!41377 modify the inconsistence in files 0902

Merge pull request !41377 from 宦晓玲/code_docs_0902
This commit is contained in:
i-robot 2022-09-05 03:01:24 +00:00 committed by Gitee
commit 0d9bb2d064
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
34 changed files with 72 additions and 71 deletions

View File

@ -26,10 +26,9 @@ mindspore.amp.DynamicLossScaleManager
.. py:method:: get_update_cell()
返回用于更新梯度放大系数的 `Cell` 实例,:class:`mindspore.nn.TrainOneStepWithLossScaleCell` 会调用该实例。
返回用于更新梯度放大系数的 :class:`mindspore.nn.Cell` 实例,:class:`mindspore.nn.TrainOneStepWithLossScaleCell` 会调用该实例。
返回:
:class:`mindspore.nn.DynamicLossScaleUpdateCell` 实例,用于更新梯度放大系数。
.. py:method:: update_loss_scale(overflow)
@ -37,4 +36,4 @@ mindspore.amp.DynamicLossScaleManager
根据溢出状态更新梯度放大系数。如果发生溢出,减小梯度放大系数,否则增大梯度放大系数。
参数:
**overflow** (bool) - 表示是否溢出。
- **overflow** (bool) - 表示是否溢出。

View File

@ -15,6 +15,13 @@ mindspore.amp.DynamicLossScaler
- **scale_factor** (int) - 放大/缩小倍数。
- **scale_window** (int) - 无溢出时的连续正常step的最大数量。
.. py:method:: adjust(grads_finite)
根据梯度是否为有效值(无溢出)对 `scale_value` 进行调整。
参数:
- **grads_finite** (Tensor) - bool类型的标量Tensor表示梯度是否为有效值无溢出
.. py:method:: scale(inputs)
根据 `scale_value` 放大inputs。
@ -28,10 +35,3 @@ mindspore.amp.DynamicLossScaler
参数:
- **inputs** (Union(Tensor, tuple(Tensor))) - 损失值或梯度。
.. py:method:: adjust(grads_finite)
根据梯度是否为有效值(无溢出)对 `scale_value` 进行调整。
参数:
- **grads_finite** (Tensor) - bool类型的标量Tensor表示梯度是否为有效值无溢出

View File

@ -25,7 +25,7 @@ mindspore.amp.FixedLossScaleManager
.. py:method:: get_update_cell()
返回用于更新 `loss_scale` 值的 `Cell` 实例, :class:`mindspore.nn.TrainOneStepWithLossScaleCell` 会调用该实例。该类使用固定的梯度放大系数,因此该实例不执行任何操作。
返回用于更新 `loss_scale` 值的 :class:`mindspore.nn.Cell` 实例, :class:`mindspore.nn.TrainOneStepWithLossScaleCell` 会调用该实例。该类使用固定的梯度放大系数,因此该实例不执行任何操作。
返回:
None或 `Cell` 。当 `drop_overflow_update` 为True时返回 :class:`mindspore.nn.FixedLossScaleUpdateCell` 实例,当 `drop_overflow_update` 为False时返回None。

View File

@ -15,7 +15,7 @@ mindspore.amp.LossScaleManager
.. py:method:: get_update_cell()
获取用于更新梯度放大系数的Cell实例。
获取用于更新梯度放大系数的 :class:`mindspore.nn.Cell` 实例。
.. py:method:: update_loss_scale(overflow)

View File

@ -10,6 +10,13 @@ mindspore.amp.LossScaler
.. note::
- 这是一个实验性接口,后续可能删除或修改。
.. py:method:: adjust(grads_finite)
根据梯度是否为有效值(无溢出)对 `scale_value` 进行调整。
参数:
- **grads_finite** (Tensor) - bool类型的标量Tensor表示梯度是否为有效值无溢出
.. py:method:: scale(inputs)
对inputs进行scale`inputs \*= scale_value`
@ -23,10 +30,3 @@ mindspore.amp.LossScaler
参数:
- **inputs** (Union(Tensor, tuple(Tensor))) - 损失值或梯度。
.. py:method:: adjust(grads_finite)
根据梯度是否为有效值(无溢出)对 `scale_value` 进行调整。
参数:
- **grads_finite** (Tensor) - bool类型的标量Tensor表示梯度是否为有效值无溢出

View File

@ -3,7 +3,7 @@ mindspore.amp.StaticLossScaler
.. py:class:: mindspore.amp.StaticLossScaler(scale_value)
损失缩放系数不变的管理器
Static Loss scale类。用固定的常数来scales和unscale损失或梯度
.. note::
- 这是一个实验性接口,后续可能删除或修改。
@ -11,6 +11,13 @@ mindspore.amp.StaticLossScaler
参数:
- **scale_value** (Union(float, int)) - 缩放系数。
.. py:method:: adjust(grads_finite)
`scale_value` 值固定。
参数:
- **grads_finite** (Tensor) - bool类型的标量Tensor表示梯度是否为有效值无溢出
.. py:method:: scale(inputs)
对inputs进行scale`inputs \*= scale_value`
@ -24,10 +31,3 @@ mindspore.amp.StaticLossScaler
参数:
- **inputs** (Union(Tensor, tuple(Tensor))) - 损失值或梯度。
.. py:method:: adjust(grads_finite)
`scale_value` 值固定。
参数:
- **grads_finite** (Tensor) - bool类型的标量Tensor表示梯度是否为有效值无溢出

View File

@ -21,6 +21,8 @@ mindspore.dataset.RandomDataset
.. include:: mindspore.dataset.Dataset.rst
.. include:: mindspore.dataset.Dataset.b.rst
.. include:: mindspore.dataset.Dataset.d.rst
.. include:: mindspore.dataset.Dataset.e.rst

View File

@ -33,7 +33,7 @@ mindspore.nn.Adadelta
.. include:: mindspore.nn.optim_group_gc.rst
.. include:: mindspore.nn.optim_group_order.rst
- **learning_rate** (Union[float, Tensor, Iterable, LearningRateSchedule]) - 默认值1.0。
- **learning_rate** (Union[float, int, Tensor, Iterable, LearningRateSchedule]) - 默认值1.0。
.. include:: mindspore.nn.optim_arg_dynamic_lr.rst

View File

@ -5,9 +5,9 @@ mindspore.nn.AdaptiveAvgPool3d
3维自适应平均池化。
对输入Tensor提供3维的自适应平均池化操作,即对于输入任何尺寸,指定输出的尺寸都为 :math:`(D, H, W)`。但是输入和输出特征的数目不会变化。
对输入Tensor提供3维的自适应平均池化操作。也就是说对于输入任何尺寸,指定输出的尺寸都为 :math:`(D, H, W)`。但是输入和输出特征的数目不会变化。
假设输入 `x` 最后3维大小分别为 :math:`(inD, inH, inW)`则输出的最后3维大小分别为 :math:`(outD, outH, outW)`运算如下:
假设输入 `x` 最后3维大小分别为 :math:`(inD, inH, inW)`则输出的最后3维大小分别为 :math:`(outD, outH, outW)`运算如下:
.. math::
\begin{array}{ll} \\

View File

@ -5,7 +5,7 @@ mindspore.nn.AdaptiveMaxPool3d
3维自适应最大值池化。
对于任何输入尺寸,输出的大小为 :math:`(D, H, W)` ,其中输出特征的数量与输入特征的数量相同。
对于任何输入尺寸,输出的大小为 :math:`(D, H, W)` 输出特征的数量与输入特征的数量相同。
参数:
- **output_size** (Union[int, tuple]) - 表示输出特征图的尺寸输入可以是tuple :math:`(D, H, W)`也可以是一个int值D来表示输出尺寸为 :math:`(D, D, D)`:math:`D` :math:`H`:math:`W` 可以是int型整数或者None其中None表示输出大小与对应的输入的大小相同。

View File

@ -13,7 +13,7 @@ mindspore.nn.Conv2dTranspose
参数:
- **in_channels** (int) - Conv2dTranspose层输入Tensor的空间维度。
- **out_channels** (dict) - Conv2dTranspose层输出Tensor的空间维度。
- **out_channels** (int) - Conv2dTranspose层输出Tensor的空间维度。
- **kernel_size** (Union[int, tuple[int]]) - 指定二维卷积核的高度和宽度。数据类型为整型或两个整型的tuple。一个整数表示卷积核的高度和宽度均为该值。两个整数的tuple分别表示卷积核的高度和宽度。
- **stride** (Union[int, tuple[int]]) - 二维卷积核的移动步长。数据类型为整型或两个整型的tuple。一个整数表示在高度和宽度方向的移动步长均为该值。两个整数的tuple分别表示在高度和宽度方向的移动步长。默认值1。
- **pad_mode** (str) - 指定填充模式。可选值为"same"、"valid"、"pad"。默认值:"same"。

View File

@ -3,7 +3,7 @@ mindspore.nn.DiceLoss
.. py:class:: mindspore.nn.DiceLoss(smooth=1e-5)
Dice系数是一个集合相似性loss,用于计算两个样本之间的相似性。当分割结果最好时Dice系数的值为1当分割结果最差时Dice系数的值为0。
Dice系数是一个集合相似性loss用于计算两个样本之间的相似性。当分割结果最好时Dice系数的值为1当分割结果最差时Dice系数的值为0。
Dice系数表示两个对象之间的面积与总面积的比率。
函数如下:
@ -11,7 +11,7 @@ mindspore.nn.DiceLoss
.. math::
dice = 1 - \frac{2 * |pred \bigcap true|}{|pred| + |true| + smooth}
:math:`pred` 表示 `logits` :math:`true` 表示 `labels`
:math:`pred` 表示 `logits` :math:`true` 表示 `labels`
参数:
- **smooth** (float) - 将添加到分母中以提高数值稳定性的参数。取值大于0。默认值1e-5。

View File

@ -7,7 +7,7 @@ mindspore.nn.DynamicLossScaleUpdateCell
使用混合精度功能进行训练时,初始损失缩放系数值为 `loss_scale_value`。在每个训练步骤中,当出现溢出时,通过计算公式 `loss_scale`/`scale_factor` 减小损失缩放系数。如果连续 `scale_window`step未溢出则将通过 `loss_scale` * `scale_factor` 增大损失缩放系数。
该类是 :class:`mindspore.DynamicLossScaleManager` 的 `get_update_cell` 方法的返回值。训练过程中,类 :class:`mindspore.nn.TrainOneStepWithLossScaleCell` 会调用该Cell来更新损失缩放系数。
该类是 :class:`mindspore.amp.DynamicLossScaleManager` 的 `get_update_cell` 方法的返回值。训练过程中,类 :class:`mindspore.nn.TrainOneStepWithLossScaleCell` 会调用该Cell来更新损失缩放系数。
参数:
- **loss_scale_value** (float) - 初始的损失缩放系数。

View File

@ -5,7 +5,7 @@ mindspore.nn.FixedLossScaleUpdateCell
固定损失缩放系数的神经元。
该类是 :class:`mindspore.FixedLossScaleManager` 的 `get_update_cell` 方法的返回值。训练过程中,类 :class:`mindspore.nn.TrainOneStepWithLossScaleCell` 会调用该Cell。
该类是 :class:`mindspore.amp.FixedLossScaleManager` 的 `get_update_cell` 方法的返回值。训练过程中,类 :class:`mindspore.nn.TrainOneStepWithLossScaleCell` 会调用该Cell。
参数:
- **loss_scale_value** (float) - 初始损失缩放系数。

View File

@ -12,20 +12,19 @@ mindspore.nn.GELU
.. math::
GELU(x_i) = x_i*P(X < x_i),
其中 :math:`P` 是标准高斯分布的累积分布函数, :math:`x_i` 是输入的元素。
GELU相关图参见 `GELU <https://en.wikipedia.org/wiki/Activation_function#/media/File:Activation_gelu.png>`_
参数:
- **approximate** (bool) - 是否启用approximation默认值True。如果approximate的值为True则高斯误差线性激活函数为:
- **approximate** (bool) - 是否启用approximation默认值True。如果approximate的值为True则高斯误差线性激活函数为
:math:`0.5 * x * (1 + tanh(sqrt(2 / pi) * (x + 0.044715 * x^3)))`
否则为: :math:`x * P(X <= x) = 0.5 * x * (1 + erf(x / sqrt(2)))`其中P(X) ~ N(0, 1) 。
输入:
- **x** Tensor - 用于计算GELU的Tensor。数据类型为float16或float32。shape是 :math:`(N,*)` :math:`*` 表示任意的附加维度数。
- **x** (Tensor) - 用于计算GELU的Tensor。数据类型为float16或float32。shape是 :math:`(N,*)` :math:`*` 表示任意的附加维度数。
输出:
Tensor具有与 `x` 相同的数据类型和shape。

View File

@ -5,7 +5,7 @@ mindspore.nn.RMSProp
均方根传播RMSProp算法的实现。
根据RMSProp算法更新 `params`算法详见 [http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf] 第29页。
根据RMSProp算法更新 `params`算法详见 [http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf] 第29页。
公式如下:
@ -55,7 +55,7 @@ mindspore.nn.RMSProp
.. include:: mindspore.nn.optim_group_gc.rst
.. include:: mindspore.nn.optim_group_order.rst
- **learning_rate** (Union[float, Tensor, Iterable, LearningRateSchedule]) - 默认值0.1。
- **learning_rate** (Union[float, int, Tensor, Iterable, LearningRateSchedule]) - 默认值0.1。
.. include:: mindspore.nn.optim_arg_dynamic_lr.rst

View File

@ -5,12 +5,12 @@ mindspore.nn.SampledSoftmaxLoss
抽样交叉熵损失函数。
一般在类别数很大时使用可加速训练以交叉熵为损失函数的分类器。
一般在类别数很大时使用可加速训练以交叉熵为损失函数的分类器。
参数:
- **num_sampled** (int) - 抽样的类别数。
- **num_classes** (int) - 类别总数。
- **num_true** (int)每个训练样本的类别数。默认值1。
- **num_true** (int) - 每个训练样本的类别数。默认值1。
- **sampled_values** (Union[list, tuple]) - 抽样候选值。由 `*CandidateSampler` 函数返回的(`sampled_candidates`, `true_expected_count` , `sampled_expected_count`)的list或tuple。如果默认值为None则应用 `UniformCandidateSampler`
- **remove_accidental_hits** (bool) - 是否移除抽样中的目标类等于标签的情况。默认值True。
- **seed** (int) - 抽样的随机种子。默认值0。

View File

@ -7,13 +7,13 @@ mindspore.nn.SoftmaxCrossEntropyWithLogits
使用交叉熵损失函数计算出输入概率使用softmax函数计算和真实值之间的误差。
对于每个实例 :math:`x_i` i的范围为0到N-1则可得损失为
对于每个实例 :math:`x_i` i的范围为0到N-1则可得损失为
.. math::
\ell(x_i, c) = - \log\left(\frac{\exp(x_i[c])}{\sum_j \exp(x_i[j])}\right)
= -x_i[c] + \log\left(\sum_j \exp(x_i[j])\right)
其中 :math:`x_i` 是一维的Tensor :math:`c` 为one-hot中等于1的位置。
其中 :math:`x_i` 是一维的Tensor :math:`c` 为one-hot中等于1的位置。
.. note::
虽然目标值是互斥的,即目标值中只有一个为正,但预测的概率不为互斥。只要求输入的预测概率分布有效。

