diff --git a/mindspore/lite/src/ops/expand_dims.cc b/mindspore/lite/src/ops/expand_dims.cc index bbeef87bbc9..419eed0744f 100644 --- a/mindspore/lite/src/ops/expand_dims.cc +++ b/mindspore/lite/src/ops/expand_dims.cc @@ -51,8 +51,8 @@ int ExpandDims::UnPackAttr(const Primitive &prim, const std::vector return RET_ERROR; } // use axis instead of dim - if (inputs[1]->isa()) { - auto axis_tensor = inputs[1]->cast(); + if (inputs.at(1)->isa()) { + auto axis_tensor = inputs.at(1)->cast(); int axis = CastToInt(axis_tensor->value()).front(); attr->dim = axis; } else { diff --git a/mindspore/lite/src/ops/fill.cc b/mindspore/lite/src/ops/fill.cc index 4c08e4b20a0..6fff1fe27e5 100644 --- a/mindspore/lite/src/ops/fill.cc +++ b/mindspore/lite/src/ops/fill.cc @@ -76,7 +76,7 @@ int Fill::InferShape(std::vector inputs_, std::vector output std::vector output_shape; for (size_t i = 0; i < GetDims().size(); i++) { - output_shape.push_back(GetDims()[i]); + output_shape.push_back(GetDims().at(i)); } output->set_shape(output_shape); return RET_OK; diff --git a/mindspore/lite/src/ops/flatten.cc b/mindspore/lite/src/ops/flatten.cc index 6555b266078..ed123fab2c3 100644 --- a/mindspore/lite/src/ops/flatten.cc +++ b/mindspore/lite/src/ops/flatten.cc @@ -45,10 +45,10 @@ int Flatten::InferShape(std::vector inputs_, std::vector out auto input_shape = input->shape(); std::vector output_shape(2); - output_shape[0] = input_shape[0]; - output_shape[1] = 1; + output_shape.at(0) = input_shape.at(0); + output_shape.at(1) = 1; for (size_t i = 1; i < input_shape.size(); i++) { - output_shape[1] *= input_shape[i]; + output_shape.at(1) *= input_shape.at(i); } output->set_shape(output_shape); return RET_OK; diff --git a/mindspore/lite/src/ops/flatten_grad.cc b/mindspore/lite/src/ops/flatten_grad.cc index 5796ce57027..8821470f866 100644 --- a/mindspore/lite/src/ops/flatten_grad.cc +++ b/mindspore/lite/src/ops/flatten_grad.cc @@ -44,10 +44,10 @@ int FlattenGrad::InferShape(std::vector inputs_, std::vector auto input_shape = input->shape(); std::vector output_shape(2); - output_shape[0] = input_shape[0]; - output_shape[1] = 1; + output_shape.at(0) = input_shape.at(0); + output_shape.at(1) = 1; for (size_t i = 1; i < input_shape.size(); i++) { - output_shape[1] *= input_shape[i]; + output_shape.at(1) *= input_shape.at(i); } output->set_shape(output_shape); return RET_OK; diff --git a/mindspore/lite/src/ops/full_connection.cc b/mindspore/lite/src/ops/full_connection.cc index 24be3ce5d15..6d50ff56aff 100644 --- a/mindspore/lite/src/ops/full_connection.cc +++ b/mindspore/lite/src/ops/full_connection.cc @@ -65,7 +65,7 @@ int FullConnection::InferShape(std::vector inputs_, std::vector< MS_ASSERT(this->primitive_ != nullptr); auto input0 = inputs_.front(); MS_ASSERT(input0 != nullptr); - auto input1 = inputs_[1]; + auto input1 = inputs_.at(1); MS_ASSERT(input1 != nullptr); auto output = outputs_.front(); MS_ASSERT(output != nullptr); @@ -83,34 +83,34 @@ int FullConnection::InferShape(std::vector inputs_, std::vector< int new_k = 1; if (GetUseAxis()) { for (size_t i = GetAxis(); i < input0->shape().size(); ++i) { - new_k *= input0->shape()[i]; + new_k *= input0->shape().at(i); } - if (new_k != input1->shape()[1]) { + if (new_k != input1->shape().at(1)) { MS_LOG(ERROR) << "Input1 size invalid"; return RET_INPUT_TENSOR_ERROR; } } else { - new_k = input1->shape()[1]; + new_k = input1->shape().at(1); } if (GetHasBias()) { - if (inputs_[2]->shape()[0] != input1->shape()[0]) { + if (inputs_.at(2)->shape().at(0) != input1->shape().at(0)) { MS_LOG(ERROR) << "bias size invalid"; return RET_INPUT_TENSOR_ERROR; } } - std::vector out_shape{inputs_[0]->shape()}; + std::vector out_shape{inputs_.at(0)->shape()}; if (GetUseAxis()) { out_shape.resize(GetAxis() + 1); - out_shape[GetAxis()] = input1->shape()[0]; + out_shape.at(GetAxis()) = input1->shape().at(0); } else { int total = 1; for (size_t i = 0; i < input0->shape().size(); ++i) { - total *= input0->shape()[i]; + total *= input0->shape().at(i); } out_shape.resize(2); auto batch_size = total / new_k; - out_shape[0] = batch_size; - out_shape[1] = input1->shape()[0]; + out_shape.at(0) = batch_size; + out_shape.at(1) = input1->shape().at(0); } output->set_shape(out_shape); output->set_data_type(input0->data_type()); diff --git a/mindspore/lite/src/ops/gather.cc b/mindspore/lite/src/ops/gather.cc index 6e13952cec1..662062a3c53 100644 --- a/mindspore/lite/src/ops/gather.cc +++ b/mindspore/lite/src/ops/gather.cc @@ -57,8 +57,8 @@ int Gather::UnPackAttr(const Primitive &prim, const std::vector &inp gather_attr = nullptr; return RET_ERROR; } - if (inputs[2]->isa()) { - ValueNodePtr axis_tensor = inputs[2]->cast(); + if (inputs.at(2)->isa()) { + ValueNodePtr axis_tensor = inputs.at(2)->cast(); int axis = CastToInt(axis_tensor->value()).front(); gather_attr->axis = axis; } else { @@ -137,7 +137,7 @@ int Gather::InferShape(std::vector inputs_, std::vector outp std::vector out_shape{in_shape}; out_shape.erase(out_shape.begin() + axis); for (int i = indices_rank - 1; i >= 0; --i) { - out_shape.insert(out_shape.begin() + axis, indices_shape[i]); + out_shape.insert(out_shape.begin() + axis, indices_shape.at(i)); } output->set_shape(out_shape); return RET_OK; diff --git a/mindspore/lite/src/ops/gather_nd.cc b/mindspore/lite/src/ops/gather_nd.cc index 1387b91cfc4..4f7523b0da3 100644 --- a/mindspore/lite/src/ops/gather_nd.cc +++ b/mindspore/lite/src/ops/gather_nd.cc @@ -72,17 +72,17 @@ int GatherNd::InferShape(std::vector inputs_, std::vector ou int in_rank = in_shape.size(); auto indices_shape = indices->shape(); int indices_rank = indices_shape.size(); - if (indices_shape[indices_rank - 1] > in_rank) { + if (indices_shape.at(indices_rank - 1) > in_rank) { MS_LOG(ERROR) << "Input of indices data is error!"; return RET_ERROR; } std::vector out_shape; int i = 0; for (i = 0; i < indices_rank - 1; ++i) { - out_shape.emplace_back(indices_shape[i]); + out_shape.emplace_back(indices_shape.at(i)); } - for (i = indices_shape[indices_rank - 1]; i < in_rank; ++i) { - out_shape.emplace_back(in_shape[i]); + for (i = indices_shape.at(indices_rank - 1); i < in_rank; ++i) { + out_shape.emplace_back(in_shape.at(i)); } output->set_shape(out_shape); return RET_OK; diff --git a/mindspore/lite/src/ops/layer_norm.cc b/mindspore/lite/src/ops/layer_norm.cc index c26018764fa..acce63150d4 100644 --- a/mindspore/lite/src/ops/layer_norm.cc +++ b/mindspore/lite/src/ops/layer_norm.cc @@ -97,7 +97,7 @@ int LayerNorm::InferShape(std::vector inputs_, std::vector inputs_, std::vector output } auto input = inputs_.front(); MS_ASSERT(input != nullptr); - auto weight_i = inputs_[1]; - MS_ASSERT(input != nullptr); + auto weight_i = inputs_.at(1); + MS_ASSERT(weight_i != nullptr); auto output = outputs_.front(); MS_ASSERT(output != nullptr); for (int i = 0; i < kLstmOutputNum; i++) { - outputs_[i]->set_data_type(input->data_type()); - outputs_[i]->set_format(input->format()); + outputs_.at(i)->set_data_type(input->data_type()); + outputs_.at(i)->set_format(input->format()); } if (!infer_flag()) { return RET_OK; diff --git a/mindspore/lite/src/ops/matmul.cc b/mindspore/lite/src/ops/matmul.cc index f6d9eb3d6a8..a2d8fa00095 100644 --- a/mindspore/lite/src/ops/matmul.cc +++ b/mindspore/lite/src/ops/matmul.cc @@ -125,7 +125,7 @@ int MatMul::InferShape(std::vector inputs_, std::vector outp del_end = true; } for (size_t i = 0; i < (a_shape.size() - 2) && i < (b_shape.size() - 2); ++i) { - if (a_shape[a_shape.size() - 3 - i] != b_shape[b_shape.size() - 3 - i]) { + if (a_shape.at(a_shape.size() - 3 - i) != b_shape.at(b_shape.size() - 3 - i)) { MS_LOG(ERROR) << "Op MatMul's dimensions must be equal"; return RET_INPUT_TENSOR_ERROR; } diff --git a/mindspore/lite/src/ops/mean.cc b/mindspore/lite/src/ops/mean.cc index e6be5f2fae2..843157b6ce7 100644 --- a/mindspore/lite/src/ops/mean.cc +++ b/mindspore/lite/src/ops/mean.cc @@ -103,7 +103,7 @@ int Mean::InferShape(std::vector inputs_, std::vector output for (size_t i = 0; i < in_shape.size(); i++) { bool reduce_axis = false; for (size_t idx = 0; idx < num_axes; ++idx) { - if (static_cast(axes[idx]) == i) { + if (static_cast(axes.at(idx)) == i) { reduce_axis = true; break; } @@ -113,7 +113,7 @@ int Mean::InferShape(std::vector inputs_, std::vector output out_shape.push_back(1); } } else { - out_shape.push_back(in_shape[i]); + out_shape.push_back(in_shape.at(i)); } } output->set_shape(out_shape); diff --git a/mindspore/lite/src/ops/oneslike.cc b/mindspore/lite/src/ops/oneslike.cc index 5ddd86ee010..f564195eb0c 100644 --- a/mindspore/lite/src/ops/oneslike.cc +++ b/mindspore/lite/src/ops/oneslike.cc @@ -72,8 +72,8 @@ PrimitiveC *OnesLikeCreator(const schema::Primitive *primitive) { Registry OnesLikeRegistry(schema::PrimitiveType_OnesLike, OnesLikeCreator); #endif int OnesLike::InferShape(std::vector inputs_, std::vector outputs_) { - Tensor *x = inputs_[0]; - Tensor *out = outputs_[0]; + Tensor *x = inputs_.at(0); + Tensor *out = outputs_.at(0); std::vector x_shape = x->shape(); std::vector output_shape(x_shape.size()); output_shape.assign(x_shape.begin(), x_shape.end()); diff --git a/mindspore/lite/src/ops/pad.cc b/mindspore/lite/src/ops/pad.cc index 4d96c9195a8..5a3c7145dca 100644 --- a/mindspore/lite/src/ops/pad.cc +++ b/mindspore/lite/src/ops/pad.cc @@ -110,7 +110,7 @@ int Pad::InferShape(std::vector inputs, std::vector outputs) MS_ASSERT(input->shape().size() <= 4); for (size_t i = 0; i < input_shape.size(); i++) { auto paddings_index = i; - auto shape = input_shape[i] + paddings[2 * paddings_index] + paddings[2 * paddings_index + 1]; + auto shape = input_shape.at(i) + paddings.at(2 * paddings_index) + paddings.at(2 * paddings_index + 1); output_shape.push_back(shape); } diff --git a/mindspore/lite/src/ops/pooling.cc b/mindspore/lite/src/ops/pooling.cc index 329665e807c..57b4de165b1 100644 --- a/mindspore/lite/src/ops/pooling.cc +++ b/mindspore/lite/src/ops/pooling.cc @@ -111,12 +111,12 @@ int Pooling::UnPackAttr(const Primitive &prim, const std::vector &in } auto kernel_size = CastToInt(prim.GetAttr("ksize")); - attr->windowH = kernel_size[2]; - attr->windowW = kernel_size[3]; + attr->windowH = kernel_size.at(2); + attr->windowW = kernel_size.at(3); auto stride = CastToInt(prim.GetAttr("strides")); - attr->strideH = stride[2]; - attr->strideW = stride[3]; + attr->strideH = stride.at(2); + attr->strideW = stride.at(3); this->primitive_->value.value = attr; if (this->primitive_->value.value == nullptr) { MS_LOG(ERROR) << "primitive value is nullptr"; diff --git a/mindspore/lite/src/ops/pooling_grad.cc b/mindspore/lite/src/ops/pooling_grad.cc index 