forked from mindspore-Ecosystem/mindspore
add dy-lr in lenet alexnet
This commit is contained in:
parent
e42631c127
commit
157329efee
|
@ -0,0 +1,44 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""learning rate generator"""
|
||||
import numpy as np
|
||||
|
||||
|
||||
def get_lr(current_step, lr_max, total_epochs, steps_per_epoch):
|
||||
"""
|
||||
generate learning rate array
|
||||
|
||||
Args:
|
||||
current_step(int): current steps of the training
|
||||
lr_max(float): max learning rate
|
||||
total_epochs(int): total epoch of training
|
||||
steps_per_epoch(int): steps of one epoch
|
||||
|
||||
Returns:
|
||||
np.array, learning rate array
|
||||
"""
|
||||
lr_each_step = []
|
||||
total_steps = steps_per_epoch * total_epochs
|
||||
decay_epoch_index = [0.8 * total_steps]
|
||||
for i in range(total_steps):
|
||||
if i < decay_epoch_index[0]:
|
||||
lr = lr_max
|
||||
else:
|
||||
lr = lr_max * 0.1
|
||||
lr_each_step.append(lr)
|
||||
lr_each_step = np.array(lr_each_step).astype(np.float32)
|
||||
learning_rate = lr_each_step[current_step:]
|
||||
|
||||
return learning_rate
|
|
@ -21,12 +21,14 @@ python train.py --data_path /YourDataPath
|
|||
import argparse
|
||||
from config import alexnet_cfg as cfg
|
||||
from dataset import create_dataset
|
||||
from generator_lr import get_lr
|
||||
import mindspore.nn as nn
|
||||
from mindspore import context
|
||||
from mindspore import Tensor
|
||||
from mindspore.train import Model
|
||||
from mindspore.nn.metrics import Accuracy
|
||||
from mindspore.model_zoo.alexnet import AlexNet
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -43,16 +45,17 @@ if __name__ == "__main__":
|
|||
|
||||
network = AlexNet(cfg.num_classes)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
opt = nn.Momentum(network.trainable_params(), cfg.learning_rate, cfg.momentum)
|
||||
lr = Tensor(get_lr(0, cfg.learning_rate, cfg.epoch_size, cfg.save_checkpoint_steps))
|
||||
opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum)
|
||||
model = Model(network, loss, opt, metrics={"Accuracy": Accuracy()}) # test
|
||||
|
||||
print("============== Starting Training ==============")
|
||||
ds_train = create_dataset(args.data_path,
|
||||
cfg.batch_size,
|
||||
cfg.epoch_size,
|
||||
"train")
|
||||
cfg.epoch_size)
|
||||
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
|
||||
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
|
||||
keep_checkpoint_max=cfg.keep_checkpoint_max)
|
||||
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_alexnet", directory=args.ckpt_path, config=config_ck)
|
||||
model.train(cfg.epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor()],
|
||||
model.train(cfg.epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()],
|
||||
dataset_sink_mode=args.dataset_sink_mode)
|
||||
|
|
|
@ -25,7 +25,7 @@ from dataset import create_dataset
|
|||
import mindspore.nn as nn
|
||||
from mindspore.model_zoo.lenet import LeNet5
|
||||
from mindspore import context
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
||||
from mindspore.train import Model
|
||||
from mindspore.nn.metrics import Accuracy
|
||||
|
||||
|
@ -40,19 +40,20 @@ if __name__ == "__main__":
|
|||
|
||||
args = parser.parse_args()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, enable_mem_reuse=False)
|
||||
ds_train = create_dataset(os.path.join(args.data_path, "train"),
|
||||
cfg.batch_size,
|
||||
cfg.epoch_size)
|
||||
|
||||
network = LeNet5(cfg.num_classes)
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
||||
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
|
||||
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
|
||||
keep_checkpoint_max=cfg.keep_checkpoint_max)
|
||||
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck)
|
||||
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
||||
|
||||
ds_train = create_dataset(os.path.join(args.data_path, "train"),
|
||||
cfg.batch_size,
|
||||
cfg.epoch_size)
|
||||
print("============== Starting Training ==============")
|
||||
model.train(cfg['epoch_size'], ds_train, callbacks=[ckpoint_cb, LossMonitor()],
|
||||
model.train(cfg['epoch_size'], ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()],
|
||||
dataset_sink_mode=args.dataset_sink_mode)
|
||||
|
|
Loading…
Reference in New Issue