diff --git a/tests/st/ge/dynamic_shape/test_dynamic_shape_input_train.py b/tests/st/ge/dynamic_shape/test_dynamic_shape_input_train.py index 867d6e7c296..d05bda21d75 100644 --- a/tests/st/ge/dynamic_shape/test_dynamic_shape_input_train.py +++ b/tests/st/ge/dynamic_shape/test_dynamic_shape_input_train.py @@ -147,13 +147,13 @@ def create_dataset(batch_size=32): class LossCallBack(LossMonitor): def __init__(self): super(LossCallBack, self).__init__() - self.last_5_losses = [] + self.last_10_losses = [] def step_end(self, run_context): cb_params = run_context.original_args() loss = cb_params.net_outputs loss = np.mean(loss.asnumpy()) - self.last_5_losses = self.last_5_losses[-4:] + [loss] + self.last_10_losses = self.last_10_losses[-9:] + [loss] def train(batch_size, lr, momentum, epochs, dataset_sink_mode): @@ -173,11 +173,11 @@ def train(batch_size, lr, momentum, epochs, dataset_sink_mode): model.train(epochs, dummy_dataset, callbacks=[loss_callback], sink_size=dummy_dataset.get_dataset_size(), dataset_sink_mode=dataset_sink_mode) - avg_loss = np.mean(loss_callback.last_5_losses) + avg_loss = np.min(loss_callback.last_10_losses) return avg_loss -@pytest.mark.level1 +@pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard