forked from mindspore-Ecosystem/mindspore
commit
10015ad9b2
|
@ -0,0 +1,129 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "src/runtime/kernel/arm/fp16/cast_fp16.h"
|
||||
#include <vector>
|
||||
#include "schema/model_generated.h"
|
||||
#include "src/kernel_registry.h"
|
||||
#include "src/runtime/kernel/arm/nnacl/fp16/cast_fp16.h"
|
||||
#include "src/runtime/kernel/arm/nnacl/op_base.h"
|
||||
#include "src/runtime/runtime_api.h"
|
||||
#include "include/errorcode.h"
|
||||
|
||||
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_OK;
|
||||
using mindspore::schema::PrimitiveType_Cast;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
namespace {
|
||||
int CastRun(int thread_id, LiteParallelGroupEnv *penv, void *cdata) {
|
||||
if (cdata == nullptr) {
|
||||
MS_LOG(ERROR) << "input cdata is nullptr!";
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
return reinterpret_cast<CastFp16CPUKernel *>(cdata)->DoCast(thread_id);
|
||||
}
|
||||
} // namespace
|
||||
|
||||
int CastFp16CPUKernel::Init() {
|
||||
if (!InferShapeDone()) {
|
||||
return RET_OK;
|
||||
}
|
||||
return ReSize();
|
||||
}
|
||||
|
||||
int CastFp16CPUKernel::ReSize() {
|
||||
data_num_ = in_tensors_[0]->ElementsNum();
|
||||
if (data_num_ == 0) {
|
||||
return RET_OK;
|
||||
}
|
||||
op_parameter_->thread_num_ = MSMIN(op_parameter_->thread_num_, data_num_);
|
||||
stride_ = UP_DIV(data_num_, op_parameter_->thread_num_);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int CastFp16CPUKernel::DoCast(int thread_id) {
|
||||
auto input = in_tensors_.at(0);
|
||||
int data_num = MSMIN(stride_, data_num_ - thread_id * stride_);
|
||||
if (data_num <= 0) {
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
auto offset = thread_id * stride_;
|
||||
auto output_data = out_tensors_.at(0)->Data();
|
||||
switch (input->data_type()) {
|
||||
case kNumberTypeFloat32:
|
||||
Float32ToFloat16(reinterpret_cast<float *>(input->Data()) + offset,
|
||||
reinterpret_cast<float16_t *>(output_data) + offset, data_num);
|
||||
break;
|
||||
case kNumberTypeFloat16:
|
||||
Float16ToFloat32(reinterpret_cast<float16_t *>(input->Data()) + offset,
|
||||
reinterpret_cast<float *>(output_data) + offset, data_num);
|
||||
break;
|
||||
default:
|
||||
MS_LOG(ERROR) << "Unsupport input data type " << input->data_type();
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int CastFp16CPUKernel::Run() {
|
||||
auto prepare_ret = Prepare();
|
||||
if (prepare_ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Prepare fail!ret: " << prepare_ret;
|
||||
return prepare_ret;
|
||||
}
|
||||
if (data_num_ == 0) {
|
||||
return RET_OK;
|
||||
}
|
||||
return LiteBackendParallelLaunch(CastRun, this, op_parameter_->thread_num_);
|
||||
}
|
||||
|
||||
kernel::LiteKernel *CpuCastFp16KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs,
|
||||
OpParameter *opParameter, const lite::Context *ctx,
|
||||
const kernel::KernelKey &desc, const lite::Primitive *primitive) {
|
||||
if (opParameter == nullptr) {
|
||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
||||
return nullptr;
|
||||
}
|
||||
if (ctx == nullptr) {
|
||||
MS_LOG(ERROR) << "Input context is nullptr!";
|
||||
return nullptr;
|
||||
}
|
||||
if (ctx->thread_num_ == 0) {
|
||||
MS_LOG(ERROR) << "context thread num is 0!";
|
||||
return nullptr;
|
||||
}
|
||||
auto *kernel = new (std::nothrow) CastFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "new CastFp16CPUKernel fail!";
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete kernel;
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Cast, CpuCastFp16KernelCreator)
|
||||
} // namespace mindspore::kernel
|
|
@ -0,0 +1,43 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_CAST_FP16_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_CAST_FP16_H_
|
||||
|
||||
#include <vector>
|
||||
#include "src/lite_kernel.h"
|
||||
|
||||
namespace mindspore::kernel {
|
||||
class CastFp16CPUKernel : public LiteKernel {
|
||||
public:
|
||||
CastFp16CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
|
||||
const lite::Primitive *primitive)
|
||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
|
||||
|
||||
~CastFp16CPUKernel() = default;
|
||||
|
||||
int Init() override;
|
||||
int ReSize() override;
|
||||
int Run() override;
|
||||
int DoCast(int thread_id);
|
||||
|
||||
private:
|
||||
uint32_t stride_;
|
||||
uint32_t data_num_;
|
||||
};
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_CAST_FP16_H_
|
|
@ -0,0 +1,149 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "src/runtime/kernel/arm/fp16/pooling_fp16.h"
|
||||
#include <vector>
|
||||
#include "src/runtime/kernel/arm/nnacl/fp16/pooling_fp16.h"
|
||||
#include "src/kernel_registry.h"
|
||||
#include "src/runtime/runtime_api.h"
|
||||
#include "include/errorcode.h"
|
||||
#include "src/runtime/kernel/arm/nnacl/op_base.h"
|
||||
#include "nnacl/fp16/cast_fp16.h"
|
||||
|
||||
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_OK;
|
||||
using mindspore::schema::PrimitiveType_Pooling;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
int PoolingFp16CPUKernel::InitBuffer() {
|
||||
int in_batch = pooling_param_->input_batch_;
|
||||
int in_h = pooling_param_->input_h_;
|
||||
int in_w = pooling_param_->input_w_;
|
||||
int in_channel = pooling_param_->input_channel_;
|
||||
fp16_input_ = reinterpret_cast<float16_t *>(malloc(in_batch * in_h * in_w * in_channel * sizeof(float16_t)));
|
||||
if (fp16_input_ == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc fp16_input_ failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
int out_batch = pooling_param_->output_batch_;
|
||||
int out_h = pooling_param_->output_h_;
|
||||
int out_w = pooling_param_->output_w_;
|
||||
int out_channel = pooling_param_->output_channel_;
|
||||
fp16_output_ = reinterpret_cast<float16_t *>(malloc(out_batch * out_h * out_w * out_channel * sizeof(float16_t)));
|
||||
if (fp16_output_ == nullptr) {
|
||||
MS_LOG(ERROR) << "fp16_out malloc failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int PoolingFp16CPUKernel::Init() {
|
||||
if (context_->infer_shape_interrupt_ && !context_->running_) {
|
||||
set_need_reinit();
|
||||
return RET_OK;
|
||||
}
|
||||
auto ret = PoolingBaseCPUKernel::Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "PoolingBase Init failed.";
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret = InitBuffer();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init Buffer failed.";
|
||||
return ret;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int PoolingFp16CPUKernel::ReSize() {
|
||||
auto ret = Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Pooling resize init failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int PoolingFp16CPUKernel::RunImpl(int task_id) {
|
||||
if (pooling_param_->max_pooling_) {
|
||||
MaxPoolingFp16(fp16_input_, fp16_output_, pooling_param_, task_id);
|
||||
} else {
|
||||
AvgPoolingFp16(fp16_input_, fp16_output_, pooling_param_, task_id);
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int PoolingFp16Impl(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
|
||||
auto pooling = reinterpret_cast<PoolingFp16CPUKernel *>(cdata);
|
||||
auto error_code = pooling->RunImpl(task_id);
|
||||
if (error_code != RET_OK) {
|
||||
MS_LOG(ERROR) << "Pooling Run error task_id[" << task_id << "] error_code[" << error_code << "]";
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int PoolingFp16CPUKernel::Run() {
|
||||
auto prepare_ret = Prepare();
|
||||
if (prepare_ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Prepare fail!ret: " << prepare_ret;
|
||||
return prepare_ret;
|
||||
}
|
||||
auto ele_num = in_tensors_.front()->ElementsNum();
|
||||
auto input_ptr = reinterpret_cast<float *>(in_tensors_.at(kInputIndex)->Data());
|
||||
Float32ToFloat16(input_ptr, fp16_input_, ele_num);
|
||||
|
||||
int error_code = LiteBackendParallelLaunch(PoolingFp16Impl, this, thread_count_);
|
||||
if (error_code != RET_OK) {
|
||||
MS_LOG(ERROR) << "pooling error error_code[" << error_code << "]";
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
auto out_ele_num = out_tensors_.front()->ElementsNum();
|
||||
auto output_ptr = reinterpret_cast<float *>(out_tensors_.at(kOutputIndex)->Data());
|
||||
Float16ToFloat32(fp16_output_, output_ptr, out_ele_num);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *CpuPoolingFp16KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs,
|
||||
OpParameter *opParameter, const Context *ctx,
|
||||
const kernel::KernelKey &desc, const lite::Primitive *primitive) {
|
||||
if (opParameter == nullptr) {
|
||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
||||
return nullptr;
|
||||
}
|
||||
MS_ASSERT(desc.type == schema::PrimitiveType_Pooling);
|
||||
auto *kernel = new (std::nothrow) PoolingFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "new PoolingCPUKernel fail!";
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete kernel;
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Pooling, CpuPoolingFp16KernelCreator)
|
||||
} // namespace mindspore::kernel
|
|
@ -0,0 +1,52 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_POOLING_FP16_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_POOLING_FP16_H_
|
||||
|
||||
#include <arm_neon.h>
|
||||
#include <vector>
|
||||
#include "src/lite_kernel.h"
|
||||
#include "src/runtime/kernel/arm/base/pooling_base.h"
|
||||
|
||||
namespace mindspore::kernel {
|
||||
class PoolingFp16CPUKernel : public PoolingBaseCPUKernel {
|
||||
public:
|
||||
PoolingFp16CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx,
|
||||
const lite::Primitive *primitive)
|
||||
: PoolingBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
|
||||
~PoolingFp16CPUKernel() override {
|
||||
if (fp16_input_ != nullptr) {
|
||||
free(fp16_input_);
|
||||
}
|
||||
if (fp16_output_ != nullptr) {
|
||||
free(fp16_output_);
|
||||
}
|
||||
};
|
||||
|
||||
int Init() override;
|
||||
int InitBuffer();
|
||||
int ReSize() override;
|
||||
int Run() override;
|
||||
int RunImpl(int task_id);
|
||||
|
||||
private:
|
||||
float16_t *fp16_input_ = nullptr;
|
||||
float16_t *fp16_output_ = nullptr;
|
||||
};
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_POOLING_FP16_H_
|
|
@ -21,15 +21,8 @@
|
|||
#include "src/runtime/kernel/arm/base/pooling_base.h"
|
||||
#include "src/lite_kernel.h"
|
||||
#include "ir/anf.h"
|
||||
#include "include/context.h"
|
||||
|
||||
namespace mindspore::kernel {
|
||||
using mindspore::lite::Context;
|
||||
using mindspore::schema::PadMode;
|
||||
using mindspore::schema::PoolMode;
|
||||
using mindspore::schema::QuantType;
|
||||
using mindspore::schema::RoundMode;
|
||||
|
||||
class PoolingCPUKernel : public PoolingBaseCPUKernel {
|
||||
public:
|
||||
PoolingCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
|
|
|
@ -0,0 +1,28 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "nnacl/fp16/cast_fp16.h"
|
||||
|
||||
void Float32ToFloat16(const float *input, float16_t *output, int number) {
|
||||
for (int i = 0; i < number; ++i) {
|
||||
output[i] = (float16_t)input[i];
|
||||
}
|
||||
}
|
||||
|
||||
void Float16ToFloat32(const float16_t *input, float *output, int number) {
|
||||
for (int i = 0; i < number; ++i) {
|
||||
output[i] = (float)input[i];
|
||||
}
|
||||
}
|
|
@ -0,0 +1,26 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_CAST_FP16_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_CAST_FP16_H_
|
||||
|
||||
#include <arm_neon.h>
|
||||
#include "nnacl/op_base.h"
|
||||
#include "nnacl/fp32/cast.h"
|
||||
|
||||
void Float32ToFloat16(const float *input, float16_t *output, int number);
|
||||
void Float16ToFloat32(const float16_t *input, float *output, int number);
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_CAST_FP16_H_
|
|
@ -0,0 +1,276 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "nnacl/fp16/pooling_fp16.h"
|
||||
#include <float.h>
|
||||
|
||||
void AvgPoolingFp16(const float16_t *input_ptr, float16_t *output_ptr, PoolingParameter *pooling_param, int task_id) {
|
||||
int stride_w = pooling_param->stride_w_;
|
||||
int stride_h = pooling_param->stride_h_;
|
||||
int pad_w = pooling_param->pad_l_;
|
||||
int pad_h = pooling_param->pad_u_;
|
||||
int win_w = pooling_param->window_w_;
|
||||
int win_h = pooling_param->window_h_;
|
||||
int channel = pooling_param->input_channel_;
|
||||
int c8 = channel / C8NUM;
|
||||
int c8_res = channel % C8NUM;
|
||||
int c4 = c8_res / C4NUM;
|
||||
|
||||
int in_w = pooling_param->input_w_;
|
||||
int in_h = pooling_param->input_h_;
|
||||
int output_w = pooling_param->output_w_;
|
||||
int output_h = pooling_param->output_h_;
|
||||
int output_batch = pooling_param->output_batch_;
|
||||
int out_plane = output_w * output_h;
|
||||
int out_tile_count = UP_DIV(out_plane, TILE_NUM);
|
||||
int thread_num = pooling_param->thread_num_;
|
||||
// input channel is equal to output channel
|
||||
|
||||
for (int batch = 0; batch < output_batch; batch++) {
|
||||
int in_batch_offset = batch * in_h * in_w * channel;
|
||||
int out_batch_offset = batch * output_h * output_w * channel;
|
||||
for (int thread_id = task_id; thread_id < out_tile_count; thread_id += thread_num) {
|
||||
int cal_start_index = thread_id * TILE_NUM;
|
||||
int real_cal_num = (out_plane - cal_start_index) > TILE_NUM ? TILE_NUM : (out_plane - cal_start_index);
|
||||
for (int i = 0; i < real_cal_num; i++) {
|
||||
int index = cal_start_index + i;
|
||||
int out_w_index = index % output_w;
|
||||
int out_h_index = index / output_w;
|
||||
int in_w_index = out_w_index * stride_w - pad_w;
|
||||
int in_h_index = out_h_index * stride_h - pad_h;
|
||||
int out_plane_offset = out_batch_offset + index * channel;
|
||||
for (int j = 0; j < c8; j++) {
|
||||
int in_channel_offset = in_batch_offset + j * C8NUM;
|
||||
int out_channel_offset = out_plane_offset + j * C8NUM;
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t tmp_avg = vdupq_n_f16(0);
|
||||
#else
|
||||
float16_t tmp_avg[8]{0};
|
||||
#endif
|
||||
int real_count = 0;
|
||||
for (int h = 0; h < win_h; h++) {
|
||||
for (int w = 0; w < win_w; w++) {
|
||||
if ((in_h_index + h) < 0 || (in_h_index + h) >= in_h || (in_w_index + w) < 0 ||
|
||||
(in_w_index + w) >= in_w) {
|
||||
continue;
|
||||
} else {
|
||||
int in_offset = in_channel_offset + ((in_h_index + h) * in_w + in_w_index + w) * channel;
|
||||
#ifdef ENABLE_NEON
|
||||
tmp_avg = vaddq_f16(tmp_avg, vld1q_f16(input_ptr + in_offset));
|
||||
#else
|
||||
for (int t = 0; t < 8; t++) {
|
||||
tmp_avg[t] += *(input_ptr + in_offset + t);
|
||||
}
|
||||
#endif
|
||||
++real_count;
|
||||
}
|
||||
} // win_w loop
|
||||
} // win_h loop
|
||||
#ifdef ENABLE_NEON
|
||||
vst1q_f16(output_ptr + out_channel_offset, tmp_avg / vdupq_n_f16(real_count));
|
||||
#else
|
||||
for (int t = 0; t < C8NUM; ++t) {
|
||||
*(output_ptr + out_channel_offset + t) = tmp_avg[t] / (float16_t)real_count;
|
||||
}
|
||||
#endif
|
||||
} // c8 loop
|
||||
|
||||
int c4_offset = c8 * C8NUM;
|
||||
for (int l = 0; l < c4; ++l) {
|
||||
int in_channel_offset = in_batch_offset + c4_offset + l * C4NUM;
|
||||
int out_channel_offset = out_plane_offset + c4_offset + l * C4NUM;
|
||||
#ifdef ENABLE_NEON
|
||||
float16x4_t tmp_avg = vdup_n_f16(0);
|
||||
#else
|
||||
float16_t tmp_avg[4]{0};
|
||||
#endif
|
||||
int real_count = 0;
|
||||
for (int h = 0; h < win_h; h++) {
|
||||
for (int w = 0; w < win_w; w++) {
|
||||
if ((in_h_index + h) < 0 || (in_h_index + h) >= in_h || (in_w_index + w) < 0 ||
|
||||
(in_w_index + w) >= in_w) {
|
||||
continue;
|
||||
} else {
|
||||
int in_offset = in_channel_offset + ((in_h_index + h) * in_w + in_w_index + w) * channel;
|
||||
#ifdef ENABLE_NEON
|
||||
tmp_avg = vadd_f16(tmp_avg, vld1_f16(input_ptr + in_offset));
|
||||
#else
|
||||
for (int j = 0; j < C4NUM; ++j) {
|
||||
tmp_avg[j] += *(input_ptr + in_offset);
|
||||
}
|
||||
#endif
|
||||
++real_count;
|
||||
}
|
||||
} // win_w loop
|
||||
} // win_h loop
|
||||
#ifdef ENABLE_NEON
|
||||
vst1_f16(output_ptr + out_channel_offset, tmp_avg / vdup_n_f16(real_count));
|
||||
#else
|
||||
for (int t = 0; t < C4NUM; ++t) {
|
||||
*(output_ptr + out_channel_offset + t) = tmp_avg[t] / (float16_t)real_count;
|
||||
}
|
||||
#endif
|
||||
} // c4 loop
|
||||
|
||||
int channel_s = c8 * C8NUM + c4 * C4NUM;
|
||||
for (int k = channel_s; k < channel; k++) {
|
||||
int in_channel_offset = in_batch_offset + k;
|
||||
int out_channel_offset = out_plane_offset + k;
|
||||
float16_t tmp_avg = 0;
|
||||
int real_count = 0;
|
||||
for (int h = 0; h < win_h; h++) {
|
||||
for (int w = 0; w < win_w; w++) {
|
||||
if ((in_h_index + h) < 0 || (in_h_index + h) >= in_h || (in_w_index + w) < 0 ||
|
||||
(in_w_index + w) >= in_w) {
|
||||
continue;
|
||||
} else {
|
||||
int in_offset = in_channel_offset + ((in_h_index + h) * in_w + in_w_index + w) * channel;
|
||||
tmp_avg += *(input_ptr + in_offset);
|
||||
++real_count;
|
||||
}
|
||||
} // win_w loop
|
||||
} // win_h loop
|
||||
*(output_ptr + out_channel_offset) = tmp_avg / (float16_t)real_count;
|
||||
} // channel_res loop
|
||||
} // real_cal_num loop
|
||||
} // out_plane loop
|
||||
} // out_batch loop
|
||||
}
|
||||
|
||||
void MaxPoolingFp16(const float16_t *input_ptr, float16_t *output_ptr, PoolingParameter *pooling_param, int task_id) {
|
||||
int stride_w = pooling_param->stride_w_;
|
||||
int stride_h = pooling_param->stride_h_;
|
||||
int pad_w = pooling_param->pad_l_;
|
||||
int pad_h = pooling_param->pad_u_;
|
||||
int win_w = pooling_param->window_w_;
|
||||
int win_h = pooling_param->window_h_;
|
||||
int channel = pooling_param->input_channel_;
|
||||
int in_w = pooling_param->input_w_;
|
||||
int in_h = pooling_param->input_h_;
|
||||
int output_w = pooling_param->output_w_;
|
||||
int output_h = pooling_param->output_h_;
|
||||
int output_batch = pooling_param->output_batch_;
|
||||
int out_plane = output_w * output_h;
|
||||
int out_tile_count = UP_DIV(out_plane, TILE_NUM);
|
||||
int thread_num = pooling_param->thread_num_;
|
||||
int c8 = channel / C8NUM;
|
||||
int c8_res = channel % C8NUM;
|
||||
int c4 = c8_res / C4NUM;
|
||||
// input channel is equal to output channel
|
||||
|
||||
for (int batch = 0; batch < output_batch; batch++) {
|
||||
int in_batch_offset = batch * in_h * in_w * channel;
|
||||
int out_batch_offset = batch * output_h * output_w * channel;
|
||||
for (int thread_id = task_id; thread_id < out_tile_count; thread_id += thread_num) {
|
||||
int cal_start_index = thread_id * TILE_NUM;
|
||||
int real_cal_num = (out_plane - cal_start_index) > TILE_NUM ? TILE_NUM : (out_plane - cal_start_index);
|
||||
for (int i = 0; i < real_cal_num; i++) {
|
||||
int index = cal_start_index + i;
|
||||
int out_w_index = index % output_w;
|
||||
int out_h_index = index / output_w;
|
||||
int in_w_index = out_w_index * stride_w - pad_w;
|
||||
int in_h_index = out_h_index * stride_h - pad_h;
|
||||
int out_plane_offset = out_batch_offset + index * channel;
|
||||
for (int j = 0; j < c8; j++) {
|
||||
int in_channel_offset = in_batch_offset + j * C8NUM;
|
||||
int out_channel_offset = out_plane_offset + j * C8NUM;
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t tmp_max = vdupq_n_f16(-FLT_MAX);
|
||||
#else
|
||||
float16_t tmp_max[8]{-FLT_MAX};
|
||||
#endif
|
||||
for (int h = 0; h < win_h; h++) {
|
||||
for (int w = 0; w < win_w; w++) {
|
||||
if ((in_h_index + h) < 0 || (in_h_index + h) >= in_h || (in_w_index + w) < 0 ||
|
||||
(in_w_index + w) >= in_w) {
|
||||
continue;
|
||||
} else {
|
||||
int in_offset = in_channel_offset + ((in_h_index + h) * in_w + in_w_index + w) * channel;
|
||||
#ifdef ENABLE_NEON
|
||||
tmp_max = vmaxq_f16(tmp_max, vld1q_f16(input_ptr + in_offset));
|
||||
#else
|
||||
for (int k = 0; k < C8NUM; k++) {
|
||||
tmp_max[k] = fmax(tmp_max[k], *(input_ptr + in_offset + k));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
} // win_w loop
|
||||
} // win_h loop
|
||||
#ifdef ENABLE_NEON
|
||||
vst1q_f16(output_ptr + out_channel_offset, tmp_max);
|
||||
#else
|
||||
for (int l = 0; l < C8NUM; ++l) {
|
||||
*(output_ptr + out_channel_offset + l) = tmp_max[l];
|
||||
}
|
||||
#endif
|
||||
} // c8 loop
|
||||
|
||||
int c4_offset = c8 * C8NUM;
|
||||
for (int j = 0; j < c4; j++) {
|
||||
int in_channel_offset = in_batch_offset + c4_offset + j * C4NUM;
|
||||
int out_channel_offset = out_plane_offset + c4_offset + j * C4NUM;
|
||||
#ifdef ENABLE_NEON
|
||||
float16x4_t tmp_max = vdup_n_f16(-FLT_MAX);
|
||||
#else
|
||||
float16_t tmp_max[4]{-FLT_MAX};
|
||||
#endif
|
||||
for (int h = 0; h < win_h; h++) {
|
||||
for (int w = 0; w < win_w; w++) {
|
||||
if ((in_h_index + h) < 0 || (in_h_index + h) >= in_h || (in_w_index + w) < 0 ||
|
||||
(in_w_index + w) >= in_w) {
|
||||
continue;
|
||||
} else {
|
||||
int in_offset = in_channel_offset + ((in_h_index + h) * in_w + in_w_index + w) * channel;
|
||||
#ifdef ENABLE_NEON
|
||||
tmp_max = vmax_f16(tmp_max, vld1_f16(input_ptr + in_offset));
|
||||
#else
|
||||
for (int k = 0; k < C4NUM; k++) {
|
||||
tmp_max[k] = fmax(tmp_max[k], *(input_ptr + in_offset + k));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
} // win_w loop
|
||||
} // win_h loop
|
||||
#ifdef ENABLE_NEON
|
||||
vst1_f16(output_ptr + out_channel_offset, tmp_max);
|
||||
#else
|
||||
for (int l = 0; l < C4NUM; ++l) {
|
||||
*(output_ptr + out_channel_offset + l) = tmp_max[l];
|
||||
}
|
||||
#endif
|
||||
} // c4 loop
|
||||
|
||||
int channel_s = c8 * C8NUM + c4 * C4NUM;
|
||||
for (int k = channel_s; k < channel; k++) {
|
||||
int in_channel_offset = in_batch_offset + k;
|
||||
int out_channel_offset = out_plane_offset + k;
|
||||
float16_t tmp_max = -FLT_MAX;
|
||||
for (int h = 0; h < win_h; h++) {
|
||||
for (int w = 0; w < win_w; w++) {
|
||||
if ((in_h_index + h) < 0 || (in_h_index + h) >= in_h || (in_w_index + w) < 0 ||
|
||||
(in_w_index + w) >= in_w) {
|
||||
continue;
|
||||
} else {
|
||||
int in_offset = in_channel_offset + ((in_h_index + h) * in_w + in_w_index + w) * channel;
|
||||
tmp_max = fmax(tmp_max, *(input_ptr + in_offset));
|
||||
}
|
||||
} // win_w loop
|
||||
} // win_h loop
|
||||
*(output_ptr + out_channel_offset) = tmp_max;
|
||||
} // channel_res loop
|
||||
} // real_cal_num loop
|
||||
} // out_plane loop
|
||||
} // out_batch loop
|
||||
}
|
|
@ -0,0 +1,27 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_FP16_POOLING_FP16_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_FP16_POOLING_FP16_H_
|
||||
|
||||
#include <arm_neon.h>
|
||||
#include "nnacl/pooling_parameter.h"
|
||||
|
||||
void AvgPoolingFp16(const float16_t *input_ptr, float16_t *output_ptr, PoolingParameter *pooling_param, int task_id);
|
||||
|
||||
void MaxPoolingFp16(const float16_t *input_ptr, float16_t *output_ptr, PoolingParameter *pooling_param, int task_id);
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_FP16_POOLING_FP16_H_
|
|
