@@ -86,7 +86,7 @@ However, currently MindSpore Parser cannot parse numpy.ndarray in JIT-graph. To
>>> import mindspore.numpy as mnp
>>> import numpy
>>>
->>> nd_array = numpy.array([1,2,3])
+>>> nd_array = numpy.array([1,2,3])
>>> tensor = mnp.asarray(nd_array) # this line cannot be parsed in GRAPH mode
```
@@ -110,7 +110,7 @@ Previously, we have incomplete support for keyword arguments `out` and `where` i
- 1.1.1 | 1.2.0-rc1 |
+ 1.1.1 | 1.2.0 |
@@ -166,7 +166,7 @@ However, currently MindSpore Parser cannot parse numpy.ndarray in JIT-graph. To
- 1.1.1 | 1.2.0-rc1 |
+ 1.1.1 | 1.2.0 |
@@ -199,7 +199,7 @@ Previously, we have incomplete support for keyword arguments `out` and `where` i
- 1.1.1 | 1.2.0-rc1 |
+ 1.1.1 | 1.2.0 |
@@ -232,10 +232,6 @@ Previously, we have incomplete support for keyword arguments `out` and `where` i
|
-###### SPONGE
-
-Add basic computation functions of SPONGE in MindSpore: `mindspore.ops.operations.BondForceWithAtomEnergy`, `mindspore.ops.operations.AngleForceWithAtomEnergy`, `mindspore.ops.operations.DihedralForceWithAtomEnergy`, `mindspore.ops.operations.Dihedral14LJCFForceWithAtomEnergy`, `mindspore.ops.operations.LJForceWithPMEDirectForce`, `mindspore.ops.operations.PMEExcludedForce`, `mindspore.ops.operations.PMEReciprocalForce`,`mindspore.ops.operations.BondEnergy`, `mindspore.ops.operations.AngleEnergy`,`mindspore.ops.operations.DihedralEnergy`,`mindspore.ops.operations.Dihedral14LJEnergy`,`mindspore.ops.operations.Dihedral14CFEnergy`,`mindspore.ops.operations.LJEnergy`,`mindspore.ops.operations.PMEEnergy`. All operators are supported in `GPU`.
-
##### C++ API
###### C++ API support dual ABI now.([!12432](https://gitee.com/mindspore/mindspore/pulls/12432))
@@ -244,7 +240,7 @@ Add basic computation functions of SPONGE in MindSpore: `mindspore.ops.operation
- 1.1.1 | 1.2.0-rc1 |
+ 1.1.1 | 1.2.0 |
@@ -272,7 +268,7 @@ The `Context` class is refactored. For details, see the API docs.
- 1.1.1 | 1.2.0-rc1 |
+ 1.1.1 | 1.2.0 |
@@ -305,7 +301,7 @@ ascend310_info->SetInsertOpConfigPath("./aipp.cfg"); // set aipp co
- 1.1.1 | 1.2.0-rc1 |
+ 1.1.1 | 1.2.0 |
@@ -335,7 +331,7 @@ if (ret != kSuccess) { ... }
- 1.1.1 | 1.2.0-rc1 |
+ 1.1.1 | 1.2.0 |
@@ -365,7 +361,7 @@ if (ret != kSuccess) { ... }
- 1.1.1 | 1.2.0-rc1 |
+ 1.1.1 | 1.2.0 |
@@ -388,6 +384,12 @@ MSTensor::DestroyTensorPtr(tensor);
|
+#### New features
+
+##### Python API
+
+- Add SPONGE functions: `mindspore.ops.operations.BondForceWithAtomEnergy`, `mindspore.ops.operations.AngleForceWithAtomEnergy`, `mindspore.ops.operations.DihedralForceWithAtomEnergy`, `mindspore.ops.operations.Dihedral14LJCFForceWithAtomEnergy`, `mindspore.ops.operations.LJForceWithPMEDirectForce`, `mindspore.ops.operations.PMEExcludedForce`, `mindspore.ops.operations.PMEReciprocalForce`,`mindspore.ops.operations.BondEnergy`, `mindspore.ops.operations.AngleEnergy`,`mindspore.ops.operations.DihedralEnergy`, `mindspore.ops.operations.Dihedral14LJEnergy`, `mindspore.ops.operations.Dihedral14CFEnergy`,`mindspore.ops.operations.LJEnergy`, `mindspore.ops.operations.PMEEnergy`. All operators are supported in `GPU`.
+
#### Deprecations
##### Python API
@@ -398,7 +400,7 @@ MSTensor::DestroyTensorPtr(tensor);
- 1.1.1 | 1.2.0-rc1 |
+ 1.1.1 | 1.2.0 |
@@ -432,7 +434,13 @@ MSTensor::DestroyTensorPtr(tensor);
#### FrontEnd
-* fix the null pointer problem of evaluator in control flow.([!13312](https://gitee.com/mind_spore/dashboard/projects/mindspore/mindspore/pulls/13312))
+- fix the null pointer problem of evaluator in control flow.([!13312](https://gitee.com/mind_spore/dashboard/projects/mindspore/mindspore/pulls/13312))
+- fix parameter naming conflict bug for CellList and SequentialCell. ([!13260](https://gitee.com/mindspore/mindspore/pulls/13260))
+
+#### Executor
+
+- fix executor pending task not execute in some heterogeneous cases.([!13465](https://gitee.com/mind_spore/dashboard/projects/mindspore/mindspore/pulls/13465))
+- add passes to support frontend IR unification, including following operations: SliceGrad([!11783](https://gitee.com/mindspore/mindspore/pulls/11783)), ApplyFtrl, ApplyMomentum, ApplyRMSProp, CenteredRMSProp([!11895](https://gitee.com/mindspore/mindspore/pulls/11895)), AvgPoolGrad([!12813](https://gitee.com/mindspore/mindspore/pulls/12813)), BatchNorm([!12115](https://gitee.com/mindspore/mindspore/pulls/12115))
## MindSpore Lite
@@ -655,7 +663,7 @@ class Allocator;
Thanks goes to these wonderful people:
-Adel, AGroupofProbiotocs, anthonyaje, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, dong-li001, eric, Eric, fary86, fuzhiye, Gaoxiong, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Islam Amin, Jesse, , Jiabin Liu, jianghui58, jiangzhiwen, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, laiyongqiang, leonwanghui, Li, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luopengting, luoyang, lvchangquan, lvliang, lz, mahdi, Mahdi, maning202007, Margaret_wangrui, mayang, mengyuanli, Ming_blue, nhussain, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangnan39@huawei.com, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wudenggang, wukesong, wuweikang, wuxuejian, Xiaoda, xiefangqi, xinyunfan, xuanyue, xulei2020, Xun, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghaibo5@huawei.com, zhanghuiyao, zhanghui_china, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, zhiqwang, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Zirui, Ziyan, zjun, ZPaC, zymaa.
+Adel, AGroupofProbiotocs, anthonyaje, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, dong-li001, eric, Eric, fary86, fuzhiye, Gaoxiong, GAO_HYP_XYJ, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Islam Amin, Jesse, , Jiabin Liu, jianghui58, jiangzhiwen, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, laiyongqiang, leonwanghui, Li, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, Lin Xh, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luopengting, luoyang, lvchangquan, lvliang, lz, mahdi, Mahdi, maning202007, Margaret_wangrui, mayang, mengyuanli, Ming_blue, nhussain, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, qianjiahong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangnan39@huawei.com, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wudenggang, wukesong, wuweikang, wuxuejian, Xiaoda, xiefangqi, xinyunfan, xuanyue, xulei2020, Xun, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghaibo5@huawei.com, zhanghuiyao, zhanghui_china, zhangxinfeng3, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, zhiqwang, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Zirui, Ziyan, zjun, ZPaC, zymaa.
Contributions of any kind are welcome!
@@ -667,15 +675,15 @@ Contributions of any kind are welcome!
#### NewModels
-* [STABLE] BGCF: a Bayesian Graph Collaborative Filtering(BGCF) framework used to model the uncertainty in the user-item interaction graph and thus recommend accurate and diverse items on Amazon recommendation dataset.(Ascend)
-* [STABLE] GRU: a recurrent neural network architecture like the LSTM(Long-Short Term Memory) on Multi30K dataset.(Ascend)
-* [STABLE] FastText: a simple and efficient text classification algorithm on AG's news topic classification dataset, DBPedia Ontology classification dataset and Yelp Review Polarity dataset.(Ascend)
-* [STABLE] LSTM: a recurrent neural network architecture used to learn word vectors for sentiment analysis on aclImdb_v1 dataset.(Ascend)
-* [STABLE] SimplePoseNet: a convolution-based neural network for the task of human pose estimation and tracking on COCO2017 dataset.(Ascend)
+- [STABLE] BGCF: a Bayesian Graph Collaborative Filtering(BGCF) framework used to model the uncertainty in the user-item interaction graph and thus recommend accurate and diverse items on Amazon recommendation dataset.(Ascend)
+- [STABLE] GRU: a recurrent neural network architecture like the LSTM(Long-Short Term Memory) on Multi30K dataset.(Ascend)
+- [STABLE] FastText: a simple and efficient text classification algorithm on AG's news topic classification dataset, DBPedia Ontology classification dataset and Yelp Review Polarity dataset.(Ascend)
+- [STABLE] LSTM: a recurrent neural network architecture used to learn word vectors for sentiment analysis on aclImdb_v1 dataset.(Ascend)
+- [STABLE] SimplePoseNet: a convolution-based neural network for the task of human pose estimation and tracking on COCO2017 dataset.(Ascend)
#### FrontEnd
-* [BETA] Support Tensor Fancy Index Getitem with tuple and list. (Ascend/GPU/CPU)
+- [BETA] Support Tensor Fancy Index Getitem with tuple and list. (Ascend/GPU/CPU)
### Backwards Incompatible Change
@@ -938,7 +946,7 @@ Examples:
... self.depend = P.Depend()
...
... def construct(self, x, y):
- ... mul = x * y
+ ... mul = x - y
... y = self.depend(y, mul)
... ret = self.softmax(y)
... return ret
@@ -1145,73 +1153,73 @@ Contributions of any kind are welcome!
#### NewModels
-* [STABLE] GNMT v2: similar to the model described in Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation, which is mainly used for corpus translation, on WMT Englis-German dataset.(Ascend)
-* [STABLE] MaskRCNN: a conceptually simple, flexible, and general framework for object instance segmentation on COCO2017 dataset.(Ascend)
-* [STABLE] YOLOv4: a state-of-the-art detector which is faster and more accurate than all available alternative detectors on MS COCO dataset.(Ascend)
-* [STABLE] Openpose: proposes a bottom-up human attitude estimation algorithm using Part Affinity Fields on COCO2017 dataset.(Ascend)
-* [STABLE] CNN-CTC: proposes three major contributions to addresses scene text recognition (STR) on MJSynth and SynthText dataset.(Ascend)
-* [STABLE] CenterFace: a practical anchor-free face detection and alignment method for edge devices on WiderFace dataset.(Ascend)
-* [STABLE] ShuffleNetV2: a much faster and more accurate network than the previous networks on ImageNet 2012 dataset.(GPU)
-* [STABLE] EfficientNet-B0: a new scaling method that uniformly scales all dimensions of depth/width/resolution using a simple yet highly effective compound coefficient on ImageNet 2012 dataset.(GPU)
-* [BETA] SSD-GhostNet: based on an Ghost module structure which generate more features from cheap operations on Oxford-IIIT Pet dataset.(Ascend)
-* [BETA] DS-CNN: Depthwise separable convolutional neural network on Speech commands dataset.(Ascend)
-* [BETA] DeepPotentialH2O: A neural network model for molecular dynamics simulations. (Ascend)
-* [BETA] GOMO: A classical numerical method called GOMO for ocean simulation. (GPU)
+- [STABLE] GNMT v2: similar to the model described in Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation, which is mainly used for corpus translation, on WMT Englis-German dataset.(Ascend)
+- [STABLE] MaskRCNN: a conceptually simple, flexible, and general framework for object instance segmentation on COCO2017 dataset.(Ascend)
+- [STABLE] YOLOv4: a state-of-the-art detector which is faster and more accurate than all available alternative detectors on MS COCO dataset.(Ascend)
+- [STABLE] Openpose: proposes a bottom-up human attitude estimation algorithm using Part Affinity Fields on COCO2017 dataset.(Ascend)
+- [STABLE] CNN-CTC: proposes three major contributions to addresses scene text recognition (STR) on MJSynth and SynthText dataset.(Ascend)
+- [STABLE] CenterFace: a practical anchor-free face detection and alignment method for edge devices on WiderFace dataset.(Ascend)
+- [STABLE] ShuffleNetV2: a much faster and more accurate network than the previous networks on ImageNet 2012 dataset.(GPU)
+- [STABLE] EfficientNet-B0: a new scaling method that uniformly scales all dimensions of depth/width/resolution using a simple yet highly effective compound coefficient on ImageNet 2012 dataset.(GPU)
+- [BETA] SSD-GhostNet: based on an Ghost module structure which generate more features from cheap operations on Oxford-IIIT Pet dataset.(Ascend)
+- [BETA] DS-CNN: Depthwise separable convolutional neural network on Speech commands dataset.(Ascend)
+- [BETA] DeepPotentialH2O: A neural network model for molecular dynamics simulations. (Ascend)
+- [BETA] GOMO: A classical numerical method called GOMO for ocean simulation. (GPU)
#### FrontEnd
-* [STABLE] Refactor the MINDIR to support 310 inference(Ascend).
-* [STABLE] The execution backend of sparse operations in optimizer can be set through 'target'. (Ascend/GPU/CPU)
-* [STABLE] Support saving specified network to checkpoint and filtering parameters according to prefix when load checkpoint. (Ascend/GPU/CPU)
-* [STABLE] Allow users choose whether to load parameter into network strictly.(Ascend/GPU/CPU)
-* [STABLE] Before training, in graph mode, in order to have the same network initialization parameter values for all devices, broadcast the parameters on device 0 to other devices. (Ascend/GPU)
-* [STABLE] Support if by if of control flow subgraph. (Ascend/GPU)
-* [STABLE] Support the judgment that whether a tensor is in a list. (Ascend/GPU/CPU)
-* [STABLE] Support to get a value by using the corresponding key in a dictionary in the network; Support to get keys and values of a dictionary in the network. (Ascend/GPU/CPU)
-* [STABLE] Support Tensor in enumerate. (Ascend/GPU/CPU)
-* [STABLE] Support multilevel index assignment. (Ascend/GPU/CPU)
-* [STABLE] Support the 'expand_as','view','abs','mean' method of Tensor. (Ascend/GPU/CPU)
-* [STABLE] Support ResizeBilinear operation transfer ratio. (Ascend)
-* [STABLE] nn.Matmul supports matrix-vector product and batched matrix multiply. (Ascend/GPU)
-* [STABLE] nn.Dense supports input tensor whose dimension can be greater than 2. (Ascend/GPU)
-* [BETA] Support higher order differentiation for partial operators.(CPU/GPU/Ascend)
-* [STABLE] Support Tensor Augassign.(Ascend/GPU)
-* [BETA] Support 22 numpy native interfaces.
+- [STABLE] Refactor the MINDIR to support 310 inference(Ascend).
+- [STABLE] The execution backend of sparse operations in optimizer can be set through 'target'. (Ascend/GPU/CPU)
+- [STABLE] Support saving specified network to checkpoint and filtering parameters according to prefix when load checkpoint. (Ascend/GPU/CPU)
+- [STABLE] Allow users choose whether to load parameter into network strictly.(Ascend/GPU/CPU)
+- [STABLE] Before training, in graph mode, in order to have the same network initialization parameter values for all devices, broadcast the parameters on device 0 to other devices. (Ascend/GPU)
+- [STABLE] Support if by if of control flow subgraph. (Ascend/GPU)
+- [STABLE] Support the judgment that whether a tensor is in a list. (Ascend/GPU/CPU)
+- [STABLE] Support to get a value by using the corresponding key in a dictionary in the network; Support to get keys and values of a dictionary in the network. (Ascend/GPU/CPU)
+- [STABLE] Support Tensor in enumerate. (Ascend/GPU/CPU)
+- [STABLE] Support multilevel index assignment. (Ascend/GPU/CPU)
+- [STABLE] Support the 'expand_as','view','abs','mean' method of Tensor. (Ascend/GPU/CPU)
+- [STABLE] Support ResizeBilinear operation transfer ratio. (Ascend)
+- [STABLE] nn.Matmul supports matrix-vector product and batched matrix multiply. (Ascend/GPU)
+- [STABLE] nn.Dense supports input tensor whose dimension can be greater than 2. (Ascend/GPU)
+- [BETA] Support higher order differentiation for partial operators.(CPU/GPU/Ascend)
+- [STABLE] Support Tensor Augassign.(Ascend/GPU)
+- [BETA] Support 22 numpy native interfaces.
#### Auto Parallel
-* [STABLE] Support parallel optimizer with weight shard. (Ascend/GPU)
-* [STABLE] Support distributed operators: element-wise series, UnsortedSegmentSum, UnsortedSegmentMin, Split, BroadcastTo and Unique etc. (Ascend/GPU)
-* [STABLE] Support distributed model prediction. (Ascend/GPU)
-* [STABLE] Support auto mixed precision level "O2" in auto and semi auto parallel mode. (Ascend/GPU)
-* [STABLE] Add MultiFieldEmbeddingLookup high-level interface. (Ascend/GPU)
+- [STABLE] Support parallel optimizer with weight shard. (Ascend/GPU)
+- [STABLE] Support distributed operators: element-wise series, UnsortedSegmentSum, UnsortedSegmentMin, Split, BroadcastTo and Unique etc. (Ascend/GPU)
+- [STABLE] Support distributed model prediction. (Ascend/GPU)
+- [STABLE] Support auto mixed precision level "O2" in auto and semi auto parallel mode. (Ascend/GPU)
+- [STABLE] Add MultiFieldEmbeddingLookup high-level interface. (Ascend/GPU)
#### Executor
-* [STABLE] ResNet50 performance optimize. (GPU)
-* [STABLE] Support modelzoo net in PyNative mode(Ascend 29, GPU 23, CPU 2).(Ascend/GPU/CPU)
-* [STABLE] Support PyNative mode on CPU.(CPU)
-* [STABLE] Optimize performance in PyNative mode.(Ascend/GPU/CPU)
-* [STABLE] Support Safe Optimized Memory Allocation Solver (SOMAS) on Ascend to improve the memory-reuse, the batch size of Bert large model (128 sequence length) is increased from 160 to 208.(Ascend)
-* [BETA] Support second order differentiation in PyNative mode.(Ascend/GPU)
-* [DEMO] Add distributed trainning in PyNative mode.(Ascend/GPU)
+- [STABLE] ResNet50 performance optimize. (GPU)
+- [STABLE] Support modelzoo net in PyNative mode(Ascend 29, GPU 23, CPU 2).(Ascend/GPU/CPU)
+- [STABLE] Support PyNative mode on CPU.(CPU)
+- [STABLE] Optimize performance in PyNative mode.(Ascend/GPU/CPU)
+- [STABLE] Support Safe Optimized Memory Allocation Solver (SOMAS) on Ascend to improve the memory-reuse, the batch size of Bert large model (128 sequence length) is increased from 160 to 208.(Ascend)
+- [BETA] Support second order differentiation in PyNative mode.(Ascend/GPU)
+- [DEMO] Add distributed trainning in PyNative mode.(Ascend/GPU)
#### MDP
-* [STABLE] Add new operators for Ascend and GPU: IGamma, LGamma, DiGamma;
-* [STABLE] Add new distributions for Ascend and GPU: LogNormal, and Logistic;
-* [BETA] Add new distributions for Ascend only: Gumbel, Cauchy, Gamma, Beta, and Poisson; Add Categorical distribution for GPU;
-* [STABLE] Add new bijectors for Ascend and GPU: GumbelCDF, Invert;
-* [STABLE] Add Bayesian layer realized by local reparameterization method for Ascend and GPU;
-* [STABLE] Add Anomaly Detection Toolbox based on VAE for Ascend and GPU.
+- [STABLE] Add new operators for Ascend and GPU: IGamma, LGamma, DiGamma;
+- [STABLE] Add new distributions for Ascend and GPU: LogNormal, and Logistic;
+- [BETA] Add new distributions for Ascend only: Gumbel, Cauchy, Gamma, Beta, and Poisson; Add Categorical distribution for GPU;
+- [STABLE] Add new bijectors for Ascend and GPU: GumbelCDF, Invert;
+- [STABLE] Add Bayesian layer realized by local reparameterization method for Ascend and GPU;
+- [STABLE] Add Anomaly Detection Toolbox based on VAE for Ascend and GPU.
#### DataSet
-* [STABLE] Support single node multi-p distributed cache data sharing
-* [STABLE] Support GPU profiling with data processing
-* [STABLE] Support YOLOV3 dynamic shape in sink mode with dataset
-* [STABLE] Support unique processing in the data processing pipeline
-* [STABLE] Python layer parameter verification error information unified
+- [STABLE] Support single node multi-p distributed cache data sharing
+- [STABLE] Support GPU profiling with data processing
+- [STABLE] Support YOLOV3 dynamic shape in sink mode with dataset
+- [STABLE] Support unique processing in the data processing pipeline
+- [STABLE] Python layer parameter verification error information unified
### API Change
@@ -1642,25 +1650,25 @@ In Ascend platform, if group > 1, the weight shape of Conv2D change from [in_cha
#### FrontEnd
-* [STABLE] Fix the problem of the cse optimization in the situation of control flow. (Ascend/GPU)
+- [STABLE] Fix the problem of the cse optimization in the situation of control flow. (Ascend/GPU)
#### Auto Parallel
-* [STABLE] Resolve the restriction: input and output layouts of Reshape are restricted in tensor redistribution. (Ascend/GPU)
-* [STABLE] Resolve the restriction: output strategy should be data parallel in model evaluation. (Ascend/GPU)
+- [STABLE] Resolve the restriction: input and output layouts of Reshape are restricted in tensor redistribution. (Ascend/GPU)
+- [STABLE] Resolve the restriction: output strategy should be data parallel in model evaluation. (Ascend/GPU)
#### Executor
-* [STABLE] Fix fusion operator compilation cache. (Ascend)
-* [STABLE] Fix compilation error of dynamic shape operator. (Ascend)
-* [STABLE] Fix bug of pynative cannot insert transdata of node output when node should be spilted in the backend opt.(Ascend)
-* [STABLE] Fix the bug of TensorMove and memcpy_async merge to one after backend cse pass (Ascend)
+- [STABLE] Fix fusion operator compilation cache. (Ascend)
+- [STABLE] Fix compilation error of dynamic shape operator. (Ascend)
+- [STABLE] Fix bug of pynative cannot insert transdata of node output when node should be spilted in the backend opt.(Ascend)
+- [STABLE] Fix the bug of TensorMove and memcpy_async merge to one after backend cse pass (Ascend)
#### DataSet
-* [STABLE] Fix cache server hang on RequestFreeTag. (Ascend/GPU/CPU)
-* [STABLE] Fix hung when use pyfunc multi-processing. (Ascend/GPU/CPU)
-* [STABLE] Fix add multiple parent nodes to tree node cause core dump. (Ascend/GPU/CPU)
+- [STABLE] Fix cache server hang on RequestFreeTag. (Ascend/GPU/CPU)
+- [STABLE] Fix hung when use pyfunc multi-processing. (Ascend/GPU/CPU)
+- [STABLE] Fix add multiple parent nodes to tree node cause core dump. (Ascend/GPU/CPU)
## MindSpore Lite
@@ -1733,16 +1741,16 @@ The MindSpore Lite ToD framework is already in use in the newest Huawei Smart TV
##### C++ API
-* [Modify] Context now support multi-context configuration.(Context.h)
-* [Modify] Callback is move from lite_session.h into ms_tensor.h.
-* [Modify] GetInputsByName in lite_session.h is changed into GetInputsByTensorName
-* [Add] add static LiteSession *CreateSession(const char*model_buf, size_t size, const lite::Context *context) in lite_session.h
-* [Add] add GetErrorInfo interface returning error message in errorcode.h
-* [Delete] Remove model_generated.h, ops_generated.h and headers of FlatBuffers library from interfaces
+- [Modify] Context now support multi-context configuration.(Context.h)
+- [Modify] Callback is move from lite_session.h into ms_tensor.h.
+- [Modify] GetInputsByName in lite_session.h is changed into GetInputsByTensorName
+- [Add] add static LiteSession *CreateSession(const char*model_buf, size_t size, const lite::Context *context) in lite_session.h
+- [Add] add GetErrorInfo interface returning error message in errorcode.h
+- [Delete] Remove model_generated.h, ops_generated.h and headers of FlatBuffers library from interfaces
##### Java API
-* [Add] Implement JNI layer and add Java api for CPU and GPU backend
+- [Add] Implement JNI layer and add Java api for CPU and GPU backend
#### Deprecations
@@ -1752,9 +1760,9 @@ Deprecate Interface GetOutputsByNodeName
### Bug fixes
-* [BUGFIX] Fix the bug in sub-graph segmentation
-* [BUGFIX] Fix the bug in Tensor getitem in which the ellipsis matches the wrong dim-size.
-* [BUGFIX] Fix the bug that activation modification after defining Dense will not take effect.
+- [BUGFIX] Fix the bug in sub-graph segmentation
+- [BUGFIX] Fix the bug in Tensor getitem in which the ellipsis matches the wrong dim-size.
+- [BUGFIX] Fix the bug that activation modification after defining Dense will not take effect.
## Contributors
@@ -1774,108 +1782,108 @@ Contributions of any kind are welcome!
#### Ascend 910
-* New models
- * DenseNet121: a dense convolutional neural network, which connects each layer to every other layer in a feed-forward fashion for object recognition on ImageNet dataset.
- * UNet2D-Medical: Unet Medical model for 2D image segmentation, Convolutional Networks for Biomedical Image Segmentation on ISBI Challenge database.
-* Frontend and user interface
- * Second-Order Optimization
- * Enable second-order optimization for Bert on Ascend 910, which can achieve a masked lm accuracy of 71.3% in 800 seconds using 8 Ascend 910 (Bert-Large @MLPerf v0.7 dataset).
- * New GNN model BGCF
- * Bayesian Graph Convolutional Filtering network which naturally incorporate the uncertainty in the user-item interaction graph shows excellent recommendation performance on Amazon-Beauty dataset.
- * Add append interface for SequentialCell.
- * Add a level `auto` for AMP.
-* Executor and performance optimization
- * Support quantitative network (Resnet50 & YoloV3 & MobileNetV2).
- * Project ease of use optimization: project compilation time optimization, CMakelist regularization, cudnn, cuda independent compilation and installation independent.
-* Data processing, augmentation, and save format
- * Support GeneratorDataset return string type
+- New models
+ - DenseNet121: a dense convolutional neural network, which connects each layer to every other layer in a feed-forward fashion for object recognition on ImageNet dataset.
+ - UNet2D-Medical: Unet Medical model for 2D image segmentation, Convolutional Networks for Biomedical Image Segmentation on ISBI Challenge database.
+- Frontend and user interface
+ - Second-Order Optimization
+ - Enable second-order optimization for Bert on Ascend 910, which can achieve a masked lm accuracy of 71.3% in 800 seconds using 8 Ascend 910 (Bert-Large @MLPerf v0.7 dataset).
+ - New GNN model BGCF
+ - Bayesian Graph Convolutional Filtering network which naturally incorporate the uncertainty in the user-item interaction graph shows excellent recommendation performance on Amazon-Beauty dataset.
+ - Add append interface for SequentialCell.
+ - Add a level `auto` for AMP.
+- Executor and performance optimization
+ - Support quantitative network (Resnet50 & YoloV3 & MobileNetV2).
+ - Project ease of use optimization: project compilation time optimization, CMakelist regularization, cudnn, cuda independent compilation and installation independent.
+- Data processing, augmentation, and save format
+ - Support GeneratorDataset return string type
#### Other Hardware Support
-* GPU platform
- * Enable second-order optimization for resnet50 on GPU, which achieve 30% improvement on training time compared to SGD with Momentum (Resnet50 @ImageNet).
+- GPU platform
+ - Enable second-order optimization for resnet50 on GPU, which achieve 30% improvement on training time compared to SGD with Momentum (Resnet50 @ImageNet).
#### User interfaces change log
-* Remove global object GradOperation in Autodiff([!5011](https://gitee.com/mindspore/mindspore/pulls/5011))
-* Remove useless attribute 'name' in Autodiff([!5172](https://gitee.com/mindspore/mindspore/pulls/5172))
-* Rectification distributed init([!5350](https://gitee.com/mindspore/mindspore/pulls/5350))
-* Move the setting of ParalleMode from train.parallel_utils to context([!5351](https://gitee.com/mindspore/mindspore/pulls/5351))
-* Modification of save_checkpoint([!5482](https://gitee.com/mindspore/mindspore/pulls/5482))
-* Wrap numpy random seed into an api([!5634](https://gitee.com/mindspore/mindspore/pulls/5634))
-* Delete enable_fused_layernorm in some modelzoo scripts([!5665](https://gitee.com/mindspore/mindspore/pulls/5665))
-* Move 'multi-subgraphs' interface to internal([!5696](https://gitee.com/mindspore/mindspore/pulls/5696))
-* Rename mirror_mean to gradient_mean([!5700](https://gitee.com/mindspore/mindspore/pulls/5700))
-* Remove default value of 'group' of DepthWiseConv2d([!5865](https://gitee.com/mindspore/mindspore/pulls/5865))
-* Modify interface for function and remove duplicated def([!5958](https://gitee.com/mindspore/mindspore/pulls/5958))
-* Unify Conv2d and DepthwiseConv2d([!5916](https://gitee.com/mindspore/mindspore/pulls/5916))
-* Modification of SoftmaxCrossEntropyWithLogits([!5502](https://gitee.com/mindspore/mindspore/pulls/5502))
-* Change API set_strategy() to shard()([!5991](https://gitee.com/mindspore/mindspore/pulls/5991))
-* Move batch_size from bert_cfg_cfg to cfg([!6233](https://gitee.com/mindspore/mindspore/pulls/6233))
-* Remove unused parameters from SummaryRecord __init__([!5548](https://gitee.com/mindspore/mindspore/pulls/5548))
-* remove sens parameter of TrainOneStepWithLossScaleCell([!5753](https://gitee.com/mindspore/mindspore/pulls/5753))
-* optimize the TrainOneStepCell for user's define([!6159](https://gitee.com/mindspore/mindspore/pulls/6159))
-* delete seed0 and seed1 of nn.Dropout([!5735](https://gitee.com/mindspore/mindspore/pulls/5735))
-* delete DataWrapper([!6101](https://gitee.com/mindspore/mindspore/pulls/6101))
-* LSTM API optimization([!6374](https://gitee.com/mindspore/mindspore/pulls/6374))
-* Merge P\C\F of ops([!5645](https://gitee.com/mindspore/mindspore/pulls/5645))
-* delete SoftmaxCrossEntropyExpand interface([!6607](https://gitee.com/mindspore/mindspore/pulls/6607))
-* Adjust GroupNorm interface([!6329](https://gitee.com/mindspore/mindspore/pulls/6329))
-* Modify init interface to internal interface([!6651](https://gitee.com/mindspore/mindspore/pulls/6651))
-* Log optimization([!5842](https://gitee.com/mindspore/mindspore/pulls/5842))
-* Remove useless API dataset.set_dataset_size([!5806](https://gitee.com/mindspore/mindspore/pulls/5806))
-* Some of Dataset API add usage parameter([!5605](https://gitee.com/mindspore/mindspore/pulls/5605))
-* Change the import path, such as from mindspore.dataset.transforms.vision to mindspore.dataset.vision.transforms([!5384](https://gitee.com/mindspore/mindspore/pulls/5384))
-* Rename ImageFolderDatasetV2 to ImageFolderDataset([!5384](https://gitee.com/mindspore/mindspore/pulls/5384))
-* Dataset.map parameter optimization([!5384](https://gitee.com/mindspore/mindspore/pulls/5384))
-* Add new api dataset.get_col_names([!5384](https://gitee.com/mindspore/mindspore/pulls/5384))
-* Add new api dataset.get_col_names([!5384](https://gitee.com/mindspore/mindspore/pulls/5384))
-* Remove useless API MindRecord finish([!5580](https://gitee.com/mindspore/mindspore/pulls/5580))
+- Remove global object GradOperation in Autodiff([!5011](https://gitee.com/mindspore/mindspore/pulls/5011))
+- Remove useless attribute 'name' in Autodiff([!5172](https://gitee.com/mindspore/mindspore/pulls/5172))
+- Rectification distributed init([!5350](https://gitee.com/mindspore/mindspore/pulls/5350))
+- Move the setting of ParalleMode from train.parallel_utils to context([!5351](https://gitee.com/mindspore/mindspore/pulls/5351))
+- Modification of save_checkpoint([!5482](https://gitee.com/mindspore/mindspore/pulls/5482))
+- Wrap numpy random seed into an api([!5634](https://gitee.com/mindspore/mindspore/pulls/5634))
+- Delete enable_fused_layernorm in some modelzoo scripts([!5665](https://gitee.com/mindspore/mindspore/pulls/5665))
+- Move 'multi-subgraphs' interface to internal([!5696](https://gitee.com/mindspore/mindspore/pulls/5696))
+- Rename mirror_mean to gradient_mean([!5700](https://gitee.com/mindspore/mindspore/pulls/5700))
+- Remove default value of 'group' of DepthWiseConv2d([!5865](https://gitee.com/mindspore/mindspore/pulls/5865))
+- Modify interface for function and remove duplicated def([!5958](https://gitee.com/mindspore/mindspore/pulls/5958))
+- Unify Conv2d and DepthwiseConv2d([!5916](https://gitee.com/mindspore/mindspore/pulls/5916))
+- Modification of SoftmaxCrossEntropyWithLogits([!5502](https://gitee.com/mindspore/mindspore/pulls/5502))
+- Change API set_strategy() to shard()([!5991](https://gitee.com/mindspore/mindspore/pulls/5991))
+- Move batch_size from bert_cfg_cfg to cfg([!6233](https://gitee.com/mindspore/mindspore/pulls/6233))
+- Remove unused parameters from SummaryRecord __init__([!5548](https://gitee.com/mindspore/mindspore/pulls/5548))
+- remove sens parameter of TrainOneStepWithLossScaleCell([!5753](https://gitee.com/mindspore/mindspore/pulls/5753))
+- optimize the TrainOneStepCell for user's define([!6159](https://gitee.com/mindspore/mindspore/pulls/6159))
+- delete seed0 and seed1 of nn.Dropout([!5735](https://gitee.com/mindspore/mindspore/pulls/5735))
+- delete DataWrapper([!6101](https://gitee.com/mindspore/mindspore/pulls/6101))
+- LSTM API optimization([!6374](https://gitee.com/mindspore/mindspore/pulls/6374))
+- Merge P\C\F of ops([!5645](https://gitee.com/mindspore/mindspore/pulls/5645))
+- delete SoftmaxCrossEntropyExpand interface([!6607](https://gitee.com/mindspore/mindspore/pulls/6607))
+- Adjust GroupNorm interface([!6329](https://gitee.com/mindspore/mindspore/pulls/6329))
+- Modify init interface to internal interface([!6651](https://gitee.com/mindspore/mindspore/pulls/6651))
+- Log optimization([!5842](https://gitee.com/mindspore/mindspore/pulls/5842))
+- Remove useless API dataset.set_dataset_size([!5806](https://gitee.com/mindspore/mindspore/pulls/5806))
+- Some of Dataset API add usage parameter([!5605](https://gitee.com/mindspore/mindspore/pulls/5605))
+- Change the import path, such as from mindspore.dataset.transforms.vision to mindspore.dataset.vision.transforms([!5384](https://gitee.com/mindspore/mindspore/pulls/5384))
+- Rename ImageFolderDatasetV2 to ImageFolderDataset([!5384](https://gitee.com/mindspore/mindspore/pulls/5384))
+- Dataset.map parameter optimization([!5384](https://gitee.com/mindspore/mindspore/pulls/5384))
+- Add new api dataset.get_col_names([!5384](https://gitee.com/mindspore/mindspore/pulls/5384))
+- Add new api dataset.get_col_names([!5384](https://gitee.com/mindspore/mindspore/pulls/5384))
+- Remove useless API MindRecord finish([!5580](https://gitee.com/mindspore/mindspore/pulls/5580))
### MindSpore Lite
-* Converter
- * Add 6 TFLite op, 7 Caffe op, 1 ONNX op.
- * Add support for Windows.
- * Support parallel inference of multiple sessions to adapt to more scenarios
- * Support 8bits only weight-quantization, most main-stream models has small accuracy loss (less than 0.5%) when compared to non-qunantized fp32 model.
+- Converter
+ - Add 6 TFLite op, 7 Caffe op, 1 ONNX op.
+ - Add support for Windows.
+ - Support parallel inference of multiple sessions to adapt to more scenarios
+ - Support 8bits only weight-quantization, most main-stream models has small accuracy loss (less than 0.5%) when compared to non-qunantized fp32 model.
-* CPU & GPU
- * Add 20 CPU ops,include FP32, int8/uint8, FP16 and int32 ops.
- * Add supporting FP16 for GPU, add 14 GPU ops include FP32/FP16.
- * Add Buffer/Image2D transform op for GPU
- * Performance optimization for CPU ops focus on ARM32.
- * Performance optimization for GPU Convolution using winograd.
+- CPU & GPU
+ - Add 20 CPU ops,include FP32, int8/uint8, FP16 and int32 ops.
+ - Add supporting FP16 for GPU, add 14 GPU ops include FP32/FP16.
+ - Add Buffer/Image2D transform op for GPU
+ - Performance optimization for CPU ops focus on ARM32.
+ - Performance optimization for GPU Convolution using winograd.
-* Tool & example
- * Add object detection Android Demo.
+- Tool & example
+ - Add object detection Android Demo.
## Bugfixes
-* Models
- * fix the constant folding problem in multiply.([!6092](https://gitee.com/mindspore/mindspore/pulls/6092))
- * move batch_size from bert_net_cfg to cfg in bert scripts.([!6233](https://gitee.com/mindspore/mindspore/pulls/6233))
- * modify the checkpoint file path.([!6137](https://gitee.com/mindspore/mindspore/pulls/6137))
-* Python API
- * fix semi auto parallel parameter of reshape has another user([!5722](https://gitee.com/mindspore/mindspore/pulls/5722))
- * raise ValueError when call hook function in graph mode([!5831](https://gitee.com/mindspore/mindspore/pulls/5831))
-* Executor
- * fix pynative mode to build temporary nn objects.([!6189](https://gitee.com/mindspore/mindspore/pulls/6189))
- * fix the accuracy problem of multiple inputs of multi-card communication operator broadcast.([!6522](https://gitee.com/mindspore/mindspore/pulls/5622))
- * fix the problem that the sample distribution interface categorical does not support graph mode.([!5772](https://gitee.com/mindspore/mindspore/pulls/5772))
- * fix the random seed failure problem of the polynomial downsampling distribution operator.([!5948](https://gitee.com/mindspore/mindspore/pulls/5948))
- * fix unnecessary address binding issues in GPU heterogeneous scenarios.([!6232](https://gitee.com/mindspore/mindspore/pulls/6232))
-* GPU platform
- * fix for kernel resource leak([!5315](https://gitee.com/mindspore/mindspore/pulls/5315))
- * fix for insufficient memory for continuous unit test running([!5617](https://gitee.com/mindspore/mindspore/pulls/5617))
- * fix for the memory leak in the sparse slicer([!5578](https://gitee.com/mindspore/mindspore/pulls/5578))
-* Data processing
- * fix hang when use pyfunc([!6346](https://gitee.com/mindspore/mindspore/pulls/6346))
- * fix GPU device queue does not release GIL during resource clean up([!5964](https://gitee.com/mindspore/mindspore/pulls/5964))
- * fix hang if scripte exit unnormally([!6441](https://gitee.com/mindspore/mindspore/pulls/6441))
-* Third party
- * Sqlite : Update sqlite to 3.32.2 to handle [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656), [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871), [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655), [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327), [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630), [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358), [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631), [CVE-2020-13632](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13632), [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434), [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435), and [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655).
- * Libjpeg-turbo : Update libjpeg-turbo to 2.0.4 to handle [CVE-2020-13790](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13790).
+- Models
+ - fix the constant folding problem in multiply.([!6092](https://gitee.com/mindspore/mindspore/pulls/6092))
+ - move batch_size from bert_net_cfg to cfg in bert scripts.([!6233](https://gitee.com/mindspore/mindspore/pulls/6233))
+ - modify the checkpoint file path.([!6137](https://gitee.com/mindspore/mindspore/pulls/6137))
+- Python API
+ - fix semi auto parallel parameter of reshape has another user([!5722](https://gitee.com/mindspore/mindspore/pulls/5722))
+ - raise ValueError when call hook function in graph mode([!5831](https://gitee.com/mindspore/mindspore/pulls/5831))
+- Executor
+ - fix pynative mode to build temporary nn objects.([!6189](https://gitee.com/mindspore/mindspore/pulls/6189))
+ - fix the accuracy problem of multiple inputs of multi-card communication operator broadcast.([!6522](https://gitee.com/mindspore/mindspore/pulls/5622))
+ - fix the problem that the sample distribution interface categorical does not support graph mode.([!5772](https://gitee.com/mindspore/mindspore/pulls/5772))
+ - fix the random seed failure problem of the polynomial downsampling distribution operator.([!5948](https://gitee.com/mindspore/mindspore/pulls/5948))
+ - fix unnecessary address binding issues in GPU heterogeneous scenarios.([!6232](https://gitee.com/mindspore/mindspore/pulls/6232))
+- GPU platform
+ - fix for kernel resource leak([!5315](https://gitee.com/mindspore/mindspore/pulls/5315))
+ - fix for insufficient memory for continuous unit test running([!5617](https://gitee.com/mindspore/mindspore/pulls/5617))
+ - fix for the memory leak in the sparse slicer([!5578](https://gitee.com/mindspore/mindspore/pulls/5578))
+- Data processing
+ - fix hang when use pyfunc([!6346](https://gitee.com/mindspore/mindspore/pulls/6346))
+ - fix GPU device queue does not release GIL during resource clean up([!5964](https://gitee.com/mindspore/mindspore/pulls/5964))
+ - fix hang if scripte exit unnormally([!6441](https://gitee.com/mindspore/mindspore/pulls/6441))
+- Third party
+ - Sqlite : Update sqlite to 3.32.2 to handle [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656), [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871), [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655), [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327), [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630), [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358), [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631), [CVE-2020-13632](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13632), [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434), [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435), and [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655).
+ - Libjpeg-turbo : Update libjpeg-turbo to 2.0.4 to handle [CVE-2020-13790](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13790).
## Contributors
@@ -1893,106 +1901,106 @@ Contributions of any kind are welcome!
#### Ascend 910
-* New models
- * TinyBert: a smaller and faster version of BERT using transformer distillation for natural language understanding on GLUE benchmark.
- * SE-ResNet50: add Squeeze-and-Excitation blocks(SE-Blocks) to the resnet50 network to improve channel interdependencies for image classification on ImageNet 2012 dataset.
- * Inception V3: the third version of Inception convolutional architectures for image classification on ImageNet 2012 dataset.
-* Frontend and user interface
- * Embedding operator high-level packaging to support segmented by field for Wide&Deep.
- * Load multi-node checkpoint into single-process to support host-device hybrid inference.
- * Support Concat/Tile/Strideslice distributed operators.
- * Support cumulative gradient and batch training split.
- * Support variable parameter input for Cell object.
- * Parameter mixed calculation optimization for pynative mode.
- * Deep Probabilistic Programming
- * Support statistical distributions classes used to generate stochastic tensors.
- * Support probabilistic inference algorithms.
- * Support BNN layers used to construct BNN in Graph mode.
- * Support interfaces for the transformation between BNN and DNN in Graph mode.
- * Support uncertainty estimation to estimate epistemic uncertainty and aleatoric uncertainty.
- * User interfaces change log
- * change base class of parameter([!3473](https://gitee.com/mindspore/mindspore/pulls/3473))
- * change binary to mindir([!4258](https://gitee.com/mindspore/mindspore/pulls/4258))
- * change export from geir to air([!4269](https://gitee.com/mindspore/mindspore/pulls/4269))
- * Init parameter data by default([!3967](https://gitee.com/mindspore/mindspore/pulls/3967))
- * change IndexedSlices to RowTensor([!4031](https://gitee.com/mindspore/mindspore/pulls/4031))
- * Must set or change parallel mode before any Initializer created([!4801](https://gitee.com/mindspore/mindspore/pulls/4801))
-* Executor and performance optimization
- * MindSpore graph compilation process performance improved by 20%.
- * Decoupling C++ and Python modules to achieve separate compilation of core modules.
-* Data processing, augmentation, and save format
- * Support automatic data augmentation
- * Support GNN distributed cache in single node
- * Support ConcatDataset using distributed sampler
+- New models
+ - TinyBert: a smaller and faster version of BERT using transformer distillation for natural language understanding on GLUE benchmark.
+ - SE-ResNet50: add Squeeze-and-Excitation blocks(SE-Blocks) to the resnet50 network to improve channel interdependencies for image classification on ImageNet 2012 dataset.
+ - Inception V3: the third version of Inception convolutional architectures for image classification on ImageNet 2012 dataset.
+- Frontend and user interface
+ - Embedding operator high-level packaging to support segmented by field for Wide&Deep.
+ - Load multi-node checkpoint into single-process to support host-device hybrid inference.
+ - Support Concat/Tile/Strideslice distributed operators.
+ - Support cumulative gradient and batch training split.
+ - Support variable parameter input for Cell object.
+ - Parameter mixed calculation optimization for pynative mode.
+ - Deep Probabilistic Programming
+ - Support statistical distributions classes used to generate stochastic tensors.
+ - Support probabilistic inference algorithms.
+ - Support BNN layers used to construct BNN in Graph mode.
+ - Support interfaces for the transformation between BNN and DNN in Graph mode.
+ - Support uncertainty estimation to estimate epistemic uncertainty and aleatoric uncertainty.
+ - User interfaces change log
+ - change base class of parameter([!3473](https://gitee.com/mindspore/mindspore/pulls/3473))
+ - change binary to mindir([!4258](https://gitee.com/mindspore/mindspore/pulls/4258))
+ - change export from geir to air([!4269](https://gitee.com/mindspore/mindspore/pulls/4269))
+ - Init parameter data by default([!3967](https://gitee.com/mindspore/mindspore/pulls/3967))
+ - change IndexedSlices to RowTensor([!4031](https://gitee.com/mindspore/mindspore/pulls/4031))
+ - Must set or change parallel mode before any Initializer created([!4801](https://gitee.com/mindspore/mindspore/pulls/4801))
+- Executor and performance optimization
+ - MindSpore graph compilation process performance improved by 20%.
+ - Decoupling C++ and Python modules to achieve separate compilation of core modules.
+- Data processing, augmentation, and save format
+ - Support automatic data augmentation
+ - Support GNN distributed cache in single node
+ - Support ConcatDataset using distributed sampler
#### Other Hardware Support
-* GPU platform
- * New model supported: VGG16, ResNet101, DeepFM.
- * Support some distributed operators in ResNet50 and Wide&Deep.
- * Support automatic parallel for Wide&Deep.
- * Support function funcs[i](*inputs) (such as switch-case).
- * Support distributed training with parameter server.
- * Support GPU operator profiling.
- * Performance optimization of the distributed training with allreduce.
- * Performance optimization of the mixed precision training.
- * Performance optimization of the pynative mode.
- * Performance optimization of the convolution operator, batch normalization operator.
-* CPU platform
- * Support MobileNetV2 Re-Training: Re-train the network with different class number.
+- GPU platform
+ - New model supported: VGG16, ResNet101, DeepFM.
+ - Support some distributed operators in ResNet50 and Wide&Deep.
+ - Support automatic parallel for Wide&Deep.
+ - Support function funcs[i](*inputs) (such as switch-case).
+ - Support distributed training with parameter server.
+ - Support GPU operator profiling.
+ - Performance optimization of the distributed training with allreduce.
+ - Performance optimization of the mixed precision training.
+ - Performance optimization of the pynative mode.
+ - Performance optimization of the convolution operator, batch normalization operator.
+- CPU platform
+ - Support MobileNetV2 Re-Training: Re-train the network with different class number.
### MindSpore Lite
-* Converter
- * Support third-party models, including TFLite/Caffe/ONNX.
- * Add 93 TFLite op.
- * Add 24 Caffe op.
- * Add 62 ONNX op.
- * Add 11 optimized passes, include fusion/const fold.
- * Support aware-training and Post-training quantization.
-* CPU
- * Add 100+ops,support fp32, int8/uint8, FP16 ops
- * Support fast convolution algorithms: Sliding Window, Img2col + Gemm, Strassen, Winograd
- * Support assembly/neon instruction.
- * Support CPU fp16 and sdot on ARM v8.2+.
-* GPU
- * Add 20+ ops for OpenCL.
- * Support image2D/buffer format.
- * Optimize online initialization time.
- * add optimized convolution1X1/3X3/depthwise/convolution_transposed for OpenCL.
-* Tool & example
- * Add benchmark and TimeProfile tools.
- * Add image classification Android Demo.
+- Converter
+ - Support third-party models, including TFLite/Caffe/ONNX.
+ - Add 93 TFLite op.
+ - Add 24 Caffe op.
+ - Add 62 ONNX op.
+ - Add 11 optimized passes, include fusion/const fold.
+ - Support aware-training and Post-training quantization.
+- CPU
+ - Add 100+ops,support fp32, int8/uint8, FP16 ops
+ - Support fast convolution algorithms: Sliding Window, Img2col + Gemm, Strassen, Winograd
+ - Support assembly/neon instruction.
+ - Support CPU fp16 and sdot on ARM v8.2+.
+- GPU
+ - Add 20+ ops for OpenCL.
+ - Support image2D/buffer format.
+ - Optimize online initialization time.
+ - add optimized convolution1X1/3X3/depthwise/convolution_transposed for OpenCL.
+- Tool & example
+ - Add benchmark and TimeProfile tools.
+ - Add image classification Android Demo.
## Bugfixes
-* Models
- * normalize the readme file([!5410](https://gitee.com/mindspore/mindspore/pulls/5410))
- * fix a sink_size bug for transformer([!5393](https://gitee.com/mindspore/mindspore/pulls/5393))
- * fix bool type optional for resnet50([!5363](https://gitee.com/mindspore/mindspore/pulls/5363))
-* Python API
- * improve interface '__bool__' for tensor([!4000](https://gitee.com/mindspore/mindspore/pulls/4000))
- * fix GPU-ResizeNearestNeighbor([!3760](https://gitee.com/mindspore/mindspore/pulls/3760))
- * fix topK multi dimension grad func([!3711](https://gitee.com/mindspore/mindspore/pulls/3711))
- * fix scatterop error msg([!3699](https://gitee.com/mindspore/mindspore/pulls/3699))
- * fix bug of cast dtype when using mix_presion in pynative mode([!3730](https://gitee.com/mindspore/mindspore/pulls/3730))
-* Executor
- * fix etsnet train error when UnsegmentSum's first input shape is (1,) ([!4573](https://gitee.com/mindspore/mindspore/pulls/4573))
- * fix bug of result error in while control flow because of unsupporting for value reference ([!4103](https://gitee.com/mindspore/mindspore/pulls/4103))
- * fix bug of the output tensor does not carry device data type ([!3774](https://gitee.com/mindspore/mindspore/pulls/3774))
- * fix bug of avoiding multi attr value are eliminated in pynative mode ([!4225](https://gitee.com/mindspore/mindspore/pulls/4225))
- * fix bug of AssignAdd unable to work normally in multi-cases ([!5171](https://gitee.com/mindspore/mindspore/pulls/5171))
-* GPU platform
- * improve the environment variable checking for nvcc compiler path ([!5140](https://gitee.com/mindspore/mindspore/pulls/5140))
- * fix bug of error in cast operator conversion from fp16 to fp32 ([!4147](https://gitee.com/mindspore/mindspore/pulls/4147))
- * fix bug of the array out of bound in case of make_tuple operator ([!5219](https://gitee.com/mindspore/mindspore/pulls/5219))
-* Data processing and Pro
- * fix GeneratorDataset time out([!3624](https://gitee.com/mindspore/mindspore/pulls/3624))
- * fix concat operator get_dataset_size error([!4701](https://gitee.com/mindspore/mindspore/pulls/4701))
- * fixing python validator for Repeat Op([!4366](https://gitee.com/mindspore/mindspore/pulls/4366))
-* Third party
- * Sqlite : Update sqlite to 3.32.2 to handle [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656), [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871), [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655), [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327), [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630), [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358), [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631), [CVE-2020-13632](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13632), [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434), [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435), and [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655).
- * Libjpeg-turbo : Update libjpeg-turbo to 2.0.4 to handle [CVE-2020-13790](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13790).
+- Models
+ - normalize the readme file([!5410](https://gitee.com/mindspore/mindspore/pulls/5410))
+ - fix a sink_size bug for transformer([!5393](https://gitee.com/mindspore/mindspore/pulls/5393))
+ - fix bool type optional for resnet50([!5363](https://gitee.com/mindspore/mindspore/pulls/5363))
+- Python API
+ - improve interface '__bool__' for tensor([!4000](https://gitee.com/mindspore/mindspore/pulls/4000))
+ - fix GPU-ResizeNearestNeighbor([!3760](https://gitee.com/mindspore/mindspore/pulls/3760))
+ - fix topK multi dimension grad func([!3711](https://gitee.com/mindspore/mindspore/pulls/3711))
+ - fix scatterop error msg([!3699](https://gitee.com/mindspore/mindspore/pulls/3699))
+ - fix bug of cast dtype when using mix_presion in pynative mode([!3730](https://gitee.com/mindspore/mindspore/pulls/3730))
+- Executor
+ - fix etsnet train error when UnsegmentSum's first input shape is (1,) ([!4573](https://gitee.com/mindspore/mindspore/pulls/4573))
+ - fix bug of result error in while control flow because of unsupporting for value reference ([!4103](https://gitee.com/mindspore/mindspore/pulls/4103))
+ - fix bug of the output tensor does not carry device data type ([!3774](https://gitee.com/mindspore/mindspore/pulls/3774))
+ - fix bug of avoiding multi attr value are eliminated in pynative mode ([!4225](https://gitee.com/mindspore/mindspore/pulls/4225))
+ - fix bug of AssignAdd unable to work normally in multi-cases ([!5171](https://gitee.com/mindspore/mindspore/pulls/5171))
+- GPU platform
+ - improve the environment variable checking for nvcc compiler path ([!5140](https://gitee.com/mindspore/mindspore/pulls/5140))
+ - fix bug of error in cast operator conversion from fp16 to fp32 ([!4147](https://gitee.com/mindspore/mindspore/pulls/4147))
+ - fix bug of the array out of bound in case of make_tuple operator ([!5219](https://gitee.com/mindspore/mindspore/pulls/5219))
+- Data processing and Pro
+ - fix GeneratorDataset time out([!3624](https://gitee.com/mindspore/mindspore/pulls/3624))
+ - fix concat operator get_dataset_size error([!4701](https://gitee.com/mindspore/mindspore/pulls/4701))
+ - fixing python validator for Repeat Op([!4366](https://gitee.com/mindspore/mindspore/pulls/4366))
+- Third party
+ - Sqlite : Update sqlite to 3.32.2 to handle [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656), [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871), [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655), [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327), [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630), [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358), [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631), [CVE-2020-13632](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13632), [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434), [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435), and [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655).
+ - Libjpeg-turbo : Update libjpeg-turbo to 2.0.4 to handle [CVE-2020-13790](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13790).
## Contributors
@@ -2008,70 +2016,70 @@ Contributions of any kind are welcome!
### Ascend 910 Training and Inference Framework
-* New models
- * There are official, research and community under modelzoo.
- * Official is maintained with the newest APIs by MindSpore team, MaskRCNN are added.
- * Research is uploaded by researchers for official review, and APIs may not be updated in time.
- * Community reprints the relevant links of partner research results.
- * Hub added on the same level as modelzoo, synchronous storage of materials needed for official hub web pages which will be launched soon.
- * Support pre-trained models, few lines of code can be used to download and load pre-trained models, supporting inference or transfer learning.
-* Frontend and user interface
- * Supports user side operator compilation and graph execution error rendering.
- * Uniform definition dynamic learning rate behavior in optimizers.
- * Support IndexSlice in sparse expression.
- * Support use parent construct method during construct.
- * Support asynchronous execution save checkpoint file.
- * Support implicit type conversion in pynative mode.
- * User interfaces change log
- * unform learning rate behavior in optimizers([!2755](https://gitee.com/mindspore/mindspore/pulls/2755))
- * rename operator of sparse optimizer([!3217](https://gitee.com/mindspore/mindspore/pulls/3217))
- * move profiler module from mindinsight to mindspore([!3075](https://gitee.com/mindspore/mindspore/pulls/3075))
- * VOCDataset output change to multi-columns([!3093](https://gitee.com/mindspore/mindspore/pulls/3093))
- * GetDatasize feature([!3212](https://gitee.com/mindspore/mindspore/pulls/3212))
- * dataset: modify config api([!2936](https://gitee.com/mindspore/mindspore/pulls/2936))
-* Executor and performance optimization
- * Decouple C++ and python, so make the architecture more extensible.
- * Parameter Server for distributed deep learning supported.
- * Serving:a flexible service deployment framework for deep learning models.
- * Memory reuse is enhanced, and the batch size of Bert large model is increased from 96 to 160 on a single server.
-* Data processing, augmentation, and save format
- * Support MindRecord save operator after date processing
- * Support automatic fusion operator, such as decode/resize/crop
- * Support CSV dataset loading
+- New models
+ - There are official, research and community under modelzoo.
+ - Official is maintained with the newest APIs by MindSpore team, MaskRCNN are added.
+ - Research is uploaded by researchers for official review, and APIs may not be updated in time.
+ - Community reprints the relevant links of partner research results.
+ - Hub added on the same level as modelzoo, synchronous storage of materials needed for official hub web pages which will be launched soon.
+ - Support pre-trained models, few lines of code can be used to download and load pre-trained models, supporting inference or transfer learning.
+- Frontend and user interface
+ - Supports user side operator compilation and graph execution error rendering.
+ - Uniform definition dynamic learning rate behavior in optimizers.
+ - Support IndexSlice in sparse expression.
+ - Support use parent construct method during construct.
+ - Support asynchronous execution save checkpoint file.
+ - Support implicit type conversion in pynative mode.
+ - User interfaces change log
+ - unform learning rate behavior in optimizers([!2755](https://gitee.com/mindspore/mindspore/pulls/2755))
+ - rename operator of sparse optimizer([!3217](https://gitee.com/mindspore/mindspore/pulls/3217))
+ - move profiler module from mindinsight to mindspore([!3075](https://gitee.com/mindspore/mindspore/pulls/3075))
+ - VOCDataset output change to multi-columns([!3093](https://gitee.com/mindspore/mindspore/pulls/3093))
+ - GetDatasize feature([!3212](https://gitee.com/mindspore/mindspore/pulls/3212))
+ - dataset: modify config api([!2936](https://gitee.com/mindspore/mindspore/pulls/2936))
+- Executor and performance optimization
+ - Decouple C++ and python, so make the architecture more extensible.
+ - Parameter Server for distributed deep learning supported.
+ - Serving:a flexible service deployment framework for deep learning models.
+ - Memory reuse is enhanced, and the batch size of Bert large model is increased from 96 to 160 on a single server.
+- Data processing, augmentation, and save format
+ - Support MindRecord save operator after date processing
+ - Support automatic fusion operator, such as decode/resize/crop
+ - Support CSV dataset loading
### Other Hardware Support
-* GPU platform
- * New model supported: ResNext50, WarpCTC and GoogLeNet.
- * Support hyperparametric search and data enhanced automl on GPU.
- * Support Resnet50 automatic parallel in GPU backend.
+- GPU platform
+ - New model supported: ResNext50, WarpCTC and GoogLeNet.
+ - Support hyperparametric search and data enhanced automl on GPU.
+ - Support Resnet50 automatic parallel in GPU backend.
## Bugfixes
-* Models
- * Improved the performance and accuracy on ResNet50([!3456](https://gitee.com/mindspore/mindspore/pulls/3456))
- * Fixed the performance test case of bert([!3486](https://gitee.com/mindspore/mindspore/pulls/3486))
-* Python API
- * Fix assign used in while loop([!2720](https://gitee.com/mindspore/mindspore/pulls/2720))
- * Revert optimize the graph output of all nop node.([!2857](https://gitee.com/mindspore/mindspore/pulls/2857))
- * Print tensor as numpy.([!2859](https://gitee.com/mindspore/mindspore/pulls/2859))
- * Support weight decay for sparse optimizer([!2668](https://gitee.com/mindspore/mindspore/pulls/2668))
- * Fix BatchToSpaceND([!2741](https://gitee.com/mindspore/mindspore/pulls/2741))
- * Fixing type check mistakes of InplaceAdd and Inplace Sub ops([!2744](https://gitee.com/mindspore/mindspore/pulls/2744]))
- * Change order param only equal to group param([!2748](https://gitee.com/mindspore/mindspore/pulls/2748))
-* Executor
- * The performance of graph with control flow is optimized([!2931](https://gitee.com/mindspore/mindspore/pulls/2931))
- * Fix bug of wrong number of tuple layers([!3390](https://gitee.com/mindspore/mindspore/pulls/3390))
- * Fix cpu multi graph memory exception([!3631](https://gitee.com/mindspore/mindspore/pulls/3631))
- * Enable data sync when calling operator without defining a cell([!3081](https://gitee.com/mindspore/mindspore/pulls/3081))
- * Fix argmaxwith value error in pynative mode on GPU([!3082](https://gitee.com/mindspore/mindspore/pulls/3082))
- * Fix precision error with fp16 input on pynative mode([!3196](https://gitee.com/mindspore/mindspore/pulls/3196))
-* Data processing
- * Fix bug of RandomColor and RandomSharpness default parameter checking ([!2833](https://gitee.com/mindspore/mindspore/pulls/2833))
- * Fix process hung when training and eval ([!3469](https://gitee.com/mindspore/mindspore/pulls/3469))
-* Third party
- * Sqlite : Update sqlite to 3.32.2 to handle [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656), [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871), [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655), [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327), [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630), [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358), [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631), [CVE-2020-13632](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13632), [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434), [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435), and [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655).
- * Libjpeg-turbo : Update libjpeg-turbo to 2.0.4 to handle [CVE-2020-13790](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13790).
+- Models
+ - Improved the performance and accuracy on ResNet50([!3456](https://gitee.com/mindspore/mindspore/pulls/3456))
+ - Fixed the performance test case of bert([!3486](https://gitee.com/mindspore/mindspore/pulls/3486))
+- Python API
+ - Fix assign used in while loop([!2720](https://gitee.com/mindspore/mindspore/pulls/2720))
+ - Revert optimize the graph output of all nop node.([!2857](https://gitee.com/mindspore/mindspore/pulls/2857))
+ - Print tensor as numpy.([!2859](https://gitee.com/mindspore/mindspore/pulls/2859))
+ - Support weight decay for sparse optimizer([!2668](https://gitee.com/mindspore/mindspore/pulls/2668))
+ - Fix BatchToSpaceND([!2741](https://gitee.com/mindspore/mindspore/pulls/2741))
+ - Fixing type check mistakes of InplaceAdd and Inplace Sub ops([!2744](https://gitee.com/mindspore/mindspore/pulls/2744]))
+ - Change order param only equal to group param([!2748](https://gitee.com/mindspore/mindspore/pulls/2748))
+- Executor
+ - The performance of graph with control flow is optimized([!2931](https://gitee.com/mindspore/mindspore/pulls/2931))
+ - Fix bug of wrong number of tuple layers([!3390](https://gitee.com/mindspore/mindspore/pulls/3390))
+ - Fix cpu multi graph memory exception([!3631](https://gitee.com/mindspore/mindspore/pulls/3631))
+ - Enable data sync when calling operator without defining a cell([!3081](https://gitee.com/mindspore/mindspore/pulls/3081))
+ - Fix argmaxwith value error in pynative mode on GPU([!3082](https://gitee.com/mindspore/mindspore/pulls/3082))
+ - Fix precision error with fp16 input on pynative mode([!3196](https://gitee.com/mindspore/mindspore/pulls/3196))
+- Data processing
+ - Fix bug of RandomColor and RandomSharpness default parameter checking ([!2833](https://gitee.com/mindspore/mindspore/pulls/2833))
+ - Fix process hung when training and eval ([!3469](https://gitee.com/mindspore/mindspore/pulls/3469))
+- Third party
+ - Sqlite : Update sqlite to 3.32.2 to handle [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656), [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871), [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655), [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327), [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630), [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358), [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631), [CVE-2020-13632](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13632), [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434), [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435), and [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655).
+ - Libjpeg-turbo : Update libjpeg-turbo to 2.0.4 to handle [CVE-2020-13790](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13790).
## Contributors
@@ -2087,14 +2095,14 @@ Contributions of any kind are welcome!
### Ascend 910 Training and Inference Framework
-* New models
- * DenseNet121: a convolution based neural network for the task of image classification on ImageNet 2012 dataset.
+- New models
+ - DenseNet121: a convolution based neural network for the task of image classification on ImageNet 2012 dataset.
## Bugfixes
-* Models
- * VGG16,Alexnet,GoogleNet,optimize network for better performance. ([!5539](https://gitee.com/mindspore/mindspore/pulls/5539))
- * YOLOV3, fix yolov3_darknet53 dataset bug. ([!5658](https://gitee.com/mindspore/mindspore/pulls/5658))
+- Models
+ - VGG16,Alexnet,GoogleNet,optimize network for better performance. ([!5539](https://gitee.com/mindspore/mindspore/pulls/5539))
+ - YOLOV3, fix yolov3_darknet53 dataset bug. ([!5658](https://gitee.com/mindspore/mindspore/pulls/5658))
## Contributors
@@ -2110,70 +2118,70 @@ Contributions of any kind are welcome!
### Ascend 910 Training and Inference Framework
-* New models
- * ResNext50: a simple, highly modularized network architecture using aggregated resdiual transformations for image classification on ImageNet 2012 dataset.
- * MASS: a pre-training method for sequence to sequence based language generation tasks on Text Summarization and Conversational Response Generation using News Crawls 2007-2017 dataset, Gigaword corpus and Cornell movie dialog corpus.
- * Transformer: a neural network architecture for language understanding on WMT 2014 English-German dataset.
- * GCN:Graph Convolutional Networks for the task of classification of nodes in a graph on Cora and Citeseer datasets.
- * GAT:an attention-based graph neural network for node classification on Cora and CiteSeer dataset.
-* Frontend and user interface
- * Support tensor value and assignment of mixed tensor index in graph mode.
- * Support tensor comparison, len operator, constexpr syntax, value and assignment of tensor index in pynative mode.
- * Support converting MindSpore IR to pb format for infer model.
- * Support print operator to write data directly on the hard disk.
- * Add the double recursive programming solution for very high speed parallel strategy search in automatic parallel.
- * User interfaces change log
- * Allow the learning rate of AdamWeightDecayDynamicLR and Lamb to be 0([!1826](https://gitee.com/mindspore/mindspore/pulls/1826))
- * Restricting the entire network input parameter is Tensor([!1967](https://gitee.com/mindspore/mindspore/pulls/1967))
- * Turn shape and dtype into attributes instead of interfaces([!1919](https://gitee.com/mindspore/mindspore/pulls/1919))
- * Delete multitypefungraph([!2116](https://gitee.com/mindspore/mindspore/pulls/2116))
- * Refactor the callback module in an encapsulated way, use _CallbackManager instead of_build_callbacks([!2236](https://gitee.com/mindspore/mindspore/pulls/2236))
- * Delete EmbeddingLookup([!2163](https://gitee.com/mindspore/mindspore/pulls/2163))
- * Checkpoint add model_type([!2517](https://gitee.com/mindspore/mindspore/pulls/2517))
-* Executor and performance optimization
- * Heterogeneous execution on CPU and Ascend devices supported, and is verified in Wide&Deep model.
- * Quantitative training of MobileNetV2, Lenet and Resnet50 on Ascend-910 are supported.
- * Support new fusion architecture, which can do fusion optimization across graphs and kernels to improve execution speed.
-* Data processing, augmentation, and save format
- * Support data processing pipeline performance profiling.
- * Support public dataset loading, such as CLUE and Coco.
- * Support more text processing, such as more tokenizers and vocab data.
- * Support MindRecord padded data.
+- New models
+ - ResNext50: a simple, highly modularized network architecture using aggregated resdiual transformations for image classification on ImageNet 2012 dataset.
+ - MASS: a pre-training method for sequence to sequence based language generation tasks on Text Summarization and Conversational Response Generation using News Crawls 2007-2017 dataset, Gigaword corpus and Cornell movie dialog corpus.
+ - Transformer: a neural network architecture for language understanding on WMT 2014 English-German dataset.
+ - GCN:Graph Convolutional Networks for the task of classification of nodes in a graph on Cora and Citeseer datasets.
+ - GAT:an attention-based graph neural network for node classification on Cora and CiteSeer dataset.
+- Frontend and user interface
+ - Support tensor value and assignment of mixed tensor index in graph mode.
+ - Support tensor comparison, len operator, constexpr syntax, value and assignment of tensor index in pynative mode.
+ - Support converting MindSpore IR to pb format for infer model.
+ - Support print operator to write data directly on the hard disk.
+ - Add the double recursive programming solution for very high speed parallel strategy search in automatic parallel.
+ - User interfaces change log
+ - Allow the learning rate of AdamWeightDecayDynamicLR and Lamb to be 0([!1826](https://gitee.com/mindspore/mindspore/pulls/1826))
+ - Restricting the entire network input parameter is Tensor([!1967](https://gitee.com/mindspore/mindspore/pulls/1967))
+ - Turn shape and dtype into attributes instead of interfaces([!1919](https://gitee.com/mindspore/mindspore/pulls/1919))
+ - Delete multitypefungraph([!2116](https://gitee.com/mindspore/mindspore/pulls/2116))
+ - Refactor the callback module in an encapsulated way, use _CallbackManager instead of_build_callbacks([!2236](https://gitee.com/mindspore/mindspore/pulls/2236))
+ - Delete EmbeddingLookup([!2163](https://gitee.com/mindspore/mindspore/pulls/2163))
+ - Checkpoint add model_type([!2517](https://gitee.com/mindspore/mindspore/pulls/2517))
+- Executor and performance optimization
+ - Heterogeneous execution on CPU and Ascend devices supported, and is verified in Wide&Deep model.
+ - Quantitative training of MobileNetV2, Lenet and Resnet50 on Ascend-910 are supported.
+ - Support new fusion architecture, which can do fusion optimization across graphs and kernels to improve execution speed.
+- Data processing, augmentation, and save format
+ - Support data processing pipeline performance profiling.
+ - Support public dataset loading, such as CLUE and Coco.
+ - Support more text processing, such as more tokenizers and vocab data.
+ - Support MindRecord padded data.
### Other Hardware Support
-* GPU platform
- * New model supported: Bert / Wide&Deep.
- * Support setting max device memory.
-* CPU platform
- * New model supported: LSTM.
+- GPU platform
+ - New model supported: Bert / Wide&Deep.
+ - Support setting max device memory.
+- CPU platform
+ - New model supported: LSTM.
## Bugfixes
-* Models
- * Bert, Move Bert from `example` to `model_zoo`, optimize network for better performance. ([!1902](https://gitee.com/mindspore/mindspore/pulls/1902))
- * VGG16, Move VGG16 from `example` to `model_zoo`, optimize network for better accuracy. ([!2645](https://gitee.com/mindspore/mindspore/pulls/2645))
- * Alexnet, modify parameter setting to improve accuracy ([!1364](https://gitee.com/mindspore/mindspore/pulls/2370))
- * Wide&Deep, Move Wide&Deep from `example` to `model_zoo`, optimize network for better performance. ([!2221](https://gitee.com/mindspore/mindspore/pulls/2221))
-* Python API
- * Fix bug in auto cast([!1766](https://gitee.com/mindspore/mindspore/pulls/1766))
- * Fix bug of register_backward_hook([!2148](https://gitee.com/mindspore/mindspore/pulls/2148))
- * Fix bug of tuple args in pynative mode([!1878](https://gitee.com/mindspore/mindspore/pulls/1878))
- * Fix bug of checking numbers of arguments and graph parameters([!1701](https://gitee.com/mindspore/mindspore/pulls/1701))
-* Executor
- * Fix bug of loading input data repeatedly in pynative mode([!1966](https://gitee.com/mindspore/mindspore/pulls/1966))
- * Fix bug of list cannot be used as input in pynative mode([!1765](https://gitee.com/mindspore/mindspore/pulls/1765))
- * Fix bug of kernel select ([!2103](https://gitee.com/mindspore/mindspore/pulls/2103))
- * Fix bug of pattern matching for batchnorm fusion in the case of auto mix precision.([!1851](https://gitee.com/mindspore/mindspore/pulls/1851))
- * Fix bug of generate hccl's kernel info.([!2393](https://gitee.com/mindspore/mindspore/pulls/2393))
-* GPU platform
- * Fix bug of summary feature invalid([!2173](https://gitee.com/mindspore/mindspore/pulls/2173))
-* Data processing
- * Fix bug of Cifar dataset reading([!2096](https://gitee.com/mindspore/mindspore/pulls/2096))
- * Fix bug of C++ behavior in RandomCropAndResize([!2026](https://gitee.com/mindspore/mindspore/pulls/2026))
- * Fix the bug of mindrecord shuffle([!2420](https://gitee.com/mindspore/mindspore/pulls/2420))
-* Third party
- * Sqlite : Update sqlite to 3.32.2 to handle [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656), [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871), [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655), [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327), [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630), [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358), [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631), [CVE-2020-13632](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13632), [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434), [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435), and [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655).
+- Models
+ - Bert, Move Bert from `example` to `model_zoo`, optimize network for better performance. ([!1902](https://gitee.com/mindspore/mindspore/pulls/1902))
+ - VGG16, Move VGG16 from `example` to `model_zoo`, optimize network for better accuracy. ([!2645](https://gitee.com/mindspore/mindspore/pulls/2645))
+ - Alexnet, modify parameter setting to improve accuracy ([!1364](https://gitee.com/mindspore/mindspore/pulls/2370))
+ - Wide&Deep, Move Wide&Deep from `example` to `model_zoo`, optimize network for better performance. ([!2221](https://gitee.com/mindspore/mindspore/pulls/2221))
+- Python API
+ - Fix bug in auto cast([!1766](https://gitee.com/mindspore/mindspore/pulls/1766))
+ - Fix bug of register_backward_hook([!2148](https://gitee.com/mindspore/mindspore/pulls/2148))
+ - Fix bug of tuple args in pynative mode([!1878](https://gitee.com/mindspore/mindspore/pulls/1878))
+ - Fix bug of checking numbers of arguments and graph parameters([!1701](https://gitee.com/mindspore/mindspore/pulls/1701))
+- Executor
+ - Fix bug of loading input data repeatedly in pynative mode([!1966](https://gitee.com/mindspore/mindspore/pulls/1966))
+ - Fix bug of list cannot be used as input in pynative mode([!1765](https://gitee.com/mindspore/mindspore/pulls/1765))
+ - Fix bug of kernel select ([!2103](https://gitee.com/mindspore/mindspore/pulls/2103))
+ - Fix bug of pattern matching for batchnorm fusion in the case of auto mix precision.([!1851](https://gitee.com/mindspore/mindspore/pulls/1851))
+ - Fix bug of generate hccl's kernel info.([!2393](https://gitee.com/mindspore/mindspore/pulls/2393))
+- GPU platform
+ - Fix bug of summary feature invalid([!2173](https://gitee.com/mindspore/mindspore/pulls/2173))
+- Data processing
+ - Fix bug of Cifar dataset reading([!2096](https://gitee.com/mindspore/mindspore/pulls/2096))
+ - Fix bug of C++ behavior in RandomCropAndResize([!2026](https://gitee.com/mindspore/mindspore/pulls/2026))
+ - Fix the bug of mindrecord shuffle([!2420](https://gitee.com/mindspore/mindspore/pulls/2420))
+- Third party
+ - Sqlite : Update sqlite to 3.32.2 to handle [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656), [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871), [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655), [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327), [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630), [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358), [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631), [CVE-2020-13632](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13632), [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434), [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435), and [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655).
## Contributors
@@ -2189,17 +2197,17 @@ Contributions of any kind are welcome!
### Ascend 910 Training and Inference Framework
-* Frontend and User Interface
- * Independent model init interface.
-* Data processing, augmentation, and save format
- * Support sample padding for minddataset.
+- Frontend and User Interface
+ - Independent model init interface.
+- Data processing, augmentation, and save format
+ - Support sample padding for minddataset.
## Bugfixes
-* Python API
- * Fix bugs in the lars optimizer([!1894](https://gitee.com/mindspore/mindspore/pulls/1894))
-* Data processing
- * Fix accuracy problem of RandomCropDecodeResize ([!2340](https://gitee.com/mindspore/mindspore/pulls/2340))
+- Python API
+ - Fix bugs in the lars optimizer([!1894](https://gitee.com/mindspore/mindspore/pulls/1894))
+- Data processing
+ - Fix accuracy problem of RandomCropDecodeResize ([!2340](https://gitee.com/mindspore/mindspore/pulls/2340))
# Release 0.3.0-alpha
@@ -2207,64 +2215,64 @@ Contributions of any kind are welcome!
### Ascend 910 Training and Inference Framework
-* New models
- * DeepFM: a factorization-machine based neural network for CTR prediction on Criteo dataset.
- * DeepLabV3: significantly improves over our previous DeepLab versions without DenseCRF post-processing and attains comparable performance with other state-of-art models on the PASCAL VOC 2007 semantic image segmentation benchmark.
- * Faster-RCNN: towards real-time object detection with region proposal networks on COCO 2017 dataset.
- * SSD: a single stage object detection methods on COCO 2017 dataset.
- * GoogLeNet: a deep convolutional neural network architecture codenamed Inception V1 for classification and detection on CIFAR-10 dataset.
- * Wide&Deep: jointly trained wide linear models and deep neural networks for recommender systems on Criteo dataset.
-* Frontend and User Interface
- * Complete numpy advanced indexing method. Supports value and assignment through tensor index.
- * Some optimizers support separating parameter groups. Different parameter groups can set different `learning_rate` and `weight_decay`.
- * Support setting submodule's logging level independently, e.g. you can set logging level of module `A` to warning and set logging level of module `B` to info.
- * Support weights to be compiled according to shape to solve the problem of large memory overhead.
- * Add some operators implement and grammar support in pynative mode. To be consistent with graph mode.
- * User interfaces change log
- * Learning rate and weight decay making group params([!637](https://gitee.com/mindspore/mindspore/pulls/637))
- * Support weights to be compiled according to shape([!1015](https://gitee.com/mindspore/mindspore/pulls/1015))
- * delete some context param([!1100](https://gitee.com/mindspore/mindspore/pulls/1100))
- * ImageSummary/ScalarSummary/TensorSummary/HistogramSummary([!1329](https://gitee.com/mindspore/mindspore/pulls/1329))([!1425](https://gitee.com/mindspore/mindspore/pulls/1425))
-* Executor and Performance Optimization
- * Support doing evaluation while in training process, so that the accuracy of training can be easily obtained.
- * Enable second-order optimization for resnet50, which can achieve 75.9% accuracy in 45 epochs (Resnet50 @ImageNet).
- * Optimize pynative implementation and improve it's execution performance.
- * Optimize summary record implementation and improve its performance.
-* Data processing, augmentation, and save format
- * Support simple text processing, such as tokenizer/buildvocab/lookup.
- * Support padding batch.
- * Support split or concat dataset.
- * Support MindDataset reading from file list.
+- New models
+ - DeepFM: a factorization-machine based neural network for CTR prediction on Criteo dataset.
+ - DeepLabV3: significantly improves over our previous DeepLab versions without DenseCRF post-processing and attains comparable performance with other state-of-art models on the PASCAL VOC 2007 semantic image segmentation benchmark.
+ - Faster-RCNN: towards real-time object detection with region proposal networks on COCO 2017 dataset.
+ - SSD: a single stage object detection methods on COCO 2017 dataset.
+ - GoogLeNet: a deep convolutional neural network architecture codenamed Inception V1 for classification and detection on CIFAR-10 dataset.
+ - Wide&Deep: jointly trained wide linear models and deep neural networks for recommender systems on Criteo dataset.
+- Frontend and User Interface
+ - Complete numpy advanced indexing method. Supports value and assignment through tensor index.
+ - Some optimizers support separating parameter groups. Different parameter groups can set different `learning_rate` and `weight_decay`.
+ - Support setting submodule's logging level independently, e.g. you can set logging level of module `A` to warning and set logging level of module `B` to info.
+ - Support weights to be compiled according to shape to solve the problem of large memory overhead.
+ - Add some operators implement and grammar support in pynative mode. To be consistent with graph mode.
+ - User interfaces change log
+ - Learning rate and weight decay making group params([!637](https://gitee.com/mindspore/mindspore/pulls/637))
+ - Support weights to be compiled according to shape([!1015](https://gitee.com/mindspore/mindspore/pulls/1015))
+ - delete some context param([!1100](https://gitee.com/mindspore/mindspore/pulls/1100))
+ - ImageSummary/ScalarSummary/TensorSummary/HistogramSummary([!1329](https://gitee.com/mindspore/mindspore/pulls/1329))([!1425](https://gitee.com/mindspore/mindspore/pulls/1425))
+- Executor and Performance Optimization
+ - Support doing evaluation while in training process, so that the accuracy of training can be easily obtained.
+ - Enable second-order optimization for resnet50, which can achieve 75.9% accuracy in 45 epochs (Resnet50 @ImageNet).
+ - Optimize pynative implementation and improve it's execution performance.
+ - Optimize summary record implementation and improve its performance.
+- Data processing, augmentation, and save format
+ - Support simple text processing, such as tokenizer/buildvocab/lookup.
+ - Support padding batch.
+ - Support split or concat dataset.
+ - Support MindDataset reading from file list.
### Other Hardware Support
-* GPU platform
- * New models supported: MobileNetV2, MobileNetV3.
- * Support mixed precision training.
- * Support device memory swapping.
+- GPU platform
+ - New models supported: MobileNetV2, MobileNetV3.
+ - Support mixed precision training.
+ - Support device memory swapping.
## Bugfixes
-* Python API
- * An exception to the broadcast input data type check([!712](https://gitee.com/mindspore/mindspore/pulls/712))
- * Fix issues assignsub return value 0([!1036](https://gitee.com/mindspore/mindspore/pulls/1036))
- * Fix issue Conv2dBackpropInput bprop should return 3 instead of 2 items([!1001](https://gitee.com/mindspore/mindspore/pulls/1001))
- * Fix sens shape error of TrainOneStepWithLossScaleCell([!1050](https://gitee.com/mindspore/mindspore/pulls/1050))
- * Fix BatchNormGrad operator([!1344](https://gitee.com/mindspore/mindspore/pulls/1344))
-* Executor
- * Fix dropout,topK and addn errors in PyNative mode ([!1285](https://gitee.com/mindspore/mindspore/pulls/1285), [!1138](https://gitee.com/mindspore/mindspore/pulls/1138), [!1033](https://gitee.com/mindspore/mindspore/pulls/1033)).
- * Fix memory leaks after execution in PyNatvie mode ([!1201](https://gitee.com/mindspore/mindspore/pulls/1201)).
- * Fix HCCL failure in some special scenes ([!1204](https://gitee.com/mindspore/mindspore/pulls/1204), [!1252](https://gitee.com/mindspore/mindspore/pulls/1252)).
- * Fix SSD network when Select failed, can't find kernel info([!1449](https://gitee.com/mindspore/mindspore/pulls/1449)).
- * Fix Topk operator selection strategy bug between aicore and aicpu([!1367](https://gitee.com/mindspore/mindspore/pulls/1367)).
- * Fix input memory size of 'assign' op unequal in control sink mode when assigning a data from one child graph to another child graph([!802](https://gitee.com/mindspore/mindspore/pulls/802)).
- * Fix allreduce ir inconsistency([!989](https://gitee.com/mindspore/mindspore/pulls/989)).
-* GPU platform
- * Fix summary for gradient collection ([!1364](https://gitee.com/mindspore/mindspore/pulls/1364))
- * Fix the slice operator ([!1489](https://gitee.com/mindspore/mindspore/pulls/1489))
-* Data processing
- * Fix memory problems of GeneratorDataset of sub-process ([!907](https://gitee.com/mindspore/mindspore/pulls/907))
- * Fix getting data timeout when training the cifar10 dataset under the lenet([!1391](https://gitee.com/mindspore/mindspore/pulls/1391))
+- Python API
+ - An exception to the broadcast input data type check([!712](https://gitee.com/mindspore/mindspore/pulls/712))
+ - Fix issues assignsub return value 0([!1036](https://gitee.com/mindspore/mindspore/pulls/1036))
+ - Fix issue Conv2dBackpropInput bprop should return 3 instead of 2 items([!1001](https://gitee.com/mindspore/mindspore/pulls/1001))
+ - Fix sens shape error of TrainOneStepWithLossScaleCell([!1050](https://gitee.com/mindspore/mindspore/pulls/1050))
+ - Fix BatchNormGrad operator([!1344](https://gitee.com/mindspore/mindspore/pulls/1344))
+- Executor
+ - Fix dropout,topK and addn errors in PyNative mode ([!1285](https://gitee.com/mindspore/mindspore/pulls/1285), [!1138](https://gitee.com/mindspore/mindspore/pulls/1138), [!1033](https://gitee.com/mindspore/mindspore/pulls/1033)).
+ - Fix memory leaks after execution in PyNatvie mode ([!1201](https://gitee.com/mindspore/mindspore/pulls/1201)).
+ - Fix HCCL failure in some special scenes ([!1204](https://gitee.com/mindspore/mindspore/pulls/1204), [!1252](https://gitee.com/mindspore/mindspore/pulls/1252)).
+ - Fix SSD network when Select failed, can't find kernel info([!1449](https://gitee.com/mindspore/mindspore/pulls/1449)).
+ - Fix Topk operator selection strategy bug between aicore and aicpu([!1367](https://gitee.com/mindspore/mindspore/pulls/1367)).
+ - Fix input memory size of 'assign' op unequal in control sink mode when assigning a data from one child graph to another child graph([!802](https://gitee.com/mindspore/mindspore/pulls/802)).
+ - Fix allreduce ir inconsistency([!989](https://gitee.com/mindspore/mindspore/pulls/989)).
+- GPU platform
+ - Fix summary for gradient collection ([!1364](https://gitee.com/mindspore/mindspore/pulls/1364))
+ - Fix the slice operator ([!1489](https://gitee.com/mindspore/mindspore/pulls/1489))
+- Data processing
+ - Fix memory problems of GeneratorDataset of sub-process ([!907](https://gitee.com/mindspore/mindspore/pulls/907))
+ - Fix getting data timeout when training the cifar10 dataset under the lenet([!1391](https://gitee.com/mindspore/mindspore/pulls/1391))
## Contributors
@@ -2280,67 +2288,67 @@ Contributions of any kind are welcome!
### Ascend 910 Training and Inference Framework
-* New models
- * MobileNetV2: Inverted Residuals and Linear Bottlenecks.
- * ResNet101: Deep Residual Learning for Image Recognition.
+- New models
+ - MobileNetV2: Inverted Residuals and Linear Bottlenecks.
+ - ResNet101: Deep Residual Learning for Image Recognition.
-* Frontend and User Interface
- * Support for all python comparison operators.
- * Support for math operators **,//,%. Support for other python operators like and/or/not/is/is not/ in/ not in.
- * Support for the gradients of function with variable arguments.
- * Support for tensor indexing assignment for certain indexing type.
- * Support for dynamic learning rate.
- * User interfaces change log
- * DepthwiseConv2dNative, DepthwiseConv2dNativeBackpropFilter, DepthwiseConv2dNativeBackpropInput([!424](https://gitee.com/mindspore/mindspore/pulls/424))
- * ReLU6, ReLU6Grad([!224](https://gitee.com/mindspore/mindspore/pulls/224))
- * GeneratorDataset([!183](https://gitee.com/mindspore/mindspore/pulls/183))
- * VOCDataset([!477](https://gitee.com/mindspore/mindspore/pulls/477))
- * MindDataset, PKSampler([!514](https://gitee.com/mindspore/mindspore/pulls/514))
- * map([!506](https://gitee.com/mindspore/mindspore/pulls/506))
- * Conv([!226](https://gitee.com/mindspore/mindspore/pulls/226))
- * Adam([!253](https://gitee.com/mindspore/mindspore/pulls/253))
- * _set_fusion_strategy_by_idx,_set_fusion_strategy_by_size([!189](https://gitee.com/mindspore/mindspore/pulls/189))
- * CheckpointConfig([!122](https://gitee.com/mindspore/mindspore/pulls/122))
- * Constant([!54](https://gitee.com/mindspore/mindspore/pulls/54))
-* Executor and Performance Optimization
- * Support parallel execution of data prefetching and forward/backward computing.
- * Support parallel execution of gradient aggregation and forward/backward computing in distributed training scenarios.
- * Support operator fusion optimization.
- * Optimize compilation process and improve the performance.
-* Data processing, augmentation, and save format
- * Support multi-process of GeneratorDataset/PyFunc for high performance
- * Support variable batchsize
- * Support new Dataset operators, such as filter,skip,take,TextLineDataset
+- Frontend and User Interface
+ - Support for all python comparison operators.
+ - Support for math operators **,//,%. Support for other python operators like and/or/not/is/is not/ in/ not in.
+ - Support for the gradients of function with variable arguments.
+ - Support for tensor indexing assignment for certain indexing type.
+ - Support for dynamic learning rate.
+ - User interfaces change log
+ - DepthwiseConv2dNative, DepthwiseConv2dNativeBackpropFilter, DepthwiseConv2dNativeBackpropInput([!424](https://gitee.com/mindspore/mindspore/pulls/424))
+ - ReLU6, ReLU6Grad([!224](https://gitee.com/mindspore/mindspore/pulls/224))
+ - GeneratorDataset([!183](https://gitee.com/mindspore/mindspore/pulls/183))
+ - VOCDataset([!477](https://gitee.com/mindspore/mindspore/pulls/477))
+ - MindDataset, PKSampler([!514](https://gitee.com/mindspore/mindspore/pulls/514))
+ - map([!506](https://gitee.com/mindspore/mindspore/pulls/506))
+ - Conv([!226](https://gitee.com/mindspore/mindspore/pulls/226))
+ - Adam([!253](https://gitee.com/mindspore/mindspore/pulls/253))
+ - _set_fusion_strategy_by_idx,_set_fusion_strategy_by_size([!189](https://gitee.com/mindspore/mindspore/pulls/189))
+ - CheckpointConfig([!122](https://gitee.com/mindspore/mindspore/pulls/122))
+ - Constant([!54](https://gitee.com/mindspore/mindspore/pulls/54))
+- Executor and Performance Optimization
+ - Support parallel execution of data prefetching and forward/backward computing.
+ - Support parallel execution of gradient aggregation and forward/backward computing in distributed training scenarios.
+ - Support operator fusion optimization.
+ - Optimize compilation process and improve the performance.
+- Data processing, augmentation, and save format
+ - Support multi-process of GeneratorDataset/PyFunc for high performance
+ - Support variable batchsize
+ - Support new Dataset operators, such as filter,skip,take,TextLineDataset
### Other Hardware Support
-* GPU platform
- * Use dynamic memory pool by default on GPU.
- * Support parallel execution of computation and communication.
- * Support continuous address allocation by memory pool.
-* CPU platform
- * Support for windows 10 OS.
+- GPU platform
+ - Use dynamic memory pool by default on GPU.
+ - Support parallel execution of computation and communication.
+ - Support continuous address allocation by memory pool.
+- CPU platform
+ - Support for windows 10 OS.
## Bugfixes
-* Models
- * Fix mixed precision bug for VGG16 model ([!629](https://gitee.com/mindspore/mindspore/pulls/629)).
-* Python API
- * Fix ControlDepend operator bugs on CPU and GPU ([!396](https://gitee.com/mindspore/mindspore/pulls/396)).
- * Fix ArgMinWithValue operator bugs ([!338](https://gitee.com/mindspore/mindspore/pulls/338)).
- * Fix Dense operator bugs on PyNative mode ([!276](https://gitee.com/mindspore/mindspore/pulls/276)).
- * Fix MatMul operator bugs on PyNative mode ([!288](https://gitee.com/mindspore/mindspore/pulls/288)).
-* Executor
- * Fix operator selection bugs and make it general ([!300](https://gitee.com/mindspore/mindspore/pulls/300)).
- * Fix memory reuse bug for GetNext op ([!291](https://gitee.com/mindspore/mindspore/pulls/291)).
-* GPU platform
- * Fix memory allocation in multi-graph scenarios ([!444](https://gitee.com/mindspore/mindspore/pulls/444)).
- * Fix bias_add_grad under fp16 precision ([!598](https://gitee.com/mindspore/mindspore/pulls/598)).
- * Fix support for fp16 kernels on nvidia 1080Ti([!571](https://gitee.com/mindspore/mindspore/pulls/571)).
- * Fix parsing of tuple type parameters ([!316](https://gitee.com/mindspore/mindspore/pulls/316)).
-* Data processing
- * Fix TypeErrors about can't pickle mindspore._c_dataengine.DEPipeline objects([!434](https://gitee.com/mindspore/mindspore/pulls/434)).
- * Add TFRecord file verification([!406](https://gitee.com/mindspore/mindspore/pulls/406)).
+- Models
+ - Fix mixed precision bug for VGG16 model ([!629](https://gitee.com/mindspore/mindspore/pulls/629)).
+- Python API
+ - Fix ControlDepend operator bugs on CPU and GPU ([!396](https://gitee.com/mindspore/mindspore/pulls/396)).
+ - Fix ArgMinWithValue operator bugs ([!338](https://gitee.com/mindspore/mindspore/pulls/338)).
+ - Fix Dense operator bugs on PyNative mode ([!276](https://gitee.com/mindspore/mindspore/pulls/276)).
+ - Fix MatMul operator bugs on PyNative mode ([!288](https://gitee.com/mindspore/mindspore/pulls/288)).
+- Executor
+ - Fix operator selection bugs and make it general ([!300](https://gitee.com/mindspore/mindspore/pulls/300)).
+ - Fix memory reuse bug for GetNext op ([!291](https://gitee.com/mindspore/mindspore/pulls/291)).
+- GPU platform
+ - Fix memory allocation in multi-graph scenarios ([!444](https://gitee.com/mindspore/mindspore/pulls/444)).
+ - Fix bias_add_grad under fp16 precision ([!598](https://gitee.com/mindspore/mindspore/pulls/598)).
+ - Fix support for fp16 kernels on nvidia 1080Ti([!571](https://gitee.com/mindspore/mindspore/pulls/571)).
+ - Fix parsing of tuple type parameters ([!316](https://gitee.com/mindspore/mindspore/pulls/316)).
+- Data processing
+ - Fix TypeErrors about can't pickle mindspore._c_dataengine.DEPipeline objects([!434](https://gitee.com/mindspore/mindspore/pulls/434)).
+ - Add TFRecord file verification([!406](https://gitee.com/mindspore/mindspore/pulls/406)).
## Contributors
@@ -2356,74 +2364,74 @@ Contributions of any kind are welcome!
### Ascend 910 Training and Inference Framework
-* Recommended OS: Ubuntu 16.04 (or later) or EulerOS 2.5 or EulerOS 2.8
-* Python version: 3.7.5
-* Preset models
- * ResNet-50: residual structure-based convolutional neural network (CNN) for image classification, which is widely used.
- * AlexNet: classic CNN for image classification, achieving historical results in ImageNet LSVRC-2012.
- * LeNet: classic CNN for image classification, which was proposed by Yann LeCun.
- * VGG16: classic CNN for image classification, which was proposed by Oxford Visual Geometry Group.
- * YoloV3: real-time object detection network.
- * NEZHA: BERT-based Chinese pre-training network produced by Huawei Noah's Ark Laboratory.
-* Execution modes
- * Graph mode: provides graph optimization methods such as memory overcommitment, IR fusion, and buffer fusion to achieve optimal execution performance.
- * PyNative mode: single-step execution mode, facilitating process debugging.
-* Debugging capability and methods
- * Save CheckPoints and Summary data during training.
- * Support asynchronous printing.
- * Dump the computing data.
- * Support profiling analysis of the execution process performance.
-* Distributed execution
- * Support AllReduce, AllGather, and BroadCast collective communication.
- * AllReduce data parallel: Each device obtains different training data, which accelerates the overall training process.
- * Collective communication-based layerwise parallel: Models are divided and allocated to different devices to solve the problem of insufficient memory for large model processing and improve the training speed.
- * Automatic parallel mode: The better data and model parallel mode can be predicted based on the cost model. It is recommended that this mode be used on ResNet series networks.
-* Automatic differentiation
- * Implement automatic differentiation based on Source to Source.
- * Support distributed scenarios and automatic insertion of reverse communication operators.
-* Data processing, augmentation, and save format
- * Load common datasets such as ImageNet, MNIST, CIFAR-10, and CIFAR-100.
- * Support common data loading pipeline operations, such as shuffle, repeat, batch, map, and sampler.
- * Provide basic operator libraries to cover common CV scenarios.
- * Support users to customize Python data augmentation operators through the Pyfunc mechanism.
- * Support the access of user-defined datasets through the GeneratorDataset mechanism.
- * Provide the MindSpore data format, data aggregation and storage, random access example, data partition, efficient parallel read, user-defined index, and dataset search.
- * Convert user datasets to the MindSpore data format.
- * After data processing and augmentation, provide training applications in feed and graph modes.
-* FP32/16 mixed precision computation, supporting automatic and manual configuration
-* Provide common operators such as nn, math, and array, which can be customized.
+- Recommended OS: Ubuntu 16.04 (or later) or EulerOS 2.5 or EulerOS 2.8
+- Python version: 3.7.5
+- Preset models
+ - ResNet-50: residual structure-based convolutional neural network (CNN) for image classification, which is widely used.
+ - AlexNet: classic CNN for image classification, achieving historical results in ImageNet LSVRC-2012.
+ - LeNet: classic CNN for image classification, which was proposed by Yann LeCun.
+ - VGG16: classic CNN for image classification, which was proposed by Oxford Visual Geometry Group.
+ - YoloV3: real-time object detection network.
+ - NEZHA: BERT-based Chinese pre-training network produced by Huawei Noah's Ark Laboratory.
+- Execution modes
+ - Graph mode: provides graph optimization methods such as memory overcommitment, IR fusion, and buffer fusion to achieve optimal execution performance.
+ - PyNative mode: single-step execution mode, facilitating process debugging.
+- Debugging capability and methods
+ - Save CheckPoints and Summary data during training.
+ - Support asynchronous printing.
+ - Dump the computing data.
+ - Support profiling analysis of the execution process performance.
+- Distributed execution
+ - Support AllReduce, AllGather, and BroadCast collective communication.
+ - AllReduce data parallel: Each device obtains different training data, which accelerates the overall training process.
+ - Collective communication-based layerwise parallel: Models are divided and allocated to different devices to solve the problem of insufficient memory for large model processing and improve the training speed.
+ - Automatic parallel mode: The better data and model parallel mode can be predicted based on the cost model. It is recommended that this mode be used on ResNet series networks.
+- Automatic differentiation
+ - Implement automatic differentiation based on Source to Source.
+ - Support distributed scenarios and automatic insertion of reverse communication operators.
+- Data processing, augmentation, and save format
+ - Load common datasets such as ImageNet, MNIST, CIFAR-10, and CIFAR-100.
+ - Support common data loading pipeline operations, such as shuffle, repeat, batch, map, and sampler.
+ - Provide basic operator libraries to cover common CV scenarios.
+ - Support users to customize Python data augmentation operators through the Pyfunc mechanism.
+ - Support the access of user-defined datasets through the GeneratorDataset mechanism.
+ - Provide the MindSpore data format, data aggregation and storage, random access example, data partition, efficient parallel read, user-defined index, and dataset search.
+ - Convert user datasets to the MindSpore data format.
+ - After data processing and augmentation, provide training applications in feed and graph modes.
+- FP32/16 mixed precision computation, supporting automatic and manual configuration
+- Provide common operators such as nn, math, and array, which can be customized.
### Inference Deployment
-* Deploy models in MindSpore format on the Ascend 310 platform for inference.
-* Save models in ONNX format.
-* Support saving models in LITE format and running models based on the lightweight inference framework.
- * Recommended OS: Android 4.3 or later
- * Supported network type: LeNet
- * Provide the generalization operators generated by TVM and operators generated after specific networks are tuned.
+- Deploy models in MindSpore format on the Ascend 310 platform for inference.
+- Save models in ONNX format.
+- Support saving models in LITE format and running models based on the lightweight inference framework.
+ - Recommended OS: Android 4.3 or later
+ - Supported network type: LeNet
+ - Provide the generalization operators generated by TVM and operators generated after specific networks are tuned.
### Other Hardware Support
-* GPU platform training
- * Recommended OS: Ubuntu 16.04
- * CUDA version: 9.2 or 10.1
- * CuDNN version: 7.6 or later
- * Python version: 3.7.5
- * NCCL version: 2.4.8-1
- * OpenMPI version: 3.1.5
- * Supported models: AlexNet, LeNet, and LSTM
- * Supported datasets: MNIST and CIFAR-10
- * Support data parallel.
-* CPU platform training
- * Recommended OS: Ubuntu 16.04
- * Python version: 3.7.5
- * Supported model: LeNet
- * Supported dataset: MNIST
- * Provide only the stand-alone operation version.
+- GPU platform training
+ - Recommended OS: Ubuntu 16.04
+ - CUDA version: 9.2 or 10.1
+ - CuDNN version: 7.6 or later
+ - Python version: 3.7.5
+ - NCCL version: 2.4.8-1
+ - OpenMPI version: 3.1.5
+ - Supported models: AlexNet, LeNet, and LSTM
+ - Supported datasets: MNIST and CIFAR-10
+ - Support data parallel.
+- CPU platform training
+ - Recommended OS: Ubuntu 16.04
+ - Python version: 3.7.5
+ - Supported model: LeNet
+ - Supported dataset: MNIST
+ - Provide only the stand-alone operation version.
## Peripherals and Tools
-* [MindSpore Official Website](https://www.mindspore.cn/)
-* [MindInsight Visualization Debugging and Optimization](https://gitee.com/mindspore/mindinsight)
-* [MindArmour Model Security Hardening Package](https://gitee.com/mindspore/mindarmour)
-* [GraphEngine Computational Graph Engine](https://gitee.com/mindspore/graphengine)
+- [MindSpore Official Website](https://www.mindspore.cn/)
+- [MindInsight Visualization Debugging and Optimization](https://gitee.com/mindspore/mindinsight)
+- [MindArmour Model Security Hardening Package](https://gitee.com/mindspore/mindarmour)
+- [GraphEngine Computational Graph Engine](https://gitee.com/mindspore/graphengine)
| | | | | | | |