() != 5) {
|
||||
MS_LOG(ERROR) << "ApplyMomentum should have at least 5 input tensors";
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
|
|
@ -54,10 +54,6 @@ int BiasAdd::UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &in
|
|||
attr->axis = CastToInt(prim.GetAttr("axis"), true);
|
||||
}
|
||||
this->primitive_->value.value = attr;
|
||||
if (this->primitive_->value.value == nullptr) {
|
||||
MS_LOG(ERROR) << "primitive value is nullptr";
|
||||
return RET_ERROR;
|
||||
}
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
|
|
@ -52,10 +52,6 @@ int BiasGrad::UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &i
|
|||
attr->axis = CastToInt(prim.GetAttr("axis"), true);
|
||||
}
|
||||
this->primitive_->value.value = attr;
|
||||
if (this->primitive_->value.value == nullptr) {
|
||||
MS_LOG(ERROR) << "primitive value is nullptr";
|
||||
return RET_ERROR;
|
||||
}
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
@ -91,11 +87,11 @@ Registry BiasGradRegistry(schema::PrimitiveType_BiasGrad, BiasGradCreator);
|
|||
#endif
|
||||
|
||||
int BiasGrad::InferShape(std::vector<Tensor *> inputs, std::vector<Tensor *> outputs) {
|
||||
if (1 != inputs.size()) {
|
||||
if (inputs.size() != 1) {
|
||||
MS_LOG(ERROR) << "BiasGrad should have one input";
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (1 != outputs.size()) {
|
||||
if (outputs.size() != 1) {
|
||||
MS_LOG(ERROR) << "BiasGrad should have one output";
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
|
|
@ -56,10 +56,6 @@ int BNGrad::UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &inp
|
|||
attr->eps = GetValue<float>(prim.GetAttr("epsilon"));
|
||||
}
|
||||
this->primitive_->value.value = attr;
|
||||
if (this->primitive_->value.value == nullptr) {
|
||||
MS_LOG(ERROR) << "primitive value is nullptr";
|
||||
return RET_ERROR;
|
||||
}
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
@ -85,11 +81,11 @@ float BNGrad::GetEps() const { return this->primitive_->value_as_BNGrad()->eps()
|
|||
float BNGrad::GetMomentum() const { return this->primitive_->value_as_BNGrad()->momentum(); }
|
||||
#endif
|
||||
int BNGrad::InferShape(std::vector<lite::Tensor *> inputs, std::vector<lite::Tensor *> outputs) {
|
||||
if (6 != inputs.size()) {
|
||||
if (inputs.size() != 6) {
|
||||
MS_LOG(ERROR) << "BNGrad should have five inputs";
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (3 != outputs.size()) {
|
||||
if (outputs.size() != 3) {
|
||||
MS_LOG(ERROR) << "BNGrad should have three outputs";
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
|
|
@ -53,10 +53,6 @@ int Cast::UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &input
|
|||
attr->srcT = srcAnf->number_type();
|
||||
attr->dstT = dstAnf->number_type();
|
||||
this->primitive_->value.value = attr;
|
||||
if (this->primitive_->value.value == nullptr) {
|
||||
MS_LOG(ERROR) << "primitive value is nullptr";
|
||||
return RET_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
return RET_OK;
|
||||
|
|
|
@ -131,6 +131,10 @@ void ConvertConvWeight(const ParameterPtr ¶m_node) {
|
|||
void Conv2D::PopulaterConv2DMultiGroup(const Primitive &prim, schema::PrimitiveT *primitive, const int &group,
|
||||
const std::vector<AnfNodePtr> &inputs) {
|
||||
auto attr = std::make_unique<schema::DepthwiseConv2DT>();
|
||||
if (attr.get() == nullptr) {
|
||||
MS_LOG(ERROR) << "Memory allocation failed";
|
||||
return;
|
||||
}
|
||||
auto format = GetValue<std::string>(prim.GetAttr("data_format"));
|
||||
if (format == "NCHW") {
|
||||
attr->format = schema::Format::Format_NCHW;
|
||||
|
@ -203,6 +207,10 @@ void Conv2D::PopulaterConv2DMultiGroup(const Primitive &prim, schema::PrimitiveT
|
|||
|
||||
void Conv2D::PopulaterConv2DSingleGroup(const Primitive &prim, schema::PrimitiveT *primitive, const int &group) {
|
||||
auto attr = std::make_unique<schema::Conv2DT>();
|
||||
if (attr.get() == nullptr) {
|
||||
MS_LOG(ERROR) << "Memory allocation failed";
|
||||
return;
|
||||
}
|
||||
attr->group = group;
|
||||
auto format = GetValue<std::string>(prim.GetAttr("data_format"));
|
||||
if (format == "NCHW") {
|
||||
|
|
|
@ -124,6 +124,10 @@ void ConvertConvWeight(const ParameterPtr ¶m_node) {
|
|||
void DeConv2D::PopulaterConv2DMultiGroup(const Primitive &prim, schema::PrimitiveT *primitive, const int &group,
|
||||
const std::vector<AnfNodePtr> &inputs) {
|
||||
auto attr = std::make_unique<schema::DeDepthwiseConv2DT>();
|
||||
if (attr.get() == nullptr) {
|
||||
MS_LOG(ERROR) << "Memory allocation failed";
|
||||
return;
|
||||
}
|
||||
auto format = GetValue<std::string>(prim.GetAttr("data_format"));
|
||||
if (format == "NCHW") {
|
||||
attr->format = schema::Format::Format_NCHW;
|
||||
|
@ -186,6 +190,10 @@ void DeConv2D::PopulaterConv2DMultiGroup(const Primitive &prim, schema::Primitiv
|
|||
|
||||
void DeConv2D::PopulaterDeConv2DSingleGroup(const Primitive &prim, schema::PrimitiveT *primitive, const int &group) {
|
||||
auto attr = std::make_unique<schema::DeConv2DT>();
|
||||
if (attr.get() == nullptr) {
|
||||
MS_LOG(ERROR) << "Memory allocation failed";
|
||||
return;
|
||||
}
|
||||
attr->group = group;
|
||||
auto format = GetValue<std::string>(prim.GetAttr("data_format"));
|
||||
if (format == "NCHW") {
|
||||
|
|
|
@ -45,7 +45,7 @@ int DeDepthwiseConv2D::GetActivationType() const {
|
|||
}
|
||||
|
||||
void DeDepthwiseConv2D::SetFormat(int format) {
|
||||
this->primitive_->value.AsDeDepthwiseConv2D()->format = (schema::Format)format;
|
||||
this->primitive_->value.AsDeDepthwiseConv2D()->format = static_cast<schema::Format>(format);
|
||||
}
|
||||
void DeDepthwiseConv2D::SetChannelIn(int channel_in) {
|
||||
this->primitive_->value.AsDeDepthwiseConv2D()->channelIn = channel_in;
|
||||
|
@ -58,7 +58,7 @@ void DeDepthwiseConv2D::SetKernelH(int kernel_h) { this->primitive_->value.AsDeD
|
|||
void DeDepthwiseConv2D::SetStrideW(int stride_w) { this->primitive_->value.AsDeDepthwiseConv2D()->strideW = stride_w; }
|
||||
void DeDepthwiseConv2D::SetStrideH(int stride_h) { this->primitive_->value.AsDeDepthwiseConv2D()->strideH = stride_h; }
|
||||
void DeDepthwiseConv2D::SetPadMode(int pad_mode) {
|
||||
this->primitive_->value.AsDeDepthwiseConv2D()->padMode = (schema::PadMode)pad_mode;
|
||||
this->primitive_->value.AsDeDepthwiseConv2D()->padMode = static_cast<schema::PadMode>(pad_mode);
|
||||
}
|
||||
void DeDepthwiseConv2D::SetPadUp(int pad_up) { this->primitive_->value.AsDeDepthwiseConv2D()->padUp = pad_up; }
|
||||
void DeDepthwiseConv2D::SetPadDown(int pad_down) { this->primitive_->value.AsDeDepthwiseConv2D()->padDown = pad_down; }
|
||||
|
@ -70,7 +70,7 @@ void DeDepthwiseConv2D::SetDilateW(int dilate_w) { this->primitive_->value.AsDeD
|
|||
void DeDepthwiseConv2D::SetDilateH(int dilate_h) { this->primitive_->value.AsDeDepthwiseConv2D()->dilateH = dilate_h; }
|
||||
void DeDepthwiseConv2D::SetHasBias(bool has_bias) { this->primitive_->value.AsDeDepthwiseConv2D()->hasBias = has_bias; }
|
||||
void DeDepthwiseConv2D::SetActivationType(int activation_type) {
|
||||
this->primitive_->value.AsDeDepthwiseConv2D()->activationType = (schema::ActivationType)activation_type;
|
||||
this->primitive_->value.AsDeDepthwiseConv2D()->activationType = static_cast<schema::ActivationType>(activation_type);
|
||||
}
|
||||
|
||||
#else
|
||||
|
|
|
@ -48,7 +48,7 @@ bool DepthwiseConv2D::GetHasBias() const { return this->primitive_->value.AsDept
|
|||
int DepthwiseConv2D::GetActivationType() const { return this->primitive_->value.AsDepthwiseConv2D()->activationType; }
|
||||
|
||||
void DepthwiseConv2D::SetFormat(int format) {
|
||||
this->primitive_->value.AsDepthwiseConv2D()->format = (schema::Format)format;
|
||||
this->primitive_->value.AsDepthwiseConv2D()->format = static_cast<schema::Format>(format);
|
||||
}
|
||||
void DepthwiseConv2D::SetChannelIn(int channel_in) {
|
||||
this->primitive_->value.AsDepthwiseConv2D()->channelIn = channel_in;
|
||||
|
@ -61,7 +61,7 @@ void DepthwiseConv2D::SetKernelH(int kernel_h) { this->primitive_->value.AsDepth
|
|||
void DepthwiseConv2D::SetStrideW(int stride_w) { this->primitive_->value.AsDepthwiseConv2D()->strideW = stride_w; }
|
||||
void DepthwiseConv2D::SetStrideH(int stride_h) { this->primitive_->value.AsDepthwiseConv2D()->strideH = stride_h; }
|
||||
void DepthwiseConv2D::SetPadMode(int pad_mode) {
|
||||
this->primitive_->value.AsDepthwiseConv2D()->padMode = (schema::PadMode)pad_mode;
|
||||
this->primitive_->value.AsDepthwiseConv2D()->padMode = static_cast<schema::PadMode>(pad_mode);
|
||||
}
|
||||
void DepthwiseConv2D::SetPadUp(int pad_up) { this->primitive_->value.AsDepthwiseConv2D()->padUp = pad_up; }
|
||||
void DepthwiseConv2D::SetPadDown(int pad_down) { this->primitive_->value.AsDepthwiseConv2D()->padDown = pad_down; }
|
||||
|
@ -71,7 +71,7 @@ void DepthwiseConv2D::SetDilateW(int dilate_w) { this->primitive_->value.AsDepth
|
|||
void DepthwiseConv2D::SetDilateH(int dilate_h) { this->primitive_->value.AsDepthwiseConv2D()->dilateH = dilate_h; }
|
||||
void DepthwiseConv2D::SetHasBias(bool has_bias) { this->primitive_->value.AsDepthwiseConv2D()->hasBias = has_bias; }
|
||||
void DepthwiseConv2D::SetActivationType(int activation_type) {
|
||||
this->primitive_->value.AsDepthwiseConv2D()->activationType = (schema::ActivationType)activation_type;
|
||||
this->primitive_->value.AsDepthwiseConv2D()->activationType = static_cast<schema::ActivationType>(activation_type);
|
||||
}
|
||||
|
||||
int DepthwiseConv2D::UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &inputs) {
|
||||
|
|
|
@ -40,10 +40,6 @@ int Dequant::UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &in
|
|||
return RET_ERROR;
|
||||
}
|
||||
this->primitive_->value.value = attr;
|
||||
if (this->primitive_->value.value == nullptr) {
|
||||
MS_LOG(ERROR) << "primitive value is nullptr";
|
||||
return RET_ERROR;
|
||||
}
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
|
|
@ -32,7 +32,7 @@ void FullConnection::SetHasBias(bool has_bias) { this->primitive_->value.AsFullC
|
|||
void FullConnection::SetAxis(int axis) { this->primitive_->value.AsFullConnection()->axis = axis; }
|
||||
void FullConnection::SetUseAxis(bool use_axis) { this->primitive_->value.AsFullConnection()->useAxis = use_axis; }
|
||||
void FullConnection::SetActivationType(int activationType) {
|
||||
this->primitive_->value.AsFullConnection()->activationType = (schema::ActivationType)activationType;
|
||||
this->primitive_->value.AsFullConnection()->activationType = static_cast<schema::ActivationType>(activationType);
|
||||
}
|
||||
#else
|
||||
int FullConnection::UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) {
|
||||
|
|
|
@ -53,10 +53,6 @@ int FusedBatchNorm::UnPackAttr(const Primitive &prim, const std::vector<AnfNodeP
|
|||
attr->epsilon = GetValue<float>(prim.GetAttr("epsilon"));
|
||||
attr->momentum = GetValue<float>(prim.GetAttr("momentum"));
|
||||
this->primitive_->value.value = attr;
|
||||
if (this->primitive_->value.value == nullptr) {
|
||||
MS_LOG(ERROR) << "new primitiveT value failed";
|
||||
return RET_ERROR;
|
||||
}
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
@ -88,7 +84,9 @@ Registry FusedBatchNormRegistry(schema::PrimitiveType_FusedBatchNorm, FusedBatch
|
|||
|
||||
int FusedBatchNorm::InferShape(std::vector<lite::Tensor *> inputs_, std::vector<lite::Tensor *> outputs_) {
|
||||
for (size_t i = 0; i < inputs_.size(); i++) {
|
||||
if (outputs_.size() <= i) break;
|
||||
if (outputs_.size() <= i) {
|
||||
break;
|
||||
}
|
||||
outputs_.at(i)->set_shape(inputs_.at(i)->shape());
|
||||
outputs_.at(i)->set_data_type(inputs_.at(i)->data_type());
|
||||
outputs_.at(i)->set_format(inputs_.at(i)->format());
|
||||
|
|
|
@ -68,8 +68,7 @@ class PrimitiveC : public mindspore::Primitive {
|
|||
|
||||
// Argument primitive is deliverd into PrimitiveC and will be deleted in ~PrimitiveC().
|
||||
// Caller should not delete primitive.
|
||||
explicit PrimitiveC(const std::string &name, schema::PrimitiveT *primitive)
|
||||
: Primitive(name), primitive_(primitive) {}
|
||||
PrimitiveC(const std::string &name, schema::PrimitiveT *primitive) : Primitive(name), primitive_(primitive) {}
|
||||
|
||||
PrimitiveC() : Primitive(""), primitive_(nullptr) {}
|
||||
|
||||
|
@ -179,7 +178,7 @@ class PrimitiveC {
|
|||
|
||||
template <typename T, typename = std::enable_if<std::is_base_of<PrimitiveC, T>::value>>
|
||||
static PrimitiveC *NewPrimitiveC(const schema::Primitive *primitive) {
|
||||
auto primc = new T();
|
||||
auto primc = new (std::nothrow) T();
|
||||
if (primc == nullptr) {
|
||||
MS_LOG(ERROR) << "new PrimitiveC failed";
|
||||
return nullptr;
|
||||
|
|
|
@ -30,10 +30,8 @@ namespace mindspore::kernel {
|
|||
int ZerosLikeCPUKernel::Init() { return RET_OK; }
|
||||
|
||||
int ZerosLikeCPUKernel::Run() {
|
||||
auto input = in_tensors_.at(0);
|
||||
auto input_data = reinterpret_cast<float *>(input->MutableData());
|
||||
auto output_data = reinterpret_cast<float *>(out_tensors_.at(0)->MutableData());
|
||||
ApproximateZerosLike(input_data, output_data, input->ElementsNum());
|
||||
ApproximateZerosLike(output_data, in_tensors_.at(0)->ElementsNum());
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
|
|
|
@ -118,7 +118,7 @@ int TransposeInt8CPUKernel::DoTranspose(int task_id) {
|
|||
position = position_ + task_id * transpose_param_->num_axes_;
|
||||
}
|
||||
|
||||
auto ret = DoTransposeInt8(in_ptr_, out_ptr_, in_shape_, out_shape_, transpose_param_, thread_offset,
|
||||
auto ret = DoTransposeInt8(in_ptr_, out_ptr_, out_shape_, transpose_param_, thread_offset,
|
||||
thread_offset + num_unit_thread, dim_size, position);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Transpose error task_id[" << task_id << "] error_code[" << ret << "]";
|
||||
|
|
|
@ -59,6 +59,7 @@ STATUS ReadProtoFromText(const char *file, google::protobuf::Message *message) {
|
|||
bool status = google::protobuf::TextFormat::Parse(&input, message);
|
||||
if (!status) {
|
||||
MS_LOG(ERROR) << "call [google::protobuf::TextFormat::Parse] func status fail, please check your text file.";
|
||||
fs.close();
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
|
|
|
@ -74,7 +74,7 @@ STATUS MatMulBiasAddFusionPass::DoFusion(MetaGraphT *graph, const std::string &p
|
|||
// biasadd node the second tensor is not constant tensor, don't fusion
|
||||
auto baNodeInputIndex = baNode->inputIndex;
|
||||
if (baNodeInputIndex.size() != BIASADD_OP_INPUT_NUM) {
|
||||
MS_LOG(ERROR) << "%s node tensors number is invalid! "; // baNode->name.c_str());
|
||||
MS_LOG(ERROR) << "input num is invalid! node: " << baNode->name.c_str();
|
||||
return RET_ERROR;
|
||||
}
|
||||
MS_ASSERT(graph->allTensors.size() > baNodeInputIndex.at(BIASADD_OP_BIAS_INDEX));
|
||||
|
@ -88,7 +88,7 @@ STATUS MatMulBiasAddFusionPass::DoFusion(MetaGraphT *graph, const std::string &p
|
|||
// 1. add biasTensor for matMul
|
||||
auto status = AddFullConnectionBiasTensor(matMulPath, baPath, graph);
|
||||
if (RET_OK != status) {
|
||||
MS_LOG(ERROR) << "AddFullConnectionBiasTensor failed, %d"; // status);
|
||||
MS_LOG(ERROR) << "AddFullConnectionBiasTensor failed, ret: " << status;
|
||||
return status;
|
||||
}
|
||||
|
||||
|
@ -113,17 +113,16 @@ STATUS MatMulBiasAddFusionPass::DoFusion(MetaGraphT *graph, const std::string &p
|
|||
MergeNodeAttrFromPost(matMulNode, baNode);
|
||||
status = IsolateOneWayNode(graph, baPath->nodeIdx);
|
||||
if (status != RET_OK) {
|
||||
MS_LOG(ERROR) << "IsolateOneWayNode failed, subGraph: %zu, node: %zu, error: %d";
|
||||
// baPath->subGraphIdx, baPath->nodeIdx, status);
|
||||
MS_LOG(ERROR) << "IsolateOneWayNode failed, subGraph: " << baPath->subGraphIdx << ", node: " << baPath->nodeIdx
|
||||
<< ", ret: " << status;
|
||||
return status;
|
||||
}
|
||||
|
||||
// 4. addTranspose node
|
||||
status = InsertTransposeNode(graph, matMulPath);
|
||||
if (status != RET_OK) {
|
||||
MS_LOG(ERROR)
|
||||
<< "InsertTransposeNode failed, subGraph: %zu, node: %zu, error: %d"; // matMulPath->subGraphIdx,
|
||||
// matMulPath->nodeIdx, status);
|
||||
MS_LOG(ERROR) << "InsertTransposeNode failed, subGraph: " << matMulPath->subGraphIdx
|
||||
<< ", node: " << matMulPath->nodeIdx << ", ret: " << status;
|
||||
return status;
|
||||
}
|
||||
return RET_OK;
|
||||
|
@ -162,7 +161,7 @@ STATUS MatMulBiasAddFusionPass::InsertTransposeNode(MetaGraphT *graph, const std
|
|||
matmulOpIter =
|
||||
InsertNode(graph, matmulOpIter, kBefore, needInsertIdx, std::move(transNode), &errorCode, TransposeOpCopyer);
|
||||
if (errorCode != RET_OK) {
|
||||
MS_LOG(ERROR) << "InsertNode failed: %d"; // errorCode);
|
||||
MS_LOG(ERROR) << "InsertNode failed: " << errorCode;
|
||||
return errorCode;
|
||||
}
|
||||
}
|
||||
|
@ -187,7 +186,7 @@ STATUS MatMulBiasAddFusionPass::AddFullConnectionBiasTensor(const std::shared_pt
|
|||
// check biasTensor
|
||||
auto baWeightTensorIdxes = baNode->inputIndex;
|
||||
if (baWeightTensorIdxes.size() != BIASADD_OP_INPUT_NUM) {
|
||||
MS_LOG(ERROR) << "%s node tensors number is invalid! "; // baNode->name.c_str());
|
||||
MS_LOG(ERROR) << "input number is invalid! node: " << baNode->name.c_str();
|
||||
return RET_ERROR;
|
||||
}
|
||||
MS_ASSERT(graph->allTensors.size() > baWeightTensorIdxes.at(BIASADD_OP_BIAS_INDEX));
|
||||
|
@ -196,7 +195,7 @@ STATUS MatMulBiasAddFusionPass::AddFullConnectionBiasTensor(const std::shared_pt
|
|||
auto biasDims = biasTensor->dims;
|
||||
// if biasTensor is a scaler
|
||||
if (biasDims.empty() && biasTensor->data.data() == nullptr) {
|
||||
MS_LOG(ERROR) << "BiasAdd node %s bias tensor is invalid"; // baNode->name.c_str());
|
||||
MS_LOG(ERROR) << "bias tensor is invalid, node: " << baNode->name.c_str();
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (!biasDims.empty() && biasDims.size() != BIASADD_WEIGHT_SHAPE_SIZE) {
|
||||
|
|
|
@ -142,7 +142,7 @@ STATUS TransOpInsertPass::Run(schema::MetaGraphT *graph) {
|
|||
changed = false;
|
||||
for (auto iter = graph->nodes.begin(); iter != graph->nodes.end(); iter++) {
|
||||
auto &node = *iter;
|
||||
if (node == nullptr && node->primitive == nullptr) {
|
||||
if (node == nullptr || node->primitive == nullptr) {
|
||||
MS_LOG(ERROR) << "node or primitive null";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
|
|
|
@ -53,6 +53,7 @@ STATUS CaffeReduceParser::Parse(const caffe::LayerParameter &proto, const caffe:
|
|||
break;
|
||||
case caffe::ReductionParameter_ReductionOp_ASUM:
|
||||
attr->mode = schema::ReduceMode_ReduceASum;
|
||||
break;
|
||||
default:
|
||||
MS_LOG(ERROR) << "reduce parse params fail, unsupported opration: " << reduce_param.operation();
|
||||
return RET_ERROR;
|
||||
|
|
|
@ -174,7 +174,7 @@ STATUS OnnxConvParser::Parse(const onnx::GraphProto &onnx_graph, const onnx::Nod
|
|||
attr->activationType = schema::ActivationType_NO_ACTIVATION;
|
||||
}
|
||||
|
||||
if (attr != nullptr && attr->group > kSingleGroup && attr->group == attr->channelIn) {
|
||||
if (attr->group > kSingleGroup && attr->group == attr->channelIn) {
|
||||
if (!ParseGroupConvolution(attr, op)) {
|
||||
MS_LOG(ERROR) << "Convert Convolution to Depthwise failed";
|
||||
return RET_ERROR;
|
||||
|
|
|
@ -43,7 +43,7 @@ class Quantizer {
|
|||
public:
|
||||
explicit Quantizer(FuncGraphPtr graph) : funcGraph(std::move(graph)) {}
|
||||
|
||||
~Quantizer() = default;
|
||||
virtual ~Quantizer() = default;
|
||||
|
||||
virtual STATUS RemoveFakeQuant();
|
||||
|
||||
|
|
Loading…
Reference in New Issue