@ -45,17 +45,3 @@ void Float32ToInt32(const float *input, int32_t *output, int number) {
|
|||
output[i] = (int32_t)input[i];
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef ENABLE_FP16
|
||||
void Float32ToFloat16(const float *input, float16_t *output, int number) {
|
||||
for (int i = 0; i < number; ++i) {
|
||||
output[i] = (float16_t)input[i];
|
||||
}
|
||||
}
|
||||
|
||||
void Float16ToFloat32(const float16_t *input, float *output, int number) {
|
||||
for (int i = 0; i < number; ++i) {
|
||||
output[i] = (float)input[i];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -33,9 +33,5 @@ void Uint8ToInt8(const uint8_t *input, int8_t *output, int number);
|
|||
void Int8ToUint8(const int8_t *input, uint8_t *output, int number);
|
||||
void Int32ToFloat32(const int32_t *input, float *output, int number);
|
||||
void Float32ToInt32(const float *input, int32_t *output, int number);
|
||||
#ifdef ENABLE_FP16
|
||||
void Float32ToFloat16(const float *input, float16_t *output, int number);
|
||||
void Float16ToFloat32(const float16_t *input, float *output, int number);
|
||||
#endif
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_CAST_H_
|
||||
|
||||
|
|
|
@ -21,35 +21,9 @@
|
|||
#include <arm_neon.h>
|
||||
#endif
|
||||
#include "nnacl/op_base.h"
|
||||
#include "nnacl/pooling_parameter.h"
|
||||
#include "nnacl/quantization/quantize.h"
|
||||
|
||||
typedef struct PoolingParameter {
|
||||
OpParameter op_parameter_;
|
||||
QuantArg **quant_args_;
|
||||
bool global_;
|
||||
bool max_pooling_;
|
||||
bool avg_pooling_;
|
||||
bool round_ceil_;
|
||||
bool round_floor_;
|
||||
int window_w_;
|
||||
int window_h_;
|
||||
int input_w_;
|
||||
int input_h_;
|
||||
int input_batch_;
|
||||
int input_channel_;
|
||||
int output_w_;
|
||||
int output_h_;
|
||||
int output_batch_;
|
||||
int output_channel_;
|
||||
int pad_u_;
|
||||
int pad_d_;
|
||||
int pad_l_;
|
||||
int pad_r_;
|
||||
int stride_w_;
|
||||
int stride_h_;
|
||||
int thread_num_;
|
||||
} PoolingParameter;
|
||||
|
||||
void AvgPooling(const float *input_ptr, float *output_ptr, PoolingParameter *pooling_param, int task_id);
|
||||
|
||||
void MaxPooling(const float *input_ptr, float *output_ptr, PoolingParameter *pooling_param, int task_id);
|
||||
|
|
|
@ -0,0 +1,49 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_POOLING_PARAMETER_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_POOLING_PARAMETER_H_
|
||||
|
||||
#include "nnacl/op_base.h"
|
||||
#include "nnacl/quantization/quantize.h"
|
||||
|
||||
typedef struct PoolingParameter {
|
||||
OpParameter op_parameter_;
|
||||
QuantArg **quant_args_;
|
||||
bool global_;
|
||||
bool max_pooling_;
|
||||
bool avg_pooling_;
|
||||
bool round_ceil_;
|
||||
bool round_floor_;
|
||||
int window_w_;
|
||||
int window_h_;
|
||||
int input_w_;
|
||||
int input_h_;
|
||||
int input_batch_;
|
||||
int input_channel_;
|
||||
int output_w_;
|
||||
int output_h_;
|
||||
int output_batch_;
|
||||
int output_channel_;
|
||||
int pad_u_;
|
||||
int pad_d_;
|
||||
int pad_l_;
|
||||
int pad_r_;
|
||||
int stride_w_;
|
||||
int stride_h_;
|
||||
int thread_num_;
|
||||
} PoolingParameter;
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_POOLING_PARAMETER_H_
|
Loading…
Reference in New Issue