forked from mindspore-Ecosystem/mindspore
!18807 Remove create dataset of reset34
Merge pull request !18807 from zhouyaqiang0/master
This commit is contained in:
commit
19753d1755
|
@ -49,7 +49,7 @@ if args_opt.net in ("resnet18", "resnet50"):
|
|||
elif args_opt.net == "resnet34":
|
||||
from src.resnet import resnet34 as resnet
|
||||
from src.config import config_resnet34 as config
|
||||
from src.dataset import create_dataset_resnet34 as create_dataset
|
||||
from src.dataset import create_dataset2 as create_dataset
|
||||
elif args_opt.net == "resnet101":
|
||||
from src.resnet import resnet101 as resnet
|
||||
from src.config import config3 as config
|
||||
|
|
|
@ -400,65 +400,6 @@ def create_dataset4(dataset_path, do_train, repeat_num=1, batch_size=32, target=
|
|||
|
||||
return data_set
|
||||
|
||||
def create_dataset_resnet34(dataset_path, do_train, repeat_num=1, batch_size=32):
|
||||
"""
|
||||
create a train or eval imagenet2012 dataset for resnet34
|
||||
|
||||
Args:
|
||||
dataset_path(string): the path of dataset.
|
||||
do_train(bool): whether dataset is used for train or eval.
|
||||
repeat_num(int): the repeat times of dataset. Default: 1
|
||||
batch_size(int): the batch size of dataset. Default: 32
|
||||
|
||||
Returns:
|
||||
data_set
|
||||
"""
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
device_num = int(os.getenv('RANK_SIZE'))
|
||||
|
||||
if device_num == 1:
|
||||
data_set = ds.ImageFolderDataset(dataset_path)
|
||||
else:
|
||||
if do_train:
|
||||
data_set = ds.ImageFolderDataset(dataset_path, shuffle=True,
|
||||
num_shards=device_num, shard_id=device_id)
|
||||
else:
|
||||
data_set = ds.ImageFolderDataset(dataset_path)
|
||||
|
||||
image_size = 224
|
||||
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
|
||||
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
|
||||
|
||||
# define map operations
|
||||
if do_train:
|
||||
trans = [
|
||||
C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),
|
||||
C.RandomHorizontalFlip(prob=0.5),
|
||||
C.Normalize(mean=mean, std=std),
|
||||
C.HWC2CHW()
|
||||
]
|
||||
else:
|
||||
trans = [
|
||||
C.Decode(),
|
||||
C.Resize(256),
|
||||
C.CenterCrop(image_size),
|
||||
C.Normalize(mean=mean, std=std),
|
||||
C.HWC2CHW()
|
||||
]
|
||||
|
||||
type_cast_op = C2.TypeCast(mstype.int32)
|
||||
|
||||
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8)
|
||||
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
|
||||
|
||||
# apply batch operations
|
||||
data_set = data_set.batch(batch_size, drop_remainder=True)
|
||||
|
||||
# apply dataset repeat operation
|
||||
data_set = data_set.repeat(repeat_num)
|
||||
|
||||
return data_set
|
||||
|
||||
def _get_rank_info():
|
||||
"""
|
||||
get rank size and rank id
|
||||
|
|
|
@ -86,7 +86,7 @@ if args_opt.net in ("resnet18", "resnet50"):
|
|||
elif args_opt.net == "resnet34":
|
||||
from src.resnet import resnet34 as resnet
|
||||
from src.config import config_resnet34 as config
|
||||
from src.dataset import create_dataset_resnet34 as create_dataset
|
||||
from src.dataset import create_dataset2 as create_dataset
|
||||
elif args_opt.net == "resnet101":
|
||||
from src.resnet import resnet101 as resnet
|
||||
from src.config import config3 as config
|
||||
|
|
Loading…
Reference in New Issue