forked from mindspore-Ecosystem/mindspore
update api parameters
This commit is contained in:
parent
ba0775661f
commit
0e8045898a
|
@ -1,6 +1,6 @@
|
|||
mindspore.Tensor.mean
|
||||
=====================
|
||||
|
||||
.. py:method:: mindspore.Tensor.mean(axis=(), keep_dims=False)
|
||||
.. py:method:: mindspore.Tensor.mean(axis=None, keep_dims=False)
|
||||
|
||||
详情请参考 :func:`mindspore.ops.mean`。
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
mindspore.Tensor.prod
|
||||
=====================
|
||||
|
||||
.. py:method:: mindspore.Tensor.prod(axis=(), keep_dims=False)
|
||||
.. py:method:: mindspore.Tensor.prod(axis=None, keep_dims=False)
|
||||
|
||||
详情请参考 :func:`mindspore.ops.prod`。
|
||||
|
|
|
@ -1,19 +1,19 @@
|
|||
mindspore.ops.mean
|
||||
==================
|
||||
|
||||
.. py:function:: mindspore.ops.mean(x, axis=(), keep_dims=False)
|
||||
.. py:function:: mindspore.ops.mean(x, axis=None, keep_dims=False)
|
||||
|
||||
默认情况下,移除输入所有维度,返回 `x` 中所有元素的平均值。也可仅缩小指定维度 `axis` 大小至1。 `keep_dims` 控制输出和输入的维度是否相同。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor[Number]) - 输入Tensor,其数据类型为数值型。shape: :math:`(N, *)` ,其中 :math:`*` 表示任意数量的附加维度。秩应小于8。
|
||||
- **axis** (Union[int, tuple(int), list(int)]) - 要减少的维度。默认值: (),缩小所有维度。只允许常量值。假设 `x` 的秩为r,取值范围[-r,r)。
|
||||
- **axis** (Union[int, tuple(int), list(int)]) - 要减少的维度。默认值: None,缩小所有维度。只允许常量值。假设 `x` 的秩为r,取值范围[-r,r)。
|
||||
- **keep_dims** (bool) - 如果为True,则保留缩小的维度,大小为1。否则移除维度。默认值:False。
|
||||
|
||||
返回:
|
||||
Tensor。
|
||||
|
||||
- 如果 `axis` 为(),且 `keep_dims` 为False,则输出一个零维Tensor,表示输入Tensor中所有元素的平均值。
|
||||
- 如果 `axis` 为None,且 `keep_dims` 为False,则输出一个零维Tensor,表示输入Tensor中所有元素的平均值。
|
||||
- 如果 `axis` 为int,取值为1,并且 `keep_dims` 为False,则输出的shape为 :math:`(x_0, x_2, ..., x_R)` 。
|
||||
- 如果 `axis` 为tuple(int)或list(int),取值为(1, 2),并且 `keep_dims` 为False,则输出Tensor的shape为 :math:`(x_0, x_3, ..., x_R)` 。
|
||||
|
||||
|
|
|
@ -1,19 +1,19 @@
|
|||
mindspore.ops.prod
|
||||
==================
|
||||
|
||||
.. py:function:: mindspore.ops.prod(x, axis=(), keep_dims=False)
|
||||
.. py:function:: mindspore.ops.prod(x, axis=None, keep_dims=False)
|
||||
|
||||
默认情况下,使用指定维度的所有元素的乘积代替该维度的其他元素,以移除该维度。也可仅缩小该维度大小至1。 `keep_dims` 控制输出和输入的维度是否相同。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor[Number]) - 输入Tensor,其数据类型为数值型。shape: :math:`(N, *)` ,其中 :math:`*` 表示任意数量的附加维度。秩应小于8。
|
||||
- **axis** (Union[int, tuple(int), list(int)]) - 要减少的维度。默认值: (),缩小所有维度。只允许常量值。假设 `x` 的秩为r,取值范围[-r,r)。
|
||||
- **axis** (Union[int, tuple(int), list(int)]) - 要减少的维度。默认值: None,缩小所有维度。只允许常量值。假设 `x` 的秩为r,取值范围[-r,r)。
|
||||
- **keep_dims** (bool) - 如果为True,则保留缩小的维度,大小为1。否则移除维度。默认值:False。
|
||||
|
||||
返回:
|
||||
Tensor。
|
||||
|
||||
- 如果 `axis` 为(),且 `keep_dims` 为False,则输出一个零维Tensor,表示输入Tensor中所有元素的乘积。
|
||||
- 如果 `axis` 为None,且 `keep_dims` 为False,则输出一个零维Tensor,表示输入Tensor中所有元素的乘积。
|
||||
- 如果 `axis` 为int,取值为1,并且 `keep_dims` 为False,则输出的shape为 :math:`(x_0, x_2, ..., x_R)` 。
|
||||
- 如果 `axis` 为tuple(int)或list(int),取值为(1, 2),并且 `keep_dims` 为False,则输出Tensor的shape为 :math:`(x_0, x_3, ..., x_R)` 。
|
||||
|
||||
|
|
|
@ -68,7 +68,7 @@ itemsize_map = {mstype.bool_: 1, mstype.int8: 1, mstype.uint8: 1,
|
|||
nan_tensor = Tensor(float('nan'), dtype=mstype.float32)
|
||||
|
||||
|
||||
def mean(x, axis=(), keep_dims=False):
|
||||
def mean(x, axis=None, keep_dims=False):
|
||||
"""
|
||||
Reduces a dimension of a tensor by averaging all elements in the dimension.
|
||||
|
||||
|
@ -102,14 +102,14 @@ def ndimension(x):
|
|||
return len(x.shape)
|
||||
|
||||
|
||||
def prod(x, axis=(), keep_dims=False):
|
||||
def prod(x, axis=None, keep_dims=False):
|
||||
"""
|
||||
Reduces a dimension of a tensor by product all elements in the dimension.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input Tensor.
|
||||
axis (Union[None, int, tuple(int), list(int)]): Dimensions of reduction,
|
||||
when axis is None or empty tuple, reduce all dimensions. Default: ().
|
||||
when axis is None or empty tuple, reduce all dimensions. Default: None.
|
||||
keep_dims (bool): Whether to keep the reduced dimensions. Default: False.
|
||||
|
||||
Returns:
|
||||
|
|
|
@ -1423,7 +1423,7 @@ class Tensor(Tensor_, metaclass=_TensorMeta):
|
|||
self._init_check()
|
||||
return tensor_operator_registry.get('log2')(self)
|
||||
|
||||
def mean(self, axis=(), keep_dims=False):
|
||||
def mean(self, axis=None, keep_dims=False):
|
||||
"""
|
||||
For details, please refer to :func:`mindspore.ops.mean`.
|
||||
"""
|
||||
|
@ -1437,8 +1437,6 @@ class Tensor(Tensor_, metaclass=_TensorMeta):
|
|||
For details, please refer to :func:`mindspore.ops.amin`.
|
||||
"""
|
||||
self._init_check()
|
||||
if axis is None:
|
||||
axis = ()
|
||||
return tensor_operator_registry.get('amin')(self, axis, keep_dims)
|
||||
|
||||
def reverse(self, axis):
|
||||
|
@ -1453,8 +1451,6 @@ class Tensor(Tensor_, metaclass=_TensorMeta):
|
|||
For details, please refer to :func:`mindspore.ops.amax`.
|
||||
"""
|
||||
self._init_check()
|
||||
if axis is None:
|
||||
axis = ()
|
||||
return tensor_operator_registry.get('amax')(self, axis, keep_dims)
|
||||
|
||||
def reverse_sequence(self, seq_lengths, seq_dim=0, batch_dim=0):
|
||||
|
@ -1464,7 +1460,7 @@ class Tensor(Tensor_, metaclass=_TensorMeta):
|
|||
self._init_check()
|
||||
return tensor_operator_registry.get("reverse_sequence")(seq_dim, batch_dim)(self, seq_lengths)
|
||||
|
||||
def prod(self, axis=(), keep_dims=False):
|
||||
def prod(self, axis=None, keep_dims=False):
|
||||
"""
|
||||
For details, please refer to :func:`mindspore.ops.prod`.
|
||||
"""
|
||||
|
|
|
@ -7117,7 +7117,7 @@ def amax(input, axis=None, keep_dims=False):
|
|||
return _get_cache_prim(P.ReduceMax)(keep_dims)(input, axis)
|
||||
|
||||
|
||||
def mean(x, axis=(), keep_dims=False):
|
||||
def mean(x, axis=None, keep_dims=False):
|
||||
r"""
|
||||
Reduces all dimension of a tensor by averaging all elements in the dimension, by default.
|
||||
And reduce a dimension of `x` along the specified `axis`. `keep_dims`
|
||||
|
@ -7126,7 +7126,7 @@ def mean(x, axis=(), keep_dims=False):
|
|||
Args:
|
||||
x (Tensor[Number]): The input tensor. The dtype of the tensor to be reduced is number.
|
||||
:math:`(N,*)` where :math:`*` means, any number of additional dimensions, its rank should be less than 8.
|
||||
axis (Union[int, tuple(int), list(int)]): The dimensions to reduce. Default: (), reduce all dimensions.
|
||||
axis (Union[int, tuple(int), list(int)]): The dimensions to reduce. Default: None, reduce all dimensions.
|
||||
Only constant value is allowed. Assume the rank of `x` is r, and the value range is [-r,r).
|
||||
keep_dims (bool): If true, keep these reduced dimensions and the length is 1.
|
||||
If false, don't keep these dimensions. Default: False.
|
||||
|
@ -7134,7 +7134,7 @@ def mean(x, axis=(), keep_dims=False):
|
|||
Returns:
|
||||
Tensor, has the same data type as input tensor.
|
||||
|
||||
- If `axis` is (), and `keep_dims` is False,
|
||||
- If `axis` is None, and `keep_dims` is False,
|
||||
the output is a 0-D tensor representing the product of all elements in the input tensor.
|
||||
- If `axis` is int, set as 1, and `keep_dims` is False,
|
||||
the shape of output is :math:`(x_0, x_2, ..., x_R)`.
|
||||
|
@ -7191,11 +7191,12 @@ def mean(x, axis=(), keep_dims=False):
|
|||
[ 8.]
|
||||
[10.]]]
|
||||
"""
|
||||
|
||||
if axis is None:
|
||||
axis = ()
|
||||
return _get_cache_prim(P.ReduceMean)(keep_dims)(x, axis)
|
||||
|
||||
|
||||
def prod(x, axis=(), keep_dims=False):
|
||||
def prod(x, axis=None, keep_dims=False):
|
||||
r"""
|
||||
Reduces a dimension of a tensor by multiplying all elements in the dimension, by default. And also can
|
||||
reduce a dimension of `x` along the axis. Determine whether the dimensions of the output and input are the same by
|
||||
|
@ -7204,7 +7205,7 @@ def prod(x, axis=(), keep_dims=False):
|
|||
Args:
|
||||
x (Tensor[Number]): The input tensor. The dtype of the tensor to be reduced is number.
|
||||
:math:`(N,*)` where :math:`*` means, any number of additional dimensions, its rank should be less than 8.
|
||||
axis (Union[int, tuple(int), list(int)]): The dimensions to reduce. Default: (), reduce all dimensions.
|
||||
axis (Union[int, tuple(int), list(int)]): The dimensions to reduce. Default: None, reduce all dimensions.
|
||||
Only constant value is allowed. Assume the rank of `x` is r, and the value range is [-r,r).
|
||||
keep_dims (bool): If true, keep these reduced dimensions and the length is 1.
|
||||
If false, don't keep these dimensions. Default: False.
|
||||
|
@ -7212,7 +7213,7 @@ def prod(x, axis=(), keep_dims=False):
|
|||
Returns:
|
||||
Tensor, has the same data type as input tensor.
|
||||
|
||||
- If `axis` is (), and `keep_dims` is False,
|
||||
- If `axis` is None, and `keep_dims` is False,
|
||||
the output is a 0-D tensor representing the product of all elements in the input tensor.
|
||||
- If `axis` is int, set as 1, and `keep_dims` is False,
|
||||
the shape of output is :math:`(x_0, x_2, ..., x_R)`.
|
||||
|
@ -7268,6 +7269,8 @@ def prod(x, axis=(), keep_dims=False):
|
|||
[2.62144e+05]
|
||||
[5.31441e+05]]]
|
||||
"""
|
||||
if axis is None:
|
||||
axis = ()
|
||||
return _get_cache_prim(P.ReduceProd)(keep_dims)(x, axis)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue