forked from mindspore-Ecosystem/mindspore
complete forward and backward of SparseToDense and check of SparseTensorDenseMatmul
This commit is contained in:
parent
ba3c03ed06
commit
0d025010ae
|
@ -19,7 +19,8 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void GatherNdCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
template <typename T>
|
||||
void GatherNdCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
|
||||
input_shapes_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
indices_shapes_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
output_shapes_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
|
@ -56,28 +57,14 @@ void GatherNdCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
|||
}
|
||||
}
|
||||
|
||||
bool GatherNdCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (dtype_ == kNumberTypeInt32) {
|
||||
return LaunchKernel<int32_t>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeInt64) {
|
||||
return LaunchKernel<int64_t>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat32) {
|
||||
return LaunchKernel<float>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat64) {
|
||||
return LaunchKernel<double>(inputs, outputs);
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "Only support int, float, but actual data type is " << TypeIdLabel(dtype_);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool GatherNdCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
|
||||
bool GatherNdCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
auto input_addr = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
auto indices_addr = reinterpret_cast<int *>(inputs[1]->addr);
|
||||
auto output_addr = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
|
||||
//
|
||||
size_t output_dim0 = dims_[0];
|
||||
size_t output_dim1 = dims_[1];
|
||||
size_t indices_dim1 = dims_[2];
|
||||
|
|
|
@ -22,6 +22,7 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class GatherNdCPUKernel : public CPUKernel {
|
||||
public:
|
||||
GatherNdCPUKernel() = default;
|
||||
|
@ -32,9 +33,6 @@ class GatherNdCPUKernel : public CPUKernel {
|
|||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
template <typename T>
|
||||
bool LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
std::vector<size_t> input_shapes_;
|
||||
std::vector<size_t> indices_shapes_;
|
||||
|
@ -47,7 +45,18 @@ class GatherNdCPUKernel : public CPUKernel {
|
|||
TypeId dtype_{kTypeUnknown};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(GatherNd, KernelAttr(), GatherNdCPUKernel);
|
||||
MS_REG_CPU_KERNEL_T(GatherNd, KernelAttr(), GatherNdCPUKernel, bool);
|
||||
MS_REG_CPU_KERNEL_T(GatherNd, KernelAttr(), GatherNdCPUKernel, int8_t);
|
||||
MS_REG_CPU_KERNEL_T(GatherNd, KernelAttr(), GatherNdCPUKernel, int16_t);
|
||||
MS_REG_CPU_KERNEL_T(GatherNd, KernelAttr(), GatherNdCPUKernel, int32_t);
|
||||
MS_REG_CPU_KERNEL_T(GatherNd, KernelAttr(), GatherNdCPUKernel, int64_t);
|
||||
MS_REG_CPU_KERNEL_T(GatherNd, KernelAttr(), GatherNdCPUKernel, uint8_t);
|
||||
MS_REG_CPU_KERNEL_T(GatherNd, KernelAttr(), GatherNdCPUKernel, uint16_t);
|
||||
MS_REG_CPU_KERNEL_T(GatherNd, KernelAttr(), GatherNdCPUKernel, uint32_t);
|
||||
MS_REG_CPU_KERNEL_T(GatherNd, KernelAttr(), GatherNdCPUKernel, uint64_t);
|
||||
MS_REG_CPU_KERNEL_T(GatherNd, KernelAttr(), GatherNdCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(GatherNd, KernelAttr(), GatherNdCPUKernel, double);
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -24,13 +24,21 @@ template <typename I, typename T>
|
|||
void SparseTensorDenseMatmulCPUKernel<I, T>::InitKernel(const CNodePtr &kernel_node) {
|
||||
adj_st_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, ADJ_ST);
|
||||
adj_dt_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, ADJ_dT);
|
||||
output_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
output_size_ = std::accumulate(output_shape_.begin(), output_shape_.end(), size_t(1), std::multiplies<size_t>());
|
||||
auto values_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
if (values_shape.size() != 1) {
|
||||
MS_LOG(EXCEPTION) << "SparseTensorDenseMatmul requires the values must be a 1-D tensor, but got "
|
||||
<< values_shape.size() << "-D";
|
||||
auto indices_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
if (indices_shape.size() != 2 && indices_shape[1] != 2) {
|
||||
MS_LOG(EXCEPTION)
|
||||
<< "SparseTensorDenseMatmul requires 'indices' should be a 2-D Tensor and the second dimension length "
|
||||
"should be 2, but got 'indices' shape: "
|
||||
<< indices_shape;
|
||||
}
|
||||
auto values_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
if (values_shape.size() != 1 || values_shape[0] != indices_shape[0]) {
|
||||
MS_LOG(EXCEPTION)
|
||||
<< "SparseTensorDenseMatmul requires 'value's should be a 1-D Tensor and the first dimension length should be "
|
||||
"equal to the first dimension length of 'indices', but got 'values' shape: "
|
||||
<< values_shape;
|
||||
}
|
||||
output_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
values_size_ = values_shape[0];
|
||||
b_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 3);
|
||||
}
|
||||
|
@ -43,21 +51,20 @@ bool SparseTensorDenseMatmulCPUKernel<I, T>::Launch(const std::vector<kernel::Ad
|
|||
auto a_values = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
auto b = reinterpret_cast<T *>(inputs[3]->addr);
|
||||
auto out = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
memset(out, 0, output_size_);
|
||||
const size_t output_length = outputs[0]->size / sizeof(T);
|
||||
memset(out, 0, output_length);
|
||||
|
||||
const size_t out_dim_0 = output_shape_[0];
|
||||
const size_t out_dim_1 = output_shape_[1];
|
||||
const size_t b_dim_0 = b_shape_[0];
|
||||
const size_t b_dim_1 = b_shape_[1];
|
||||
const size_t same_dim = adj_dt_ ? b_dim_1 : b_dim_0;
|
||||
|
||||
for (size_t i = 0; i < values_size_; ++i) {
|
||||
const int row = adj_st_ ? a_indices[i * 2 + 1] : a_indices[i * 2];
|
||||
const int col = adj_st_ ? a_indices[i * 2] : a_indices[i * 2 + 1];
|
||||
if (row >= SizeToInt(out_dim_0) || row < 0 || col >= SizeToInt(same_dim) || col < 0) {
|
||||
MS_LOG(ERROR) << "The indices including out of bounds index, row range: [0, " << out_dim_0 << "), col range: [0, "
|
||||
<< same_dim << "), but got row: " << row << ", col: " << col;
|
||||
return false;
|
||||
MS_EXCEPTION(ValueError) << "The indices including out of bounds index, row range: [0, " << out_dim_0
|
||||
<< "), col range: [0, " << same_dim << "), but got row: " << row << ", col: " << col;
|
||||
}
|
||||
|
||||
for (size_t n = 0; n < out_dim_1; ++n) {
|
||||
|
|
|
@ -42,68 +42,6 @@ class SparseTensorDenseMatmulCPUKernel : public CPUKernel {
|
|||
bool adj_st_{false};
|
||||
bool adj_dt_{false};
|
||||
};
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddOutputAttr(kNumberTypeBool),
|
||||
SparseTensorDenseMatmulCPUKernel, int32_t, bool);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt8)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt8)
|
||||
.AddOutputAttr(kNumberTypeUInt8),
|
||||
SparseTensorDenseMatmulCPUKernel, int32_t, uint8_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt16)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt16)
|
||||
.AddOutputAttr(kNumberTypeUInt16),
|
||||
SparseTensorDenseMatmulCPUKernel, int32_t, uint16_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt32)
|
||||
.AddOutputAttr(kNumberTypeUInt32),
|
||||
SparseTensorDenseMatmulCPUKernel, int32_t, uint32_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt64)
|
||||
.AddOutputAttr(kNumberTypeUInt64),
|
||||
SparseTensorDenseMatmulCPUKernel, int32_t, uint64_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt8)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt8)
|
||||
.AddOutputAttr(kNumberTypeInt8),
|
||||
SparseTensorDenseMatmulCPUKernel, int32_t, int8_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt16)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt16)
|
||||
.AddOutputAttr(kNumberTypeInt16),
|
||||
SparseTensorDenseMatmulCPUKernel, int32_t, int16_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
|
@ -141,105 +79,6 @@ MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
|||
.AddOutputAttr(kNumberTypeFloat64),
|
||||
SparseTensorDenseMatmulCPUKernel, int32_t, double);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddOutputAttr(kNumberTypeBool),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, bool);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeUInt8)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt8)
|
||||
.AddOutputAttr(kNumberTypeUInt8),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, uint8_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeUInt16)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt16)
|
||||
.AddOutputAttr(kNumberTypeUInt16),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, uint16_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeUInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt32)
|
||||
.AddOutputAttr(kNumberTypeUInt32),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, uint32_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeUInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt64)
|
||||
.AddOutputAttr(kNumberTypeUInt64),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, uint64_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt8)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt8)
|
||||
.AddOutputAttr(kNumberTypeInt8),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, int8_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt16)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt16)
|
||||
.AddOutputAttr(kNumberTypeInt16),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, int16_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, int32_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, int64_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, float);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddOutputAttr(kNumberTypeFloat64),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, double);
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RMSPROP_CPU_KERNEL_H_
|
||||
|
|
|
@ -23,24 +23,20 @@ namespace kernel {
|
|||
template <typename I, typename T>
|
||||
void SparseToDenseCPUKernel<I, T>::InitKernel(const CNodePtr &kernel_node) {
|
||||
CheckParam(kernel_node);
|
||||
indices_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
values_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
dense_shape_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2);
|
||||
auto indices_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
if (indices_shape.size() != 2) {
|
||||
MS_LOG(EXCEPTION) << "SparseToDense requires 'indices' should be a 2-D Tensor, but got " << indices_shape.size()
|
||||
<< "-D";
|
||||
}
|
||||
auto values_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
if (values_shape.size() != 1 || values_shape[0] != indices_shape[0]) {
|
||||
MS_LOG(EXCEPTION)
|
||||
<< "SparseToDense requires 'values' should be a 1-D Tensor and the first dimension length should be "
|
||||
"equal to the 'indices' first dimension length, but got 'values' shape: "
|
||||
<< values_shape;
|
||||
}
|
||||
values_size_ = values_shape[0];
|
||||
output_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
if (!indices_shape_.size() || !values_shape_.size() || !output_shape_.size()) {
|
||||
MS_LOG(EXCEPTION) << "Input NULL";
|
||||
}
|
||||
if (indices_shape_.size() > 2 || indices_shape_[0] != values_shape_[0]) {
|
||||
MS_LOG(EXCEPTION) << "Input Error";
|
||||
}
|
||||
}
|
||||
|
||||
size_t DenseGetTensorLen(const std::vector<size_t> &shape) {
|
||||
size_t len = 1;
|
||||
for (size_t i = 0; i < shape.size(); i++) {
|
||||
len *= shape[i];
|
||||
}
|
||||
return len;
|
||||
}
|
||||
|
||||
template <typename I, typename T>
|
||||
|
@ -50,35 +46,25 @@ bool SparseToDenseCPUKernel<I, T>::Launch(const std::vector<kernel::AddressPtr>
|
|||
auto indices_addr = reinterpret_cast<I *>(inputs[0]->addr);
|
||||
auto values_addr = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
auto output_addr = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
const size_t output_length = outputs[0]->size / sizeof(T);
|
||||
memset(output_addr, 0, output_length);
|
||||
|
||||
size_t output_len = DenseGetTensorLen(output_shape_);
|
||||
memset(output_addr, 0, output_len * sizeof(T));
|
||||
std::vector<size_t> cargo(output_shape_.size(), 0);
|
||||
|
||||
size_t i = output_shape_.size() - 1;
|
||||
switch (indices_shape_.size()) {
|
||||
case 1:
|
||||
for (i = 0; i < indices_shape_[0]; i++) {
|
||||
output_addr[indices_addr[i]] = values_addr[i];
|
||||
size_t rank = output_shape_.size();
|
||||
for (size_t i = 0; i < values_size_; ++i) {
|
||||
size_t out_index = 0;
|
||||
for (size_t j = 0; j < rank; j++) {
|
||||
int index = indices_addr[i * rank + j];
|
||||
if (index >= SizeToInt(output_shape_[j]) || index < 0) {
|
||||
MS_EXCEPTION(ValueError) << "The " << i << "th value in " << j << "th dimension index: " << index
|
||||
<< " out of bounds: [0, " << output_shape_[j] << ")";
|
||||
}
|
||||
break;
|
||||
|
||||
case 2:
|
||||
cargo[i] = 1;
|
||||
for (; i >= 1; i--) {
|
||||
cargo[i - 1] = cargo[i] * output_shape_[i];
|
||||
size_t count = 1;
|
||||
for (size_t k = j + 1; k < rank; k++) {
|
||||
count *= output_shape_[k];
|
||||
}
|
||||
for (i = 0; i < indices_shape_[0]; i++) {
|
||||
size_t out_index = 0;
|
||||
for (size_t j = 0; j < indices_shape_[1]; j++) {
|
||||
out_index += (*(indices_addr + i * indices_shape_[1] + j)) * cargo[j];
|
||||
}
|
||||
output_addr[out_index] = values_addr[i];
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
out_index += SizeToInt(index) * count;
|
||||
}
|
||||
output_addr[out_index] = values_addr[i];
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
@ -87,11 +73,11 @@ template <typename I, typename T>
|
|||
void SparseToDenseCPUKernel<I, T>::CheckParam(const CNodePtr &kernel_node) {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 3) {
|
||||
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but SparseToDenseCPUKernel needs 3 input.";
|
||||
MS_LOG(EXCEPTION) << "SparseToDense needs 3 inputs, but got " << input_num;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but SparseToDenseCPUKernel needs 1 output.";
|
||||
MS_LOG(EXCEPTION) << "SparseToDense should have 2 outputs, but got " << output_num;
|
||||
}
|
||||
}
|
||||
} // namespace kernel
|
||||
|
|
|
@ -37,19 +37,17 @@ class SparseToDenseCPUKernel : public CPUKernel {
|
|||
|
||||
private:
|
||||
void CheckParam(const CNodePtr &kernel_node);
|
||||
std::vector<size_t> indices_shape_;
|
||||
std::vector<size_t> values_shape_;
|
||||
std::vector<size_t> dense_shape_shape_;
|
||||
std::vector<size_t> output_shape_;
|
||||
size_t values_size_{0};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
SparseToDenseCPUKernel, int32_t, int32_t);
|
||||
.AddOutputAttr(kNumberTypeBool),
|
||||
SparseToDenseCPUKernel, int32_t, bool);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
|
@ -59,14 +57,6 @@ MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
|||
.AddOutputAttr(kNumberTypeInt8),
|
||||
SparseToDenseCPUKernel, int32_t, int8_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt8)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeUInt8),
|
||||
SparseToDenseCPUKernel, int32_t, uint8_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
|
@ -78,10 +68,10 @@ MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
|||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt16)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeUInt16),
|
||||
SparseToDenseCPUKernel, int32_t, uint16_t);
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
SparseToDenseCPUKernel, int32_t, int32_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
|
@ -91,6 +81,38 @@ MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
|||
.AddOutputAttr(kNumberTypeInt64),
|
||||
SparseToDenseCPUKernel, int32_t, int64_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt8)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeUInt8),
|
||||
SparseToDenseCPUKernel, int32_t, uint8_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt16)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeUInt16),
|
||||
SparseToDenseCPUKernel, int32_t, uint16_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeUInt32),
|
||||
SparseToDenseCPUKernel, int32_t, uint32_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeUInt64),
|
||||
SparseToDenseCPUKernel, int32_t, uint64_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
|
@ -102,9 +124,9 @@ MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
|||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeFloat)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeFloat),
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
SparseToDenseCPUKernel, int32_t, float);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
|
@ -115,93 +137,6 @@ MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
|||
.AddOutputAttr(kNumberTypeFloat64),
|
||||
SparseToDenseCPUKernel, int32_t, double);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeBool),
|
||||
SparseToDenseCPUKernel, int32_t, bool);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
SparseToDenseCPUKernel, int64_t, int32_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64),
|
||||
SparseToDenseCPUKernel, int64_t, int64_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt8)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt8),
|
||||
SparseToDenseCPUKernel, int64_t, int8_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeUInt8)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeUInt8),
|
||||
SparseToDenseCPUKernel, int64_t, uint8_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt16)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt16),
|
||||
SparseToDenseCPUKernel, int64_t, int16_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeUInt16)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeUInt16),
|
||||
SparseToDenseCPUKernel, int64_t, uint16_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
SparseToDenseCPUKernel, int64_t, float16);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeFloat)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat),
|
||||
SparseToDenseCPUKernel, int64_t, float);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat64),
|
||||
SparseToDenseCPUKernel, int64_t, double);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeBool),
|
||||
SparseToDenseCPUKernel, int64_t, bool);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSETODENSE_CPU_KERNEL_H_
|
||||
|
|
|
@ -19,19 +19,19 @@ from ..cell import Cell
|
|||
|
||||
class SparseToDense(Cell):
|
||||
"""
|
||||
Converts a sparse representation into a dense tensor.
|
||||
Converts a sparse tensor into dense.
|
||||
|
||||
Not yet supported by any backend at the moment.
|
||||
|
||||
Inputs:
|
||||
sparse_tensor (SparseTensor): the sparse tensor to convert.
|
||||
- **sparse_tensor** (SparseTensor): the sparse tensor to convert.
|
||||
|
||||
Outputs:
|
||||
Tensor, the tensor converted.
|
||||
Tensor, converted from sparse tensor.
|
||||
|
||||
Raises:
|
||||
TypeError: If `sparse_tensor.indices` is neither int32 nor int64.
|
||||
TypeError: If 'sparse_tensor.values' is not a Number.
|
||||
TypeError: If the`sparse_tensor.indices` data type is neither int32 nor int64.
|
||||
TypeError: If the 'sparse_tensor.values' data type is not a Number or bool.
|
||||
TypeError: If 'sparse_tensor.dense_shape' is not a tuple.
|
||||
|
||||
Supported Platforms:
|
||||
|
@ -52,6 +52,7 @@ class SparseToDense(Cell):
|
|||
[0 0 2 0]
|
||||
[0 0 0 0]]
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super(SparseToDense, self).__init__()
|
||||
self.sparse_to_dense = P.SparseToDense()
|
||||
|
@ -61,59 +62,65 @@ class SparseToDense(Cell):
|
|||
sparse_tensor.values,
|
||||
sparse_tensor.dense_shape)
|
||||
|
||||
|
||||
class SparseTensorDenseMatmul(Cell):
|
||||
"""
|
||||
Multiply SparseTensor(of rank 2) "A" by dense tensor.
|
||||
The shape of sparse tensor is :math:`(N, C)`, and the shape of dense tensor is :math:`(C, M)`, then the shape of
|
||||
output tensor is :math:`(N, M)`.The output data type is the same as "values".
|
||||
Multiplies sparse matrix `a` and dense matrix `b`.
|
||||
The rank of sparse matrix and dense matrix must equal to `2`.
|
||||
|
||||
Args:
|
||||
- *adjoint_st** (Bool) - If true, SparseTensor is transposed before multiplication. Default: False.
|
||||
- *adjoint_dt** (Bool) - If true, DenseTensor is transposed before multiplication. Default: False.
|
||||
- *adjoint_st** (bool) - If true, sparse tensor is transposed before multiplication. Default: False.
|
||||
- *adjoint_dt** (bool) - If true, dense tensor is transposed before multiplication. Default: False.
|
||||
|
||||
Inputs:
|
||||
- **indices** (Tensor) - A 2D tensor with shape [N, rank], containing the indices of the nonzero values. The
|
||||
indices of sparse representation, support int32/int64.
|
||||
- **values** (Tensor) - A 1D tensor with shape [N] containing all nonzero values. Values corresponding to
|
||||
each row of indices.
|
||||
- **dense_shape** (tuple) - A 1D tuple with shape (N, M), specifying the shape of the tensor. An int tuple
|
||||
which specifies the shape of dense tensor. The dense_shape is : math:`(N, C)`. If `adjoint_st` is True,
|
||||
its shape must be :math:`(N, C)` after transpose.
|
||||
- **dense** (Tensor) - Dense Matrix. The shape of the tensor is :math:`(C, M)`. If
|
||||
`adjoint_dt` is True, its shape must be :math:`(C, M)` after transpose.
|
||||
- **indices** (Tensor) - A 2-D Tensor, represents the position of the element in the sparse tensor.
|
||||
Support int32, int64, each element value should be non-negative. The shape is :math:`(n, 2)`.
|
||||
- **values** (Tensor) - A 1-D Tensor, represents the value corresponding to the position in the `indices`.
|
||||
Support float16, float32, float64, int32, int64. The shape should be :math:`(n,).
|
||||
- **sparse_shape** (tuple) - A positive int tuple which specifies the shape of sparse tensor,
|
||||
should have 2 elements, represent sparse tensor shape is :math:`(N, C)`.
|
||||
- **dense** (Tensor) - A 2-D Tensor, the dtype is same as `values`.
|
||||
If `adjoint_st` is False and `adjoint_dt` is False, the shape must be :math:`(C, M)`.
|
||||
If `adjoint_st` is False and `adjoint_dt` is True, the shape must be :math:`(M, C)`.
|
||||
If `adjoint_st` is True and `adjoint_dt` is False, the shape must be :math:`(N, M)`.
|
||||
If `adjoint_st` is True and `adjoint_dt` is True, the shape must be :math:`(M, N)`.
|
||||
|
||||
Returns:
|
||||
Tensor, the shape of tensor is :math:`(N, M)`.The output data type is the same as "values".
|
||||
Outputs:
|
||||
Tensor, the dtype is the same as `values`.
|
||||
If `adjoint_st` is False, the shape is :math:`(N, M)`.
|
||||
If `adjoint_st` is True, the shape is :math:`(C, M)`.
|
||||
|
||||
Raises:
|
||||
TypeError: If the type of `adjoint_st` or `adjoint_dt` is not bool, or the dtype of `indices`,
|
||||
dtype of `values` and dtype of `dense` don't meet the parameter description.
|
||||
ValueError: If `sparse_shape`, shape of `indices, shape of `values`,
|
||||
and shape of `dense` don't meet the parameter description.
|
||||
|
||||
Supported Platforms:
|
||||
``CPU``
|
||||
|
||||
Examples:
|
||||
>>> class NetSparseDenseMatmul(nn.Cell):
|
||||
... def __init__(self):
|
||||
... super(NetSparseDenseMatmul, self).__init__()
|
||||
... self.matmul = nn.SparseTensorDenseMatmul()
|
||||
...
|
||||
... def construct(self, indices, values, dens_shape, dt):
|
||||
... return self.matmul(indices, values, dens_shape, dt)
|
||||
...
|
||||
>>> import mindspore as ms
|
||||
>>> from mindspore import Tensor
|
||||
>>> from mindspore import nn
|
||||
>>> indices = Tensor([[0, 1], [1, 2]], dtype=ms.int32)
|
||||
>>> values = Tensor([1, 2], dtype=ms.float32)
|
||||
>>> dense_shape = (3, 4)
|
||||
>>> dsMatrix = Tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype=ms.float32)
|
||||
>>> test_SparseDenseMatmul = NetSparseDenseMatmul()
|
||||
>>> out = test_SparseDenseMatmul(indices, values, dense_shape, dsMatrix)
|
||||
>>> sparse_shape = (3, 4)
|
||||
>>> dense = Tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype=ms.float32)
|
||||
>>> sparse_dense_matmul = nn.SparseTensorDenseMatmul()
|
||||
>>> out = sparse_dense_matmul(indices, values, sparse_shape, dense)
|
||||
>>> print(out)
|
||||
[[2 2]
|
||||
[0 6]
|
||||
[6 0]]
|
||||
"""
|
||||
|
||||
def __init__(self, adjoint_st=False, adjoint_dt=False):
|
||||
"""Initialize SparseTensorDenseMatmul"""
|
||||
super(SparseTensorDenseMatmul, self).__init__()
|
||||
self.adjst = adjoint_st
|
||||
self.adjdt = adjoint_dt
|
||||
self.matmul = P.SparseTensorDenseMatmul(adjoint_st=self.adjst, adjoint_dt=self.adjdt)
|
||||
self.adj_st = adjoint_st
|
||||
self.adj_dt = adjoint_dt
|
||||
self.sparse_dense_matmul = P.SparseTensorDenseMatmul(adjoint_st=self.adj_st, adjoint_dt=self.adj_dt)
|
||||
|
||||
def construct(self, indices, values, dense_shape, dense):
|
||||
return self.matmul(indices, values, dense_shape, dense)
|
||||
def construct(self, indices, values, sparse_shape, dense):
|
||||
return self.sparse_dense_matmul(indices, values, sparse_shape, dense)
|
||||
|
|
|
@ -54,7 +54,7 @@ def get_bprop_sparse_to_dense(self):
|
|||
"""Generate bprop for SparseToDense"""
|
||||
|
||||
def bprop(indices, values, dense_shape, out, dout):
|
||||
return zeros_like(indices), dout, zeros_like(dense_shape)
|
||||
return zeros_like(indices), F.gather_nd(dout, indices), zeros_like(dense_shape)
|
||||
|
||||
return bprop
|
||||
|
||||
|
|
|
@ -20,10 +20,17 @@ gather_nd_op_info = CpuRegOp("GatherNd") \
|
|||
.input(0, "x1", "required") \
|
||||
.input(1, "x2", "required") \
|
||||
.output(0, "y", "required") \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.I32_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I32_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I32_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I32_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I32_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I32_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.F64_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
|
|
|
@ -20,16 +20,16 @@ gather_v2_op_info = CpuRegOp("Gather") \
|
|||
.input(0, "x", "required") \
|
||||
.input(1, "indices", "required") \
|
||||
.output(0, "y", "required") \
|
||||
.dtype_format(DataType.U8_Default, DataType.I32_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I32_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I32_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I32_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I32_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I32_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I32_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I32_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I32_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I32_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.I32_Default, DataType.BOOL_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
|
|
@ -28,12 +28,19 @@ class SparseToDense(PrimitiveWithInfer):
|
|||
Converts a sparse representation into a dense tensor.
|
||||
|
||||
Inputs:
|
||||
- **indices** (Tensor) - The indices of sparse representation.
|
||||
- **values** (Tensor) - Values corresponding to each row of indices.
|
||||
- **dense_shape** (tuple) - An int tuple which specifies the shape of dense tensor.
|
||||
- **indices** (Tensor) - A 2-D Tensor, represents the position of the element in the sparse tensor.
|
||||
Support int32, int64, each element value should be a non-negative int number. The shape is :math:`(n, 2)`.
|
||||
- **values** (Tensor) - A 1-D Tensor, represents the value corresponding to the position in the `indices`.
|
||||
The shape should be :math:`(n,).
|
||||
- **sparse_shape** (tuple(int)) - A positive int tuple which specifies the shape of sparse tensor,
|
||||
should have 2 elements, represent sparse tensor shape is :math:`(N, C)`.
|
||||
|
||||
Returns:
|
||||
Tensor, the shape of tensor is `dense_shape`.
|
||||
Tensor, converted from sparse tensor. The dtype is same as `values`, and the shape is `sparse_shape`.
|
||||
|
||||
Raises:
|
||||
TypeError: If the dtype of `indices` is neither int32 nor int64.
|
||||
ValueError: If `sparse_shape`, shape of `indices and shape of `values` don't meet the parameter description.
|
||||
|
||||
Supported Platforms:
|
||||
``CPU``
|
||||
|
@ -41,8 +48,13 @@ class SparseToDense(PrimitiveWithInfer):
|
|||
Examples:
|
||||
>>> indices = Tensor([[0, 1], [1, 2]])
|
||||
>>> values = Tensor([1, 2], dtype=ms.float32)
|
||||
>>> dense_shape = (3, 4)
|
||||
>>> out = ops.SparseToDense()(indices, values, dense_shape)
|
||||
>>> sparse_shape = (3, 4)
|
||||
>>> sparse_to_dense = ops.SparseToDense()
|
||||
>>> out = sparse_to_dense(indices, values, sparse_shape)
|
||||
>>> print(out)
|
||||
[[0 1 0 0]
|
||||
[0 0 2 0]
|
||||
[0 0 0 0]]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -50,10 +62,28 @@ class SparseToDense(PrimitiveWithInfer):
|
|||
"""Initialize index_select"""
|
||||
self.init_prim_io_names(inputs=['indices', 'values', 'dense_shape'], outputs=['output'])
|
||||
|
||||
def __infer__(self, indices, values, dense_shape):
|
||||
validator.check_subclass("indices", indices['dtype'], mstype.tensor, self.name)
|
||||
validator.check_subclass("values", values['dtype'], mstype.tensor, self.name)
|
||||
out = {'shape': dense_shape['value'],
|
||||
def __infer__(self, indices, values, sparse_shape):
|
||||
validator.check_tensor_dtype_valid('indices', indices['dtype'], [mstype.int32, mstype.int64], self.name)
|
||||
validator.check_tensor_dtype_valid('values', values['dtype'], mstype.number_type + (mstype.bool_,), self.name)
|
||||
indices_shape = indices['shape']
|
||||
if len(indices_shape) != 2:
|
||||
raise ValueError("SparseToDense requires 'indices' must be a 2-D Tensor, "
|
||||
f"but got 'indices' shape: {indices_shape}")
|
||||
values_shape = values['shape']
|
||||
if len(values_shape) != 1 or values_shape[0] != indices_shape[0]:
|
||||
raise ValueError("SparseToDense requires 'values' must be a 1-D Tensor and "
|
||||
"the first dimension length must be equal to the first dimension length of 'indices', "
|
||||
f"but got 'indices' shape: {indices_shape}, 'values' shape: {values_shape}")
|
||||
sparse_shape_v = sparse_shape['value']
|
||||
for i in sparse_shape_v:
|
||||
if isinstance(i, bool) or not isinstance(i, int) or i <= 0:
|
||||
raise ValueError("SparseToDense requires all elements in 'sparse_shape' must be "
|
||||
f"positive int number, but got 'sparse_shape': {sparse_shape_v}")
|
||||
if len(sparse_shape_v) != indices_shape[1]:
|
||||
raise ValueError("SparseToDense requires the 'sparse_shape' length should be equal to the 'indices' "
|
||||
"second dimension length, but got the 'indices' second dimension length: "
|
||||
f"{indices_shape[1]}, 'sparse_shape' length: {len(sparse_shape_v)}")
|
||||
out = {'shape': sparse_shape['value'],
|
||||
'dtype': values['dtype'],
|
||||
'value': None}
|
||||
return out
|
||||
|
@ -61,31 +91,36 @@ class SparseToDense(PrimitiveWithInfer):
|
|||
|
||||
class SparseTensorDenseMatmul(PrimitiveWithInfer):
|
||||
"""
|
||||
Multiply SparseTensor(of rank 2) "A" by dense tensor.
|
||||
The shape of sparse tensor is :math:`(N, C)`, and the shape of dense tensor is :math:`(C, M)`, then the shape of
|
||||
output tensor is :math:`(N, M)`.The output data type is the same as "values".
|
||||
tensors.
|
||||
Multiplies sparse matrix `A` by dense matrix `B`.
|
||||
The rank of sparse matrix and dense matrix must equal to `2`.
|
||||
|
||||
Args:
|
||||
- *adjoint_st** (Bool) - If true, SparseTensor is transposed before multiplication. Default: False.
|
||||
- *adjoint_dt** (Bool) - If true, DenseTensor is transposed before multiplication. Default: False.
|
||||
- *adjoint_st** (bool) - If true, sparse tensor is transposed before multiplication. Default: False.
|
||||
- *adjoint_dt** (bool) - If true, dense tensor is transposed before multiplication. Default: False.
|
||||
|
||||
Inputs:
|
||||
- **indices** (Tensor) - The indices of sparse representation, support int32/int64.
|
||||
- **values** (Tensor) - Values corresponding to each row of indices.
|
||||
- **dense_shape** (tuple) - An int tuple which specifies the shape of dense tensor. The dense_shape is :
|
||||
math:`(N, C)`. If `adjoint_st` is True, its shape must be :math:`(N, C)` after transpose.
|
||||
- **dense** (Tensor) - Dense Matrix. The shape of the tensor is :math:`(C, M)`. If
|
||||
`adjoint_dt` is True, its shape must be :math:`(C, M)` after transpose.
|
||||
- **indices** (Tensor) - A 2-D Tensor, represents the position of the element in the sparse tensor.
|
||||
Support int32, int64, each element value should be a non-negative int number. The shape is :math:`(n, 2)`.
|
||||
- **values** (Tensor) - A 1-D Tensor, represents the value corresponding to the position in the `indices`.
|
||||
Support float16, float32, float64, int32, int64. The shape should be :math:`(n,).
|
||||
- **sparse_shape** (tuple(int)) - A positive int tuple which specifies the shape of sparse tensor,
|
||||
should have 2 elements, represent sparse tensor shape is :math:`(N, C)`.
|
||||
- **dense** (Tensor) - A 2-D Tensor, the dtype is same as `values`.
|
||||
If `adjoint_st` is False and `adjoint_dt` is False, the shape must be :math:`(C, M)`.
|
||||
If `adjoint_st` is False and `adjoint_dt` is True, the shape must be :math:`(M, C)`.
|
||||
If `adjoint_st` is True and `adjoint_dt` is False, the shape must be :math:`(N, M)`.
|
||||
If `adjoint_st` is True and `adjoint_dt` is True, the shape must be :math:`(M, N)`.
|
||||
|
||||
Outputs:
|
||||
Tensor, the shape of tensor is :math:`(N, M)`. The output data type is the same as "values".
|
||||
Tensor, the dtype is the same as `values`.
|
||||
If `adjoint_st` is False, the shape is :math:`(N, M)`.
|
||||
If `adjoint_st` is True, the shape is :math:`(C, M)`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `indices` is neither int32 nor int64.
|
||||
TypeError: If 'values' is not boot, uint8-64, int8-64, float16-64.
|
||||
TypeError: If 'dense' is not boot, uint8-64, int8-64, float16-64.
|
||||
ValueError: If length of shape of `SparseTensor` or `DenseTensor` is not equal to 2
|
||||
TypeError: If the type of `adjoint_st` or `adjoint_dt` is not bool, or the dtype of `indices`,
|
||||
dtype of `values` and dtype of `dense` don't meet the parameter description.
|
||||
ValueError: If `sparse_shape`, shape of `indices, shape of `values`,
|
||||
and shape of `dense` don't meet the parameter description.
|
||||
|
||||
Supported Platforms:
|
||||
``CPU``
|
||||
|
@ -93,9 +128,14 @@ class SparseTensorDenseMatmul(PrimitiveWithInfer):
|
|||
Examples:
|
||||
>>> indices = Tensor([[0, 1], [1, 2]], dtype=ms.int32)
|
||||
>>> values = Tensor([1, 2], dtype=ms.float32)
|
||||
>>> dense_shape = (3, 4)
|
||||
>>> dsMatrix = Tensor([[1,1], [2,2], [3,3 ], [4, 4]], dtype=ms.float32)
|
||||
>>> out = ops.SparseTensorDenseMatmul(indices, values, dense_shape, dsMatrix)
|
||||
>>> sparse_shape = (3, 4)
|
||||
>>> dense = Tensor([[1,1], [2,2], [3,3 ], [4, 4]], dtype=ms.float32)
|
||||
>>> sparse_dense_matmul = ops.SparseTensorDenseMatmul()
|
||||
>>> out = sparse_dense_matmul(indices, values, sparse_shape, dense)
|
||||
>>> print(out)
|
||||
[[2 2]
|
||||
[0 6]
|
||||
[6 0]]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -103,27 +143,40 @@ class SparseTensorDenseMatmul(PrimitiveWithInfer):
|
|||
"""Initialize SparseTensorDenseMatmul"""
|
||||
self.adjoint_st = adjoint_st
|
||||
self.adjoint_dt = adjoint_dt
|
||||
self.init_prim_io_names(inputs=['indices', 'values', 'dense_shape', 'dense'],
|
||||
self.init_prim_io_names(inputs=['indices', 'values', 'sparse_shape', 'dense'],
|
||||
outputs=['output'])
|
||||
self.add_prim_attr('adjoint_st', self.adjoint_st)
|
||||
self.add_prim_attr('adjoint_dt', self.adjoint_dt)
|
||||
validator.check_value_type("adjoint_st", adjoint_st, [bool], self.name)
|
||||
validator.check_value_type("adjoint_dt", adjoint_dt, [bool], self.name)
|
||||
|
||||
def __infer__(self, indices, values, dense_shape, dense):
|
||||
def __infer__(self, indices, values, sparse_shape, dense):
|
||||
validator.check_tensor_dtype_valid('indices', indices['dtype'], [mstype.int32, mstype.int64], self.name)
|
||||
valid_types = mstype.number_type + (mstype.bool_,)
|
||||
valid_types = (mstype.float16, mstype.float32, mstype.float64, mstype.int32, mstype.int64)
|
||||
args = {'values': values['dtype'], 'dense': dense['dtype']}
|
||||
validator.check_tensors_dtypes_same_and_valid(args, valid_types, self.name)
|
||||
a_shape = dense_shape['value'][::-1] if self.adjoint_st else dense_shape['value']
|
||||
indices_shape = indices['shape']
|
||||
if len(indices_shape) != 2 or indices_shape[1] != 2:
|
||||
raise ValueError("SparseTensorDenseMatmul requires 'indices' must be a 2-D Tensor and "
|
||||
f"the second dimension length must be 2, but got 'indices' shape: {indices_shape}")
|
||||
values_shape = values['shape']
|
||||
if len(values_shape) != 1 or values_shape[0] != indices_shape[0]:
|
||||
raise ValueError("SparseTensorDenseMatmul requires 'value's must be a 1-D Tensor and "
|
||||
f"the first dimension length must be equal to the first dimension length of 'indices', "
|
||||
f"but got 'indices' shape: {indices_shape}, 'values' shape: {values_shape}")
|
||||
a_shape = sparse_shape['value'][::-1] if self.adjoint_st else sparse_shape['value']
|
||||
b_shape = dense['shape'][::-1] if self.adjoint_dt else dense['shape']
|
||||
for i in a_shape:
|
||||
if isinstance(i, bool) or not isinstance(i, int) or i <= 0:
|
||||
raise ValueError("SparseTensorDenseMatmul requires all elements in 'sparse_shape' must be "
|
||||
f"positive int number, but got sparse shape: {a_shape}")
|
||||
if len(a_shape) != 2 or len(b_shape) != 2:
|
||||
raise ValueError('SparseTensorDenseMatmul requires SparseTensor and DenseTensor have the same dimension'
|
||||
+ f'and equal to 2, while SparseTensor dim is ({len(a_shape)}) and DenseTensor dim is '
|
||||
+ f'({len(b_shape)}).')
|
||||
raise ValueError("SparseTensorDenseMatmul requires both the 'sparse_shape' length and the dense tensor "
|
||||
f"rank should be equal to 2, but got 'sparse_shape' length: {len(a_shape)}, "
|
||||
f"dense tensor rank: {len(b_shape)}")
|
||||
if a_shape[1] != b_shape[0]:
|
||||
raise ValueError('SparseTensorDenseMatmul requires SparseTensor dim_1 should be equal to DenseTensor dim_0,'
|
||||
f'but got SparseTensor dim_1: {a_shape[1]}, DenseTensor dim_0: {b_shape[0]}')
|
||||
raise ValueError(f"The sparse tensor shape: {a_shape} and the dense tensor shape: {b_shape} "
|
||||
f"don't meet the condition for matmul")
|
||||
out_shape = [a_shape[0], b_shape[1]]
|
||||
out = {'shape': tuple(out_shape),
|
||||
'dtype': values['dtype'],
|
||||
|
|
|
@ -54,10 +54,10 @@ def judge_result_correct(result, expect):
|
|||
@pytest.mark.env_onecard
|
||||
def test_sparse_tensor_dense_matmul_no_transpose():
|
||||
indices_np = np.array([[0, 0], [1, 1], [2, 2], [2, 3]], np.int64)
|
||||
values_np = np.array([2, 3, 4, 5], np.float32)
|
||||
values_np = np.array([2, 3, 4, 5], np.float16)
|
||||
dense_shape = (3, 4)
|
||||
sparse_np = np.array([[2, 0, 0, 0], [0, 3, 0, 0], [0, 0, 4, 5]], dtype=np.float32)
|
||||
dense_np = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]], dtype=np.float32)
|
||||
sparse_np = np.array([[2, 0, 0, 0], [0, 3, 0, 0], [0, 0, 4, 5]], dtype=np.float16)
|
||||
dense_np = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]], dtype=np.float16)
|
||||
|
||||
sparse_dense_matmul_net = SparseDenseMatmulNet()
|
||||
indices = Tensor(indices_np)
|
||||
|
@ -69,12 +69,12 @@ def test_sparse_tensor_dense_matmul_no_transpose():
|
|||
|
||||
grad_net = GradNet(sparse_dense_matmul_net)
|
||||
grad_ms = grad_net(indices, values, dense_shape, dense)
|
||||
expect_values_grad = np.array([3., 12., 21., 30.], dtype=np.float32)
|
||||
expect_values_grad = np.array([3., 12., 21., 30.], dtype=np.float16)
|
||||
judge_result_correct(grad_ms[1].asnumpy(), expect_values_grad)
|
||||
expect_dense_grad = np.array([[2., 2., 2.],
|
||||
[3., 3., 3.],
|
||||
[4., 4., 4.],
|
||||
[5., 5., 5.]], dtype=np.float32)
|
||||
[5., 5., 5.]], dtype=np.float16)
|
||||
judge_result_correct(grad_ms[2].asnumpy(), expect_dense_grad)
|
||||
|
||||
|
||||
|
|
|
@ -17,182 +17,129 @@ import numpy as np
|
|||
import pytest
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn import Cell
|
||||
from mindspore import nn
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import composite as C
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="CPU")
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class SparseToDenseNet(Cell):
|
||||
class SparseToDenseNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(SparseToDenseNet, self).__init__()
|
||||
self.sparse_to_dense = P.SparseToDense()
|
||||
|
||||
def construct(self, indices, values, dense_shape):
|
||||
return self.sparse_to_dense(indices, values, dense_shape)
|
||||
def construct(self, indices, values, sparse_shape):
|
||||
return self.sparse_to_dense(indices, values, sparse_shape)
|
||||
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradNet, self).__init__()
|
||||
self.grad = C.GradOperation(get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
|
||||
def construct(self, indices, values, sparse_shape, sense):
|
||||
return self.grad(self.network)(indices, values, sparse_shape, sense)
|
||||
|
||||
|
||||
def judge_result_correct(result, expect):
|
||||
assert result.dtype == expect.dtype
|
||||
assert result.shape == expect.shape
|
||||
assert np.allclose(result, expect)
|
||||
|
||||
|
||||
def sparse_to_dense_int(i_type, v_type):
|
||||
indices = np.array([[0, 1], [1, 2]]).astype(i_type)
|
||||
values = np.array([7, 8]).astype(v_type)
|
||||
sparse_shape = (3, 3)
|
||||
forward_net = SparseToDenseNet()
|
||||
forward_output = forward_net(Tensor(indices), Tensor(values), sparse_shape)
|
||||
expect_forward_output = np.array([[0, 7, 0],
|
||||
[0, 0, 8],
|
||||
[0, 0, 0]]).astype(v_type)
|
||||
judge_result_correct(forward_output.asnumpy(), expect_forward_output)
|
||||
|
||||
grad_net = GradNet(forward_net)
|
||||
sense = Tensor(np.arange(9).reshape((3, 3)).astype(v_type))
|
||||
grad_output = grad_net(Tensor(indices), Tensor(values), sparse_shape, sense)
|
||||
expect_grad_output = np.array([1, 5]).astype(v_type)
|
||||
judge_result_correct(grad_output[1].asnumpy(), expect_grad_output)
|
||||
|
||||
|
||||
def sparse_to_dense_float(i_type, v_type):
|
||||
indices = np.array([[0, 1, 0], [1, 2, 1], [2, 3, 2], [0, 2, 3]]).astype(i_type)
|
||||
values = np.array([6.5, 7.5, 9.5, 10.5]).astype(v_type)
|
||||
sparse_shape = (3, 4, 4)
|
||||
forward_net = SparseToDenseNet()
|
||||
forward_output = forward_net(Tensor(indices), Tensor(values), sparse_shape)
|
||||
expect_forward_output = np.array([[[0, 0, 0, 0],
|
||||
[6.5, 0, 0, 0],
|
||||
[0, 0, 0, 10.5],
|
||||
[0, 0, 0, 0]],
|
||||
[[0, 0, 0, 0],
|
||||
[0, 0, 0, 0],
|
||||
[0, 7.5, 0, 0],
|
||||
[0, 0, 0, 0]],
|
||||
[[0, 0, 0, 0],
|
||||
[0, 0, 0, 0],
|
||||
[0, 0, 0, 0],
|
||||
[0, 0, 9.5, 0]]]).astype(v_type)
|
||||
judge_result_correct(forward_output.asnumpy(), expect_forward_output)
|
||||
|
||||
grad_net = GradNet(forward_net)
|
||||
sense = Tensor(np.arange(48).reshape((3, 4, 4)).astype(v_type) + 0.8)
|
||||
grad_output = grad_net(Tensor(indices), Tensor(values), sparse_shape, sense)
|
||||
expect_grad_output = np.array([4.8, 25.8, 46.8, 11.8]).astype(v_type)
|
||||
judge_result_correct(grad_output[1].asnumpy(), expect_grad_output)
|
||||
|
||||
|
||||
def sparse_to_dense_1D(i_type, v_type):
|
||||
indices = np.array([[8], [2], [6], [4]]).astype(i_type)
|
||||
values = np.array([6.5, 7.5, 9.5, 10.5]).astype(v_type)
|
||||
sparse_shape = (10,)
|
||||
forward_net = SparseToDenseNet()
|
||||
forward_output = forward_net(Tensor(indices), Tensor(values), sparse_shape)
|
||||
expect_forward_output = np.array([0, 0, 7.5, 0, 10.5, 0, 9.5, 0, 6.5, 0]).astype(v_type)
|
||||
judge_result_correct(forward_output.asnumpy(), expect_forward_output)
|
||||
|
||||
grad_net = GradNet(forward_net)
|
||||
sense = Tensor(np.arange(10).astype(v_type) + 0.8)
|
||||
grad_output = grad_net(Tensor(indices), Tensor(values), sparse_shape, sense)
|
||||
expect_grad_output = np.array([8.8, 2.8, 6.8, 4.8]).astype(v_type)
|
||||
judge_result_correct(grad_output[1].asnumpy(), expect_grad_output)
|
||||
|
||||
|
||||
indices_types = (np.int32, np.int64)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_sparse_to_dense_A():
|
||||
np.random.seed(0)
|
||||
indices = np.array([[0, 1], [1, 2]]).astype(np.int32)
|
||||
values = np.array([7, 8]).astype(np.int32)
|
||||
dense_shape = (3, 4)
|
||||
net = SparseToDenseNet()
|
||||
result = net(Tensor(indices), Tensor(values), dense_shape)
|
||||
expect_output = np.array([[0, 7, 0, 0],
|
||||
[0, 0, 8, 0],
|
||||
[0, 0, 0, 0]]).astype(np.int32)
|
||||
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
|
||||
def test_sparse_to_dense_int():
|
||||
values_types = (np.bool_,
|
||||
np.uint8, np.uint16, np.uint32, np.uint64,
|
||||
np.int8, np.int16, np.int32, np.int64)
|
||||
for i_type in indices_types:
|
||||
for v_type in values_types:
|
||||
sparse_to_dense_int(i_type, v_type)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_sparse_to_dense_B():
|
||||
np.random.seed(0)
|
||||
indices = np.array([[0, 1], [1, 2], [2, 3]]).astype(np.int32)
|
||||
values = np.array([6.5, 7.5, 9.5]).astype(np.float64)
|
||||
dense_shape = (3, 4)
|
||||
net = SparseToDenseNet()
|
||||
result = net(Tensor(indices), Tensor(values), dense_shape)
|
||||
expect_output = np.array([[0, 6.5, 0, 0],
|
||||
[0, 0, 7.5, 0],
|
||||
[0, 0, 0, 9.5]]).astype(np.float64)
|
||||
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
|
||||
def test_sparse_to_dense_float():
|
||||
values_types = (np.float16, np.float32, np.float64)
|
||||
for i_type in indices_types:
|
||||
for v_type in values_types:
|
||||
sparse_to_dense_float(i_type, v_type)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_sparse_to_dense_C():
|
||||
np.random.seed(0)
|
||||
indices = np.array([[0, 1, 0, 0],
|
||||
[1, 0, 0, 2],
|
||||
[2, 0, 3, 0],
|
||||
[4, 2, 3, 5]]).astype(np.int32)
|
||||
values = np.array([26.5, 17.5, 39.5, 11.5]).astype(np.float16)
|
||||
dense_shape = (10, 8, 5, 10)
|
||||
net = SparseToDenseNet()
|
||||
result = net(Tensor(indices), Tensor(values), dense_shape)
|
||||
expect_output = np.zeros([10, 8, 5, 10]).astype(np.float16)
|
||||
for i in range(0, indices.shape[0]):
|
||||
j = indices[i][0]
|
||||
k = indices[i][1]
|
||||
l = indices[i][2]
|
||||
m = indices[i][3]
|
||||
expect_output[j][k][l][m] = values[i]
|
||||
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sparse_to_dense_D():
|
||||
np.random.seed(0)
|
||||
indices = np.array([[0, 1, 0, 0, 2, 1],
|
||||
[9, 0, 0, 8, 0, 0],
|
||||
[2, 0, 4, 0, 1, 1],
|
||||
[4, 2, 3, 5, 0, 2],
|
||||
[7, 4, 3, 9, 0, 1]]).astype(np.int32)
|
||||
values = np.array([1, 1, 1, 1, 1]).astype(np.bool)
|
||||
dense_shape = (10, 5, 5, 10, 3, 3)
|
||||
net = SparseToDenseNet()
|
||||
result = net(Tensor(indices), Tensor(values), dense_shape)
|
||||
expect_output = np.zeros([10, 5, 5, 10, 3, 3]).astype(np.bool)
|
||||
for i in range(0, indices.shape[0]):
|
||||
j = indices[i][0]
|
||||
k = indices[i][1]
|
||||
l = indices[i][2]
|
||||
m = indices[i][3]
|
||||
u = indices[i][4]
|
||||
v = indices[i][5]
|
||||
expect_output[j][k][l][m][u][v] = values[i]
|
||||
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sparse_to_dense_E():
|
||||
indices = np.array([2, 5, 7]).astype(np.int32)
|
||||
values = np.array([17, 18, 19]).astype(np.int8)
|
||||
dense_shape = ([10])
|
||||
expect_output = np.zeros([10]).astype(np.int8)
|
||||
for i in range(0, indices.shape[0]):
|
||||
j = indices[i]
|
||||
expect_output[j] = values[i]
|
||||
|
||||
net = SparseToDenseNet()
|
||||
result = net(Tensor(indices), Tensor(values), dense_shape)
|
||||
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sparse_to_dense_F():
|
||||
indices = np.array([2, 4, 18]).astype(np.int32)
|
||||
values = np.array([-23, 18, -1]).astype(np.int16)
|
||||
dense_shape = ([20])
|
||||
expect_output = np.zeros([20]).astype(np.int16)
|
||||
for i in range(0, indices.shape[0]):
|
||||
j = indices[i]
|
||||
expect_output[j] = values[i]
|
||||
|
||||
net = SparseToDenseNet()
|
||||
result = net(Tensor(indices), Tensor(values), dense_shape)
|
||||
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sparse_to_dense_G():
|
||||
indices = np.array([2, 5, 7]).astype(np.int32)
|
||||
values = np.array([17, 18, 19]).astype(np.uint8)
|
||||
dense_shape = ([10])
|
||||
expect_output = np.zeros([10]).astype(np.uint8)
|
||||
for i in range(0, indices.shape[0]):
|
||||
j = indices[i]
|
||||
expect_output[j] = values[i]
|
||||
|
||||
net = SparseToDenseNet()
|
||||
result = net(Tensor(indices), Tensor(values), dense_shape)
|
||||
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sparse_to_dense_H():
|
||||
indices = np.array([2, 5, 7]).astype(np.int32)
|
||||
values = np.array([17, 18, 19]).astype(np.uint16)
|
||||
dense_shape = ([10])
|
||||
expect_output = np.zeros([10]).astype(np.uint16)
|
||||
for i in range(0, indices.shape[0]):
|
||||
j = indices[i]
|
||||
expect_output[j] = values[i]
|
||||
|
||||
net = SparseToDenseNet()
|
||||
result = net(Tensor(indices), Tensor(values), dense_shape)
|
||||
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sparse_to_dense_I():
|
||||
indices = np.array([2, 5, 7]).astype(np.int64)
|
||||
values = np.array([17, 18, 19]).astype(np.float16)
|
||||
dense_shape = ([10])
|
||||
expect_output = np.zeros([10]).astype(np.float16)
|
||||
for i in range(0, indices.shape[0]):
|
||||
j = indices[i]
|
||||
expect_output[j] = values[i]
|
||||
|
||||
net = SparseToDenseNet()
|
||||
result = net(Tensor(indices), Tensor(values), dense_shape)
|
||||
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
|
||||
def test_sparse_to_dense_1D():
|
||||
values_types = (np.float16, np.float32, np.float64)
|
||||
for i_type in indices_types:
|
||||
for v_type in values_types:
|
||||
sparse_to_dense_1D(i_type, v_type)
|
||||
|
|
Loading…
Reference in New Issue