View File

@ -57,7 +57,7 @@ mindspore.nn.TrainOneStepWithLossScaleCell
如果使用了Tensor类型的 `scale_sense` ,可调用此函数修改它的值。
参数:
- **sens** Tensor - 新的损失缩放系数其shape和类型需要与原始 `scale_sense` 相同。
- **sens** (Tensor) - 新的损失缩放系数其shape和类型需要与原始 `scale_sense` 相同。
.. py:method:: start_overflow_check(pre_cond, compute_input)

View File

@ -3,7 +3,7 @@
计算输入和输出之间的交叉熵损失。
参数:
- **parallel_config** (OpParallelConfig, MoEParallelConfig) - 表示并行配置。默认值为 `default_dpmp_config` ,表示一个带有默认参数的 `OpParallelConfig` 实例。
- **parallel_config** (OpParallelConfig) - 表示并行配置。默认值为 `default_dpmp_config` ,表示一个带有默认参数的 `OpParallelConfig` 实例。
输入:
- **logits** (Tensor) - shape为(N, C)的Tensor。表示的输出logits。其中N表示任意大小的维度C表示类别个数。数据类型必须为float16或float32。

View File

@ -2,7 +2,7 @@
固定稀疏注意力层。
此接口实现了Sparse Transformer中使用的稀疏注意力原语更多详情请见论文https://arxiv.org/abs/1904.10509)。
此接口实现了Sparse Transformer中使用的稀疏注意力原语更多详情请见论文https://arxiv.org/abs/1904.10509)。
具体来说,它包括以下内容:

View File

@ -8,7 +8,7 @@
参数:
- **vocab_size** (int) - 表示查找表的大小。
- **embedding_size** (int) - 表示查找表中每个嵌入向量的大小。
- **param_init** (Union[Tensor, str, Initializer, numbers.Number] - 表示embedding_table的Initializer。当指定字符串时请参见 `initializer` 类了解字符串的值。默认值:'normal'。
- **param_init** (Union[Tensor, str, Initializer, numbers.Number]) - 表示embedding_table的Initializer。当指定字符串时请参见 `initializer` 类了解字符串的值。默认值:'normal'。
- **parallel_config** (EmbeddingOpParallelConfig) - 表示网络的并行配置。默认值为 `default_embedding_parallel_config` ,表示带有默认参数的 `EmbeddingOpParallelConfig` 实例。
输入:

View File

@ -1351,7 +1351,7 @@ class LinearTransformation(PyTensorOperation):
class MixUp(PyTensorOperation):
"""
Randomly mix up a batch of images together with its labels.
Randomly mix up a batch of numpy.ndarray images together with its labels.
Each image will be multiplied by a random weight lambda generated from the Beta distribution and then added
to another image multiplied by 1 - lambda. The same transformation will be applied to their labels with the
@ -1566,7 +1566,7 @@ class Pad(ImageTensorOperation, PyTensorOperation):
Args:
padding (Union[int, Sequence[int, int], Sequence[int, int, int, int]]): The number of pixels
to pad each border of the image.
to pad each border of the image.
If a single number is provided, it pads all borders with this value.
If a tuple or lists of 2 values are provided, it pads the (left and top)
with the first value and (right and bottom) with the second value.
@ -3023,7 +3023,7 @@ class RandomResizedCropWithBBox(ImageTensorOperation):
size (Union[int, Sequence[int]]): The size of the output image. The size value(s) must be positive.
If size is an integer, a square crop of size (size, size) is returned.
If size is a sequence of length 2, it should be (height, width).
scale (Union[list, tuple] optional): Range (min, max) of respective size of the original
scale (Union[list, tuple], optional): Range (min, max) of respective size of the original
size to be cropped, which must be non-negative (default=(0.08, 1.0)).
ratio (Union[list, tuple], optional): Range (min, max) of aspect ratio to be
cropped, which must be non-negative (default=(3. / 4., 4. / 3.)).
@ -3657,7 +3657,7 @@ class ResizeWithBBox(ImageTensorOperation):
If size is an integer, smaller edge of the image will be resized to this value with
the same image aspect ratio.
If size is a sequence of length 2, it should be (height, width).
interpolation (Inter mode, optional): Image interpolation mode (default=Inter.LINEAR).
interpolation (Inter, optional): Image interpolation mode (default=Inter.LINEAR).
It can be any of [Inter.LINEAR, Inter.NEAREST, Inter.BICUBIC].
- Inter.LINEAR, means interpolation method is bilinear interpolation.

