forked from mindspore-Ecosystem/mindspore
!2150 Gpu Tanh kernel support fp16
Merge pull request !2150 from chenweifeng/tanh-fp16
This commit is contained in:
commit
19e66f06e2
|
@ -1,46 +0,0 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/cuda_impl/tanh_impl.cuh"
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
template<typename T>
|
||||
__global__ void TanhKernel(const size_t size, const T* x_addr, T* y_addr) {
|
||||
for (int pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) {
|
||||
y_addr[pos] = tanh(x_addr[pos]);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
__global__ void TanhGradKernel(const size_t size, const T* y_addr, const T* dy_addr, T* dx_addr) {
|
||||
for (int pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) {
|
||||
dx_addr[pos] = dy_addr[pos] * (1 - y_addr[pos] * y_addr[pos]);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void Tanh(const size_t size, const T* x_addr, T* y_addr, cudaStream_t cuda_stream) {
|
||||
TanhKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, x_addr, y_addr);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void TanhGrad(const size_t size, const T* y_addr, const T* dy_addr, T* dx_addr, cudaStream_t cuda_stream) {
|
||||
TanhGradKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, y_addr, dy_addr, dx_addr);
|
||||
}
|
||||
|
||||
template void Tanh(const size_t size, const float* x_addr, float* y_addr, cudaStream_t cuda_stream);
|
||||
template void TanhGrad(const size_t size, const float* y_addr, const float* dy_addr,
|
||||
float* dx_addr, cudaStream_t cuda_stream);
|
|
@ -1,28 +0,0 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_TAN_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_TAN_H_
|
||||
|
||||
#include "device/gpu/cuda_common.h"
|
||||
|
||||
template<typename T>
|
||||
void Tanh(const size_t size, const T* x_addr, T* y_addr, cudaStream_t cuda_stream);
|
||||
|
||||
template<typename T>
|
||||
void TanhGrad(const size_t size, const T* y_addr, const T* dy_addr, T* dx_addr, cudaStream_t cuda_stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_TAN_H_
|
|
@ -14,13 +14,18 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/nn/relu_gpu_kernel.h"
|
||||
#include "kernel/gpu/nn/activation_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(ReLU, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ReLUGpuFwdKernel, float)
|
||||
ActivationGpuFwdKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(ReLU, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
ReLUGpuFwdKernel, half)
|
||||
ActivationGpuFwdKernel, half)
|
||||
|
||||
MS_REG_GPU_KERNEL_ONE(Tanh, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ActivationGpuFwdKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Tanh, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
ActivationGpuFwdKernel, half)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -18,6 +18,8 @@
|
|||
#define MINDSPORE_CCSRC_KERNEL_GPU_NN_RELU_GPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include "kernel/gpu/gpu_kernel.h"
|
||||
#include "kernel/gpu/gpu_kernel_factory.h"
|
||||
#include "kernel/gpu/kernel_constants.h"
|
||||
|
@ -25,9 +27,9 @@
|
|||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class ReLUGpuFwdKernel : public GpuKernel {
|
||||
class ActivationGpuFwdKernel : public GpuKernel {
|
||||
public:
|
||||
ReLUGpuFwdKernel()
|
||||
ActivationGpuFwdKernel()
|
||||
: cudnn_handle_(nullptr),
|
||||
activation_desc_(nullptr),
|
||||
mode_(CUDNN_ACTIVATION_RELU),
|
||||
|
@ -37,7 +39,7 @@ class ReLUGpuFwdKernel : public GpuKernel {
|
|||
input_size_(0),
|
||||
output_size_(0),
|
||||
workspace_size_(0) {}
|
||||
~ReLUGpuFwdKernel() override { DestroyResource(); }
|
||||
~ActivationGpuFwdKernel() override { DestroyResource(); }
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
@ -54,33 +56,39 @@ class ReLUGpuFwdKernel : public GpuKernel {
|
|||
const float beta = 0;
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnActivationForward(cudnn_handle_, activation_desc_, &alpha, data_descriptor_, input,
|
||||
&beta, data_descriptor_, output),
|
||||
"ReLUGpuFwdKernel failed");
|
||||
"cudnnActivationForward failed");
|
||||
|
||||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
auto node_name = AnfAlgo::GetCNodeName(kernel_node);
|
||||
auto iter = kernel_map.find(node_name);
|
||||
if (iter == kernel_map.end()) {
|
||||
MS_LOG(EXCEPTION) << "Kernel: " << node_name << " not support.";
|
||||
}
|
||||
mode_ = iter->second;
|
||||
|
||||
InitResource();
|
||||
cudnn_data_type_ = GetCudnnDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 0)));
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 1) {
|
||||
MS_LOG(ERROR) << "Argument number is " << input_num << ", but ReLUGpuFwdKernel needs 1.";
|
||||
MS_LOG(ERROR) << "Argument number is " << input_num << ", but ActivationGpuFwdKernel needs 1.";
|
||||
return false;
|
||||
}
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
is_null_input_ = CHECK_NULL_INPUT(input_shape);
|
||||
if (is_null_input_) {
|
||||
MS_LOG(WARNING) << "ReLUGpuFwdKernel input is null.";
|
||||
MS_LOG(WARNING) << "ActivationGpuFwdKernel input is null.";
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
mode_ = CUDNN_ACTIVATION_RELU;
|
||||
std::vector<int> shape;
|
||||
ShapeNdTo4d(input_shape, &shape);
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetActivationDescriptor(activation_desc_, mode_, CUDNN_NOT_PROPAGATE_NAN, 0.0),
|
||||
"SetActivationDescriptor failed");
|
||||
"cudnnSetActivationDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetTensor4dDescriptor(data_descriptor_, CUDNN_TENSOR_NCHW, cudnn_data_type_,
|
||||
shape[0], shape[1], shape[2], shape[3]),
|
||||
"SetTensor4dDescriptor failed");
|
||||
"cudnnSetTensor4dDescriptor failed");
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
@ -110,6 +118,11 @@ class ReLUGpuFwdKernel : public GpuKernel {
|
|||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(data_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
|
||||
std::map<std::string, cudnnActivationMode_t> kernel_map = {{"ReLU", CUDNN_ACTIVATION_RELU},
|
||||
{"Tanh", CUDNN_ACTIVATION_TANH},
|
||||
{"ELU", CUDNN_ACTIVATION_ELU},
|
||||
{"Sigmoid", CUDNN_ACTIVATION_SIGMOID}};
|
||||
|
||||
cudnnHandle_t cudnn_handle_;
|
||||
cudnnActivationDescriptor_t activation_desc_;
|
||||
cudnnActivationMode_t mode_;
|
|
@ -14,17 +14,26 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/nn/relu_grad_kernel.h"
|
||||
#include "kernel/gpu/nn/activation_grad_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
ReluGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ReluGradGpuKernel, float)
|
||||
ActivationGradGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
ReluGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
ReluGradGpuKernel, half)
|
||||
ActivationGradGpuKernel, half)
|
||||
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
TanhGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ActivationGradGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
TanhGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
ActivationGradGpuKernel, half)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -18,6 +18,8 @@
|
|||
#define MINDSPORE_CCSRC_KERNEL_GPU_NN_RELU_GRAD_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include "kernel/gpu/gpu_kernel.h"
|
||||
#include "kernel/gpu/gpu_kernel_factory.h"
|
||||
#include "kernel/gpu/kernel_constants.h"
|
||||
|
@ -25,9 +27,9 @@
|
|||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class ReluGradGpuKernel : public GpuKernel {
|
||||
class ActivationGradGpuKernel : public GpuKernel {
|
||||
public:
|
||||
ReluGradGpuKernel()
|
||||
ActivationGradGpuKernel()
|
||||
: cudnn_handle_(nullptr),
|
||||
activation_desc_(nullptr),
|
||||
mode_(CUDNN_ACTIVATION_RELU),
|
||||
|
@ -35,7 +37,7 @@ class ReluGradGpuKernel : public GpuKernel {
|
|||
is_null_input_(false),
|
||||
cudnn_data_type_(CUDNN_DATA_FLOAT),
|
||||
input_size_(0) {}
|
||||
~ReluGradGpuKernel() override { DestroyResource(); }
|
||||
~ActivationGradGpuKernel() override { DestroyResource(); }
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
@ -45,8 +47,15 @@ class ReluGradGpuKernel : public GpuKernel {
|
|||
if (is_null_input_) {
|
||||
return true;
|
||||
}
|
||||
T *y = GetDeviceAddress<T>(inputs, 1);
|
||||
T *dy = GetDeviceAddress<T>(inputs, 0);
|
||||
T *dy = nullptr;
|
||||
T *y = nullptr;
|
||||
if (mode_ == CUDNN_ACTIVATION_RELU || mode_ == CUDNN_ACTIVATION_ELU) {
|
||||
dy = GetDeviceAddress<T>(inputs, 0);
|
||||
y = GetDeviceAddress<T>(inputs, 1);
|
||||
} else {
|
||||
y = GetDeviceAddress<T>(inputs, 0);
|
||||
dy = GetDeviceAddress<T>(inputs, 1);
|
||||
}
|
||||
T *dx = GetDeviceAddress<T>(outputs, 0);
|
||||
|
||||
const float alpha = 1;
|
||||
|
@ -59,18 +68,24 @@ class ReluGradGpuKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
auto node_name = AnfAlgo::GetCNodeName(kernel_node);
|
||||
auto iter = kernel_map.find(node_name);
|
||||
if (iter == kernel_map.end()) {
|
||||
MS_LOG(EXCEPTION) << "Kernel: " << node_name << " not support.";
|
||||
}
|
||||
mode_ = iter->second;
|
||||
|
||||
InitResource();
|
||||
cudnn_data_type_ = GetCudnnDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 0)));
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 2) {
|
||||
MS_LOG(ERROR) << "Argument number is " << input_num << ", but ReluGradGpuKernel needs 2.";
|
||||
MS_LOG(ERROR) << "Argument number is " << input_num << ", but ActivationGradGpuKernel needs 2.";
|
||||
return false;
|
||||
}
|
||||
auto input_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
mode_ = CUDNN_ACTIVATION_RELU;
|
||||
is_null_input_ = CHECK_NULL_INPUT(input_shape);
|
||||
if (is_null_input_) {
|
||||
MS_LOG(WARNING) << "ReluGradGpuKernel input is null.";
|
||||
MS_LOG(WARNING) << "ActivationGradGpuKernel input is null.";
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
@ -110,6 +125,10 @@ class ReluGradGpuKernel : public GpuKernel {
|
|||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(data_descriptor_), "cudnnDestroyTensorDescriptor failed");
|
||||
}
|
||||
|
||||
std::map<std::string, cudnnActivationMode_t> kernel_map = {{"ReluGrad", CUDNN_ACTIVATION_RELU},
|
||||
{"TanhGrad", CUDNN_ACTIVATION_TANH},
|
||||
{"ELUGrad", CUDNN_ACTIVATION_ELU},
|
||||
{"SigmoidGrad", CUDNN_ACTIVATION_SIGMOID}};
|
||||
cudnnHandle_t cudnn_handle_;
|
||||
cudnnActivationDescriptor_t activation_desc_;
|
||||
cudnnActivationMode_t mode_;
|
|
@ -1,24 +0,0 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/nn/tanh_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(Tanh, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
TanhGpuKernel, float)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -1,75 +0,0 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_NN_TANH_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_NN_TANH_GPU_KERNEL_H_
|
||||
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include "kernel/gpu/gpu_kernel.h"
|
||||
#include "kernel/gpu/gpu_kernel_factory.h"
|
||||
#include "kernel/gpu/cuda_impl/tanh_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class TanhGpuKernel : public GpuKernel {
|
||||
public:
|
||||
TanhGpuKernel() : input_size_(0) {}
|
||||
~TanhGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
auto x_addr = GetDeviceAddress<T>(inputs, 0);
|
||||
auto y_addr = GetDeviceAddress<T>(outputs, 0);
|
||||
|
||||
Tanh(input_size_ / sizeof(T), x_addr, y_addr, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
|
||||
input_size_ = sizeof(T);
|
||||
for (auto dim : input_shape) {
|
||||
input_size_ *= dim;
|
||||
}
|
||||
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_);
|
||||
input_size_list_.push_back(input_size_);
|
||||
output_size_list_.push_back(input_size_);
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
size_t input_size_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_NN_LSTM_GPU_KERNEL_H_
|
|
@ -1,26 +0,0 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/nn/tanh_grad_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
TanhGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
TanhGradKernel, float)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -1,76 +0,0 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_NN_TANH_GRAD_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_NN_TANH_GRAD_KERNEL_H_
|
||||
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include "kernel/gpu/gpu_kernel.h"
|
||||
#include "kernel/gpu/gpu_kernel_factory.h"
|
||||
#include "kernel/gpu/cuda_impl/tanh_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class TanhGradKernel : public GpuKernel {
|
||||
public:
|
||||
TanhGradKernel() : input_size_(0) {}
|
||||
~TanhGradKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
auto y_addr = GetDeviceAddress<T>(inputs, 0);
|
||||
auto dy_addr = GetDeviceAddress<T>(inputs, 1);
|
||||
auto dx_addr = GetDeviceAddress<T>(outputs, 0);
|
||||
|
||||
TanhGrad(input_size_ / sizeof(T), y_addr, dy_addr, dx_addr, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
|
||||
input_size_ = sizeof(T);
|
||||
for (auto dim : input_shape) {
|
||||
input_size_ *= dim;
|
||||
}
|
||||
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_);
|
||||
input_size_list_.push_back(input_size_);
|
||||
output_size_list_.push_back(input_size_);
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
size_t input_size_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_NN_TANH_GRAD_KERNEL_H_
|
|
@ -72,3 +72,40 @@ def test_Tanh():
|
|||
[1.78391056, 0.44159236, 0.33690308, 0.16800483, -0.13651318, -0.63878956, 0.18175511, 0.65280384]]
|
||||
|
||||
assert np.allclose(output[0].asnumpy(), expect)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_Tanh_fp16():
|
||||
np.random.seed(42)
|
||||
x_np = np.random.randn(5, 3, 6).astype(np.float16)
|
||||
dy_np = np.random.randn(5, 3, 6).astype(np.float16)
|
||||
|
||||
x_ms = Tensor(x_np)
|
||||
dy_ms = Tensor(dy_np)
|
||||
|
||||
net = TanhNet()
|
||||
grad = Grad(net)
|
||||
output = grad(x_ms, dy_ms)
|
||||
|
||||
expect = [[[0.0766, 0.95, -0.474, -0.0568, -0.3713, -1.387],
|
||||
[0.04626, 0.1521, 0.004135, -0.1771, -1.149, -0.341],
|
||||
[-0.3235, -0.0666, -0.01921, 0.299, 0.7764, 0.1583]],
|
||||
|
||||
[[0.124, -0.0157, -0.3682, -0.0252, 0.05997, 0.51],
|
||||
[-0.145, 0.2979, -0.01145, -1.019, 0.8125, 0.6914],
|
||||
[0.562, -0.0848, 1.402, -0.5386, 0.318, 0.645]],
|
||||
|
||||
[[-0.9487, -0.04343, 0.02448, -0.4844, -0.939, 0.0666],
|
||||
[-1.049, 0.433, -0.1724, 0.9604, -0.6377, -0.1241],
|
||||
[0.7246, -0.1364, 0.2051, 1.132, -1.049, 0.1298]],
|
||||
|
||||
[[0.104, 0.3643, -0.6562, -1.202, 0.4688, 0.1294],
|
||||
[0.2008, 0.3347, -0.2418, 0.07135, 0.1611, -0.1667],
|
||||
[1.856, 0.1979, -1.048, 0.4443, -0.8574, 0.1329]],
|
||||
|
||||
[[1.156, -0.1322, 0.02069, 0.2241, 0.8164, 1.736],
|
||||
[-0.2433, -0.05484, -0.848, -0.7197, -0.01453, 0.2637],
|
||||
[0.1528, 0.6494, 0.006195, 1.307, -0.2024, 2.113]]]
|
||||
|
||||
assert np.allclose(output[0].asnumpy(), expect, rtol=1e-3, atol=1e-3)
|
||||
|
|
Loading…
Reference in New Issue