forked from mindspore-Ecosystem/mindspore
gpu add argmaxwithvalue
This commit is contained in:
parent
553432c968
commit
17377912ba
|
@ -0,0 +1,30 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/arrays/argmaxwithvalue_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
ArgMaxWithValue,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArgmaxWithValueGpuKernel, float, int)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
ArgMaxWithValue,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat16),
|
||||
ArgmaxWithValueGpuKernel, half, int)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,109 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_ARGMAXWITHVALUEGPUKERNEL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_ARGMAXWITHVALUEGPUKERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include "kernel/gpu/gpu_kernel.h"
|
||||
#include "kernel/gpu/gpu_kernel_factory.h"
|
||||
#include "kernel/gpu/cuda_impl/argmaxwithvalue_impl.cuh"
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T, typename S>
|
||||
class ArgmaxWithValueGpuKernel : public GpuKernel {
|
||||
public:
|
||||
ArgmaxWithValueGpuKernel()
|
||||
: input_size_(0),
|
||||
output_size_(0),
|
||||
workspace_size_(0),
|
||||
axis_(0),
|
||||
dims_(1),
|
||||
bound_(0),
|
||||
outerSize_(0),
|
||||
innerSize_(0) {}
|
||||
~ArgmaxWithValueGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
T *input = GetDeviceAddress<T>(inputs, 0);
|
||||
T *output = GetDeviceAddress<T>(outputs, 1);
|
||||
S *index = GetDeviceAddress<S>(outputs, 0);
|
||||
CalArgmaxWithValue(input_size_ / sizeof(T), input, bound_, outerSize_, innerSize_, axis_, dims_, index, output,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 1);
|
||||
dims_ = shape_.size();
|
||||
|
||||
axis_ = GetAttr<int>(kernel_node, "axis");
|
||||
if (axis_ < 0) {
|
||||
axis_ += dims_;
|
||||
}
|
||||
input_size_ = sizeof(T);
|
||||
for (auto x : shape_) {
|
||||
input_size_ *= x;
|
||||
}
|
||||
output_size_ = sizeof(S);
|
||||
for (auto x : output_shape) {
|
||||
output_size_ *= x;
|
||||
}
|
||||
bound_ = shape_[axis_];
|
||||
outerSize_ = 1;
|
||||
for (int i = axis_ - 1; i >= 0; i--) {
|
||||
outerSize_ *= shape_[i];
|
||||
}
|
||||
|
||||
innerSize_ = 1;
|
||||
for (int i = axis_ + 1; i < dims_; i++) {
|
||||
innerSize_ *= shape_[i];
|
||||
}
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_);
|
||||
output_size_list_.push_back(output_size_);
|
||||
output_size_list_.push_back(output_size_ / sizeof(S) * sizeof(T));
|
||||
}
|
||||
|
||||
private:
|
||||
size_t input_size_;
|
||||
size_t output_size_;
|
||||
size_t workspace_size_;
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
std::vector<size_t> shape_;
|
||||
int axis_;
|
||||
int dims_;
|
||||
int bound_;
|
||||
int outerSize_;
|
||||
int innerSize_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_ARGMAXWITHVALUEGPUKERNEL_H_
|
|
@ -0,0 +1,58 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "argmaxwithvalue_impl.cuh"
|
||||
#include "device/gpu/cuda_common.h"
|
||||
#include "include/cuda_fp16.h"
|
||||
template <typename T, typename S>
|
||||
__global__ void ArgmaxWithValue(size_t size, const T* input, const int bound, int outerSize, int innerSize,
|
||||
S* index, T* output) {
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) {
|
||||
for (int i = 0; i < outerSize; i++) {
|
||||
int inputOutterOffset = i * innerSize * bound;
|
||||
int outputOutterOffset = i * innerSize;
|
||||
for (int j = 0; j < innerSize; j++) {
|
||||
auto outputInnerOffset = outputOutterOffset + j;
|
||||
S idx = 0;
|
||||
T maxData = input[j + inputOutterOffset];
|
||||
for (S c = 0; c < bound; c++) {
|
||||
int offset = j + c * innerSize;
|
||||
auto inputData = input[inputOutterOffset + offset];
|
||||
idx = inputData > maxData ? c : idx;
|
||||
maxData = inputData > maxData ? inputData : maxData;
|
||||
}
|
||||
output[outputInnerOffset] = maxData;
|
||||
index[outputInnerOffset] = idx;
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template <typename T, typename S>
|
||||
void CalArgmaxWithValue(size_t size, const T* input, const int bound_, const int outerSize_, const int innerSize_,
|
||||
int axis_, int dims_, S* index, T* output, cudaStream_t cuda_stream) {
|
||||
ArgmaxWithValue<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, input, bound_, outerSize_, innerSize_,
|
||||
index, output);
|
||||
return;
|
||||
}
|
||||
|
||||
template void CalArgmaxWithValue<float, int>(size_t size, const float* input, const int bound_, const int outerSize_,
|
||||
const int innerSize_, int axis_, int dims_, int* index, float* output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalArgmaxWithValue<half, int>(size_t size, const half* input, const int bound_, const int outerSize_,
|
||||
const int innerSize_, int axis_, int dims_, int* index, half* output,
|
||||
cudaStream_t cuda_stream);
|
|
@ -0,0 +1,22 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_ARGMAXWITHVALUE_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_ARGMAXWITHVALUE_H_
|
||||
template <typename T, typename S>
|
||||
void CalArgmaxWithValue(size_t size, const T* input, const int bound_, const int outerSize_, const int innerSize_,
|
||||
int axis_, int dims_, S* index, T* output, cudaStream_t cuda_stream);
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_ARGMAXWITHVALUE_H_
|
|
@ -0,0 +1,68 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class NetArgmaxWithValue(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetArgmaxWithValue, self).__init__()
|
||||
axis1 = 0
|
||||
axis2 = -1
|
||||
self.argmax1 = P.ArgMaxWithValue(axis1)
|
||||
self.argmax2 = P.ArgMaxWithValue(axis2)
|
||||
self.argmax3 = P.ArgMaxWithValue()
|
||||
|
||||
def construct(self, x):
|
||||
return (self.argmax1(x), self.argmax2(x), self.argmax3(x))
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_argmaxwithvalue():
|
||||
x = Tensor(np.array([[1., 20., 5.],
|
||||
[67., 8., 9.],
|
||||
[130., 24., 15.],
|
||||
[0.3, -0.4, -15.]]).astype(np.float32))
|
||||
expect1 = np.array([2, 2, 2]).astype(np.float32)
|
||||
expect2 = np.array([1, 0, 0, 0]).astype(np.float32)
|
||||
expect11 = np.array([130, 24, 15]).astype(np.float32)
|
||||
expect22 = np.array([20, 67, 130, 0.3]).astype(np.float32)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
argmax = NetArgmaxWithValue()
|
||||
output = argmax(x)
|
||||
assert (output[0][0].asnumpy() == expect1).all()
|
||||
assert (output[0][1].asnumpy() == expect11).all()
|
||||
assert (output[1][0].asnumpy() == expect2).all()
|
||||
assert (output[1][1].asnumpy() == expect22).all()
|
||||
assert (output[2][0].asnumpy() == expect1).all()
|
||||
assert (output[2][1].asnumpy() == expect11).all()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
argmax = NetArgmaxWithValue()
|
||||
output = argmax(x)
|
||||
assert (output[0][0].asnumpy() == expect1).all()
|
||||
assert (output[0][1].asnumpy() == expect11).all()
|
||||
assert (output[1][0].asnumpy() == expect2).all()
|
||||
assert (output[1][1].asnumpy() == expect22).all()
|
||||
assert (output[2][0].asnumpy() == expect1).all()
|
||||
assert (output[2][1].asnumpy() == expect11).all()
|
Loading…
Reference in New Issue