View File

@ -937,13 +937,13 @@ class Sigmoid(Cell):
Sigmoid_function#/media/File:Logistic-curve.svg>`_.
Inputs:
- **x** (Tensor) - The input of Sigmoid with data type of float16 or float32. Tensor of any dimension.
- **input_x** (Tensor) - The input of Sigmoid with data type of float16 or float32. Tensor of any dimension.
Outputs:
Tensor, with the same type and shape as the `x`.
Tensor, with the same type and shape as the `input_x`.
Raises:
TypeError: If dtype of `x` is neither float16 nor float32.
TypeError: If dtype of `input_x` is neither float16 nor float32.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

View File

@ -887,9 +887,9 @@ class Moments(Cell):
Calculate the mean and variance of the input `x` along the specified `axis`.
Args:
axis (Union[int, tuple(int)]): Calculates the mean and variance along the specified axis.
axis (Union[int, tuple(int), None]): Calculates the mean and variance along the specified axis.
When the value is None, it means to calculate the mean and variance of all values of `x`. Default: None.
keep_dims (bool): If True, the calculation result will retain the dimension of `axis`,
keep_dims (Union[bool, None]): If True, the calculation result will retain the dimension of `axis`,
and the dimensions of the mean and variance are the same as the input. If False or None,
the dimension of `axis` will be reduced. Default: None.

View File

@ -542,7 +542,7 @@ class ZeroPad2d(_ConstantPadNd):
Pads the last two dimensions of input tensor with zero.
Args:
padding (union[int, tuple]): The padding size to pad the last two dimensions of input tensor.
padding (Union[int, tuple]): The padding size to pad the last two dimensions of input tensor.
If is int, uses the same padding in boundaries of input's last two dimensions.
If is tuple and length of padding is 4 uses (padding_0, padding_1, padding_2, padding_3) to pad.
If the input is `x`, the size of last dimension of output is :math:`padding\_0 + x.shape[-1] + padding\_1`.

View File

@ -685,7 +685,7 @@ def _check_label_dtype(labels_dtype, cls_name):
class DiceLoss(LossBase):
r"""
The Dice coefficient is a set similarity loss. It is used to calculate the similarity between two samples. The
The Dice coefficient is a set similarity loss, which is used to calculate the similarity between two samples. The
value of the Dice coefficient is 1 when the segmentation result is the best and is 0 when the segmentation result
is the worst. The Dice coefficient indicates the ratio of the area between two objects to the total area.
The function is shown as follows:

View File

@ -514,7 +514,7 @@ class FixedSparseAttention(nn.Cell):
"""
Fixed Sparse Attention Layer.
This function contains the sparse attention primitives used in Sparse Transformers (see paper).
This function contains the sparse attention primitives used in Sparse Transformers (see paper)
`Generating Long Sequences with Sparse Transformers <https://arxiv.org/abs/1904.10509>`_.
Specifically, it includes the following:
1. A faster implementation of normal attention (the upper triangle is not computed, and many operations are fused).

View File

@ -624,8 +624,8 @@ class VocabEmbedding(Cell):
The embedding lookup table from the 0-th dim of the parameter table. When the parallel_config.vocab_emb_dp is
True and in the `AUTO_PARALLEL` mode, the embedding lookup will be trained by the data parallel way, as the
parameters will be repeated on each device. If false, the embedding table will be sharded into n parts at
the 0-th dimension of the embedding table, where the n is the model parallel way determined by the
parallel_config (EmbeddingOpParallelConfig).
the 0-th dimension of the embedding table, where the n is the model parallel way determined by
`parallel_config.model_parallel` (EmbeddingOpParallelConfig).
Note:
When `AUTO_PARALLEL` or `SEMI_AUTO_PARALLEL` mode is enabled, this layer support only 2-d dimension inputs,

View File

@ -66,7 +66,7 @@ class DynamicLossScaleUpdateCell(Cell):
when there is an overflow. And it will be increased by `loss_scale` * `scale_factor` if there is no
overflow for a continuous `scale_window` steps.
`get_update_cell` method of :class:`mindspore.DynamicLossScaleManager` will return this class, it will be called
`get_update_cell` method of :class:`mindspore.amp.DynamicLossScaleManager` will return this class. It will be called
by :class:`mindspore.nn.TrainOneStepWithLossScaleCell` during training to update loss scale.
Args:
@ -165,7 +165,7 @@ class FixedLossScaleUpdateCell(Cell):
"""
Update cell with fixed loss scaling value.
`get_update_cell` method of :class:`mindspore.FixedLossScaleManager` will return this class, it will be called
`get_update_cell` method of :class:`mindspore.amp.FixedLossScaleManager` will return this class, it will be called
by :class:`mindspore.nn.TrainOneStepWithLossScaleCell` during trainning.
Args:

View File

@ -4039,7 +4039,7 @@ def max(x, axis=0, keep_dims=False):
Also see: class: `mindspore.ops.ArgMaxWithValue`.
Args:
x (Tensor) - The input tensor, can be any dimension. Set the shape of input tensor as
x (Tensor): The input tensor, can be any dimension. Set the shape of input tensor as
:math:`(x_1, x_2, ..., x_N)`.
axis (int): The dimension to reduce. Default: 0.
keep_dims (bool): Whether to reduce dimension, if true, the output will keep same dimension with the input,

View File

@ -25,7 +25,7 @@ def print_(*input_x):
It can also be saved in a file by setting the parameter `print_file_path` in `context`.
Once set, the output will be saved in the file specified by print_file_path.
:func:`mindspore.parse_print` can be employed to reload the data.
For more information, please refer to :func:`mindspore.context.set_context` and :func:`mindspore.parse_print`.
For more information, please refer to :func:`mindspore.set_context` and :func:`mindspore.parse_print`.
Note:
In pynative mode, please use python print function.

View File

@ -109,6 +109,7 @@ def _auto_black_list(network, black_list=None):
def auto_mixed_precision(network, amp_level="O0"):
"""
auto mixed precision function.
Args:
network (Cell): Definition of the network.
amp_level (str): Supports ["O0", "O1", "O2", "O3"]. Default: "O0".

View File

@ -47,8 +47,8 @@ class LossScaleManager:
class FixedLossScaleManager(LossScaleManager):
"""
Loss scale(Magnification factor of gradients when mix precision is used) manager with a fixed loss scale value,
inherits from :class:`mindspore.LossScaleManager`.
Loss scale (Magnification factor of gradients when mix precision is used) manager with a fixed loss scale value,
inherits from :class:`mindspore.amp.LossScaleManager`.
Args:
loss_scale (float): Magnification factor of gradients. Note that if `drop_overflow_update` is set to False,
@ -99,7 +99,7 @@ class FixedLossScaleManager(LossScaleManager):
def update_loss_scale(self, overflow):
"""
Update loss scale value. The interface at :class:`mindspore.FixedLossScaleManager` will do nothing.
Update loss scale value. The interface at :class:`mindspore.amp.FixedLossScaleManager` will do nothing.
Args:
overflow (bool): Whether it overflows.
@ -124,7 +124,7 @@ class FixedLossScaleManager(LossScaleManager):
class DynamicLossScaleManager(LossScaleManager):
"""
Loss scale(Magnification factor of gradients when mix precision is used) manager with loss scale dynamically
adjusted, inherits from :class:`mindspore.LossScaleManager`.
adjusted, inherits from :class:`mindspore.amp.LossScaleManager`.
Args:
init_loss_scale (float): Initialize loss scale. Default: 2**24.