7afa0e41023..ffe8d8dcec1 100644 --- a/mindspore/lite/src/ops/pooling_grad.cc +++ b/mindspore/lite/src/ops/pooling_grad.cc @@ -100,12 +100,12 @@ int PoolingGrad::UnPackAttr(const Primitive &prim, const std::vector } auto kernel_size = CastToInt(prim.GetAttr("ksize")); - attr->windowH = kernel_size[2]; - attr->windowW = kernel_size[3]; + attr->windowH = kernel_size.at(2); + attr->windowW = kernel_size.at(3); auto stride = CastToInt(prim.GetAttr("strides")); - attr->strideH = stride[2]; - attr->strideW = stride[3]; + attr->strideH = stride.at(2); + attr->strideW = stride.at(3); this->primitive_->value.value = attr; if (this->primitive_->value.value == nullptr) { MS_LOG(ERROR) << "primitive value is nullptr"; diff --git a/mindspore/lite/src/ops/power.cc b/mindspore/lite/src/ops/power.cc index f2c288ecfa0..17d85424f44 100644 --- a/mindspore/lite/src/ops/power.cc +++ b/mindspore/lite/src/ops/power.cc @@ -103,14 +103,14 @@ Registry PowerRegistry(schema::PrimitiveType_Power, PowerCreator); int Power::InferShape(std::vector inputs, std::vector outputs) { MS_ASSERT(this->primitive_ != nullptr); - auto x_tensor = inputs[0]; + auto x_tensor = inputs.at(0); MS_ASSERT(x_tensor != nullptr); Tensor *exp_tensor = nullptr; if (inputs.size() == 2) { - exp_tensor = inputs[1]; + exp_tensor = inputs.at(1); MS_ASSERT(exp_tensor != nullptr); } - auto output_tensor = outputs[0]; + auto output_tensor = outputs.at(0); MS_ASSERT(output_tensor != nullptr); output_tensor->set_data_type(x_tensor->data_type()); output_tensor->set_format(x_tensor->format()); @@ -119,7 +119,7 @@ int Power::InferShape(std::vector inputs, std::vector output } if (exp_tensor != nullptr) { if ((exp_tensor->shape().size() > 1 && exp_tensor->shape() != x_tensor->shape()) || - (exp_tensor->shape().size() == 1 && exp_tensor->shape()[0] != 1) || + (exp_tensor->shape().size() == 1 && exp_tensor->shape().at(0) != 1) || exp_tensor->data_type() != x_tensor->data_type()) { MS_LOG(ERROR) << "Power inputs shape or type is not equal!"; return RET_INPUT_TENSOR_ERROR; diff --git a/mindspore/lite/src/ops/primitive_c.cc b/mindspore/lite/src/ops/primitive_c.cc index 17a31645fb3..ef93c8036af 100644 --- a/mindspore/lite/src/ops/primitive_c.cc +++ b/mindspore/lite/src/ops/primitive_c.cc @@ -331,7 +331,7 @@ void PrimitiveC::GetAttrDataFromInput(const AnfNodePtr &inputNode, std::vectorcast(); MS_ASSERT(tuple != nullptr); for (size_t i = 0; i < tuple->size(); i++) { - auto elem = tuple->value()[i]; + auto elem = tuple->value().at(i); MS_ASSERT(elem != nullptr); data->emplace_back(CastToInt(elem).front()); } @@ -349,7 +349,7 @@ void PrimitiveC::set_input_quant_params(const std::vector &input_quant_param) { MS_ASSERT(index < this->input_quant_param_.size()); - this->input_quant_param_[index] = input_quant_param; + this->input_quant_param_.at(index) = input_quant_param; } void PrimitiveC::set_output_quant_params(const std::vector> &output_quant_param) { @@ -359,7 +359,7 @@ void PrimitiveC::set_output_quant_params(const std::vector &output_quant_param) { MS_ASSERT(index < this->output_quant_param_.size()); - this->output_quant_param_[index] = output_quant_param; + this->output_quant_param_.at(index) = output_quant_param; } bool PrimitiveC::IsInputQuantParamsInited() { diff --git a/mindspore/lite/src/runtime/kernel/arm/base/prior_box.cc b/mindspore/lite/src/runtime/kernel/arm/base/prior_box.cc index 6b5db11559a..b190e822b5a 100644 --- a/mindspore/lite/src/runtime/kernel/arm/base/prior_box.cc +++ b/mindspore/lite/src/runtime/kernel/arm/base/prior_box.cc @@ -58,11 +58,11 @@ int PriorBoxCPUKernel::Init() { int PriorBoxCPUKernel::ReSize() { return GeneratePriorBox(); } int PriorBoxCPUKernel::GeneratePriorBox() { - const int fmap_w = in_tensors_[0]->Width(); - const int fmap_h = in_tensors_[0]->Height(); + const int fmap_w = in_tensors_.at(0)->Width(); + const int fmap_h = in_tensors_.at(0)->Height(); - const int image_w = prior_box_param_->image_size_w > 0 ? prior_box_param_->image_size_w : in_tensors_[1]->Width(); - const int image_h = prior_box_param_->image_size_h > 0 ? prior_box_param_->image_size_h : in_tensors_[1]->Height(); + const int image_w = prior_box_param_->image_size_w > 0 ? prior_box_param_->image_size_w : in_tensors_.at(1)->Width(); + const int image_h = prior_box_param_->image_size_h > 0 ? prior_box_param_->image_size_h : in_tensors_.at(1)->Height(); const float step_w = prior_box_param_->step_w > 0.0f ? prior_box_param_->step_w : static_cast(image_w) / fmap_w; diff --git a/mindspore/lite/src/runtime/kernel/arm/fp16/fullconnection_fp16.cc b/mindspore/lite/src/runtime/kernel/arm/fp16/fullconnection_fp16.cc index 18ed44385b0..0397f1cd814 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp16/fullconnection_fp16.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp16/fullconnection_fp16.cc @@ -54,10 +54,10 @@ void FullconnectionFP16CPUKernel::FreeTmpBuffer() { int FullconnectionFP16CPUKernel::ReSize() { FreeTmpBuffer(); int row = 1; - for (size_t i = 0; i < out_tensors_[0]->shape().size() - 1; ++i) row *= (out_tensors_[0]->shape())[i]; + for (size_t i = 0; i < out_tensors_.at(0)->shape().size() - 1; ++i) row *= (out_tensors_.at(0)->shape())[i]; fc_param_->row_ = row; - fc_param_->col_ = out_tensors_[0]->shape().back(); - fc_param_->deep_ = (in_tensors_[1]->shape())[1]; + fc_param_->col_ = out_tensors_.at(0)->shape().back(); + fc_param_->deep_ = (in_tensors_.at(1)->shape()).at(1); fc_param_->row_16_ = UP_ROUND(fc_param_->row_, C16NUM); fc_param_->col_8_ = UP_ROUND(fc_param_->col_, C8NUM); thread_count_ = MSMIN(thread_count_, UP_DIV(fc_param_->col_, C8NUM)); @@ -89,21 +89,21 @@ int FullconnectionFP16CPUKernel::ReSize() { } memset(b_pack_ptr_, 0, b_pack_col * fc_param_->deep_ * sizeof(float16_t)); - fc_param_->b_const_ = (in_tensors_[1]->data_c() != nullptr); + fc_param_->b_const_ = (in_tensors_.at(1)->data_c() != nullptr); if (fc_param_->b_const_) { - if (in_tensors_[1]->data_type() == kNumberTypeFloat32) { + if (in_tensors_.at(1)->data_type() == kNumberTypeFloat32) { if (is_vector_input_) { - Float32ToFloat16(reinterpret_cast(in_tensors_[1]->data_c()), b_pack_ptr_, + Float32ToFloat16(reinterpret_cast(in_tensors_.at(1)->data_c()), b_pack_ptr_, fc_param_->col_ * fc_param_->deep_); } else { - InitMatrixB(reinterpret_cast(in_tensors_[1]->data_c()), b_pack_ptr_); + InitMatrixB(reinterpret_cast(in_tensors_.at(1)->data_c()), b_pack_ptr_); } } else { if (is_vector_input_) { - memcpy(b_pack_ptr_, reinterpret_cast(in_tensors_[1]->data_c()), + memcpy(b_pack_ptr_, reinterpret_cast(in_tensors_.at(1)->data_c()), fc_param_->col_ * fc_param_->deep_ * sizeof(float16_t)); } else { - InitMatrixB(reinterpret_cast(in_tensors_[1]->data_c()), b_pack_ptr_); + InitMatrixB(reinterpret_cast(in_tensors_.at(1)->data_c()), b_pack_ptr_); } } b_ptr_ = b_pack_ptr_; @@ -116,10 +116,10 @@ int FullconnectionFP16CPUKernel::ReSize() { return RET_MEMORY_FAILED; } memset(bias_ptr_, 0, b_pack_col * sizeof(float16_t)); - Float32ToFloat16(reinterpret_cast(in_tensors_[2]->data_c()), bias_ptr_, fc_param_->col_); + Float32ToFloat16(reinterpret_cast(in_tensