enable runtime cache for ascend dynamic scene

This commit is contained in:
王南 2021-12-16 11:11:51 +08:00
parent 2d5274c415
commit 18fa59e090
3 changed files with 315 additions and 1 deletions

2
.gitignore vendored
View File

@ -100,7 +100,7 @@ mindspore/python/mindspore/version.py
mindspore/python/mindspore/default_config.py
mindspore/python/mindspore/device_target.py
mindspore/python/mindspore/package_name.py
mindspore/.commit_id
mindspore/python/mindspore/.commit_id
# lite test file
mindspore/lite/test/do_test/

View File

@ -113,6 +113,20 @@ void IntHandler(int, siginfo_t *, void *) {
MS_LOG(WARNING) << "Process " << this_pid << " receive KeyboardInterrupt signal.";
(void)kill(this_pid, SIGTERM);
}
void AscendEnableDynamicRuntimeCache(const KernelGraph *graph) {
const auto &node_list = graph->TopoSort(graph->get_return());
for (auto &node : node_list) {
auto kernel_info = node->kernel_info();
if (!kernel_info) {
continue;
}
MS_EXCEPTION_IF_NULL(kernel_info);
auto runtime_cache = kernel_info->runtime_cache();
MS_EXCEPTION_IF_NULL(runtime_cache);
runtime_cache->set_valid();
}
}
} // namespace
std::vector<rtExceptionInfo> AscendKernelRuntime::task_fail_infoes_ = {};
@ -908,6 +922,7 @@ bool AscendKernelRuntime::RunDynamicKernelAsync(const session::KernelGraph &grap
MS_LOG(ERROR) << "GraphId:" << graph.graph_id() << " Not Found! Please generator executor first";
return false;
}
AscendEnableDynamicRuntimeCache(&graph);
auto dynamic_kernels = iter->second;
for (const auto &dynamic_kernel : dynamic_kernels) {

View File

@ -0,0 +1,299 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
from mindspore import ops, nn, ParameterTuple, context, set_seed
from mindspore.train import DatasetHelper, connect_network_with_dataset
import mindspore.dataset as ds
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
set_seed(2)
def _exec_preprocess(network, is_train, dataset, dataset_sink_mode, epoch_num, sink_size):
if dataset_sink_mode and not is_train:
dataset.__loop_size__ = 1
dataset_helper = DatasetHelper(dataset, dataset_sink_mode, sink_size, epoch_num)
if dataset_sink_mode:
network = connect_network_with_dataset(network, dataset_helper)
return dataset_helper, network
def dynamic_shape_sink_process(network, dataset, is_train=True):
# epoch_num=1 sink_size=1: exec one step
dataset_sink_mode = True
sink_size = 1
epoch_num = 1
dataset_helper, network = _exec_preprocess(network, is_train, dataset, dataset_sink_mode, epoch_num, sink_size)
network.set_train(is_train)
for inputs in dataset_helper:
outputs = network(*inputs)
return outputs
def fixed_shape_process(network, dataset, is_train=True):
network.set_train(is_train)
for inputs in dataset.create_tuple_iterator():
outputs = network(*inputs)
return outputs
def dataset_generator(data_list):
for data in data_list:
yield data
class GradNetWrtX(nn.Cell):
def __init__(self, net):
super(GradNetWrtX, self).__init__()
self.net = net
self.grad_op = ops.GradOperation(get_all=True, get_by_list=True, sens_param=True)
self.params = ParameterTuple(net.trainable_params())
def construct(self, *inputs):
gradient_function = self.grad_op(self.net, self.params)
return gradient_function(*inputs)
class LayerNormNet(nn.Cell):
def __init__(self, last_dim):
super(LayerNormNet, self).__init__()
self.layernorm = nn.LayerNorm([last_dim])
def construct(self, x):
return self.layernorm(x)
class Conv2dNet(nn.Cell):
def __init__(self):
super(Conv2dNet, self).__init__()
self.conv = nn.Conv2d(3, 10, 4, pad_mode="valid", has_bias=False, weight_init='normal')
def construct(self, x):
return self.conv(x)
class DropoutNet(nn.Cell):
def __init__(self):
super(DropoutNet, self).__init__()
self.drop = nn.Dropout(0.5)
self.relu = ops.ReLU()
def construct(self, x):
x = self.relu(x)
return self.relu(self.drop(x))
class ReduceSumNet(nn.Cell):
def __init__(self, axis=()):
super(ReduceSumNet, self).__init__()
self.reduce = ops.ReduceSum()
self.axis = axis
def construct(self, x):
return self.reduce(x, self.axis)
class AddNet(nn.Cell):
def construct(self, x, y):
return ops.add(x, y)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_dynamic_layernorm():
"""
Feature: Test LayerNorm and its backward. The input shape is dynamic.
Description: The second dim of input is unknown.
Expectation: Assert that results are consistent with fixed shape.
"""
last_dim = 32
batch_size = 16
data_list = []
for i in range(20, 23):
data_list.append((np.random.rand(batch_size, i, last_dim).astype(np.float32),
np.random.rand(batch_size, i, last_dim).astype(np.float32)))
dataset = ds.GeneratorDataset(data_list, ["data1", "data2"])
dataset.set_dynamic_columns(columns={"data1": [batch_size, None, last_dim], "data2": [batch_size, None, last_dim]})
net = GradNetWrtX(LayerNormNet(last_dim))
gradients = dynamic_shape_sink_process(net, dataset)
gradients_cmp = fixed_shape_process(net, dataset)
assert np.allclose(gradients[0][0].asnumpy(), gradients_cmp[0][0].asnumpy(), rtol=1.0e-4, atol=1.0e-4)
assert np.allclose(gradients[1][0].asnumpy(), gradients_cmp[1][0].asnumpy(), rtol=1.0e-4, atol=1.0e-4)
assert np.allclose(gradients[1][1].asnumpy(), gradients_cmp[1][1].asnumpy(), rtol=1.0e-4, atol=1.0e-4)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_dynamic_conv2d():
"""
Feature: Test Conv2d and its backward. The input shape is dynamic.
Description: Input dim of `H `or `W` is unknown. Conv2d's attr[pad] set to "valid".
Expectation: Assert that results are consistent with fixed shape.
"""
batch_size = 16
data_list = []
for i in range(220, 224):
data_list.append((np.random.rand(batch_size, 3, i, 112).astype(np.float32),
np.random.rand(batch_size, 10, 219, 109).astype(np.float32)))
dataset = ds.GeneratorDataset(data_list, ["data1", "data2"])
dataset.set_dynamic_columns(columns={"data1": [batch_size, 3, None, 112], "data2": [batch_size, 10, None, 109]})
net = GradNetWrtX(Conv2dNet())
gradients = dynamic_shape_sink_process(net, dataset)
gradients_cmp = fixed_shape_process(net, dataset)
assert np.allclose(gradients[0][0].asnumpy(), gradients_cmp[0][0].asnumpy(), rtol=1.0e-4, atol=1.0e-4)
assert np.allclose(gradients[1][0].asnumpy(), gradients_cmp[1][0].asnumpy(), rtol=1.0e-4, atol=1.0e-4)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_dynamic_dropout():
"""
Feature: Test Dropout and its backward.
Description: The input shape is dynamic.
Expectation: Dropout result is random, assert gradient shape.
"""
batch_size = 16
data_list = []
for i in range(48, 50):
data_list.append((np.random.rand(batch_size, i, 256).astype(np.float32),
np.random.rand(batch_size, i, 256).astype(np.float32)))
dataset = ds.GeneratorDataset(data_list, ["data1", "data2"])
dataset.set_dynamic_columns(columns={"data1": [batch_size, None, 256], "data2": [batch_size, None, 256]})
net = GradNetWrtX(DropoutNet())
net.set_train()
gradients = dynamic_shape_sink_process(net, dataset)
assert gradients[0][0].shape == (batch_size, 49, 256)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_dynamic_reducesum1():
"""
Feature: Test ReduceSum and its backward. The input shape is dynamic.
Description: axis=(), result of reduce sum is a scalar, gradient shape is the same as input, value is all one.
Expectation: Assert gradient shape.
"""
batch_size = 16
data_list = []
for i in range(48, 50):
data_list.append((np.random.rand(batch_size, i, i + 2).astype(np.float32),
np.array(1).astype(np.float32)))
dataset = ds.GeneratorDataset(data_list, ["data1", "data2"])
dataset.set_dynamic_columns(columns={"data1": [batch_size, None, None], "data2": []})
net = GradNetWrtX(ReduceSumNet())
gradients = dynamic_shape_sink_process(net, dataset)
assert gradients[0][0].shape == (batch_size, 49, 51)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_dynamic_reducesum2():
"""
Feature: Test ReduceSum and its backward. The input shape is dynamic.
Description: axis is a scalar, not tuple.
Expectation: Assert that results are consistent with fixed shape.
"""
batch_size = 16
data_list = []
for i in range(48, 50):
data_list.append((np.random.rand(batch_size, i, i + 2).astype(np.float32),
np.random.rand(batch_size, i + 2).astype(np.float32)))
dataset = ds.GeneratorDataset(data_list, ["data1", "data2"])
dataset.set_dynamic_columns(columns={"data1": [batch_size, None, None], "data2": [batch_size, None]})
net = GradNetWrtX(ReduceSumNet(1))
gradients = dynamic_shape_sink_process(net, dataset)
gradients_cmp = fixed_shape_process(net, dataset)
assert np.allclose(gradients[0][0].asnumpy(), gradients_cmp[0][0].asnumpy(), rtol=1.0e-4, atol=1.0e-4)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_dynamic_add1():
"""
Feature: Test Add and its backward. The input shape is dynamic.
Description: Second input is a scalar. Shape of forward result is the same as first input.
Expectation: Assert that results are consistent with fixed shape.
"""
batch_size = 16
data_list = []
for i in range(48, 50):
data_list.append((np.random.rand(batch_size, i).astype(np.float32),
np.array(1).astype(np.float32),
np.random.rand(batch_size, i).astype(np.float32)))
dataset = ds.GeneratorDataset(data_list, ["data1", "data2", "data3"])
dataset.set_dynamic_columns(columns={"data1": [batch_size, None], "data2": [], "data3": [batch_size, None]})
net = GradNetWrtX(AddNet())
gradients = dynamic_shape_sink_process(net, dataset)
gradients_cmp = fixed_shape_process(net, dataset)
assert np.allclose(gradients[0][0].asnumpy(), gradients_cmp[0][0].asnumpy(), rtol=1.0e-4, atol=1.0e-4)
assert np.allclose(gradients[0][1].asnumpy(), gradients_cmp[0][1].asnumpy(), rtol=1.0e-4, atol=1.0e-4)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_dynamic_add2():
"""
Feature: Test Add and its backward. The input shape is dynamic.
Description: Shape of forward result is the same as first input. The axis of reduce_sum in add's bprop will be a
empty Tensor.
Expectation: Assert that results are consistent with fixed shape.
"""
batch_size = 16
data_list = []
for i in range(48, 50):
data_list.append((np.random.rand(batch_size, 2, i).astype(np.float32),
np.random.rand(2, i).astype(np.float32),
np.random.rand(batch_size, 2, i).astype(np.float32)))
dataset = ds.GeneratorDataset(data_list, ["data1", "data2", "data3"])
dataset.set_dynamic_columns(columns=
{"data1": [batch_size, 2, None], "data2": [2, None], "data3": [batch_size, 2, None]})
net = GradNetWrtX(AddNet())
gradients = dynamic_shape_sink_process(net, dataset)
gradients_cmp = fixed_shape_process(net, dataset)
assert np.allclose(gradients[0][0].asnumpy(), gradients_cmp[0][0].asnumpy(), rtol=1.0e-4, atol=1.0e-4)
assert np.allclose(gradients[0][1].asnumpy(), gradients_cmp[0][1].asnumpy(), rtol=1.0e-4, atol=1.0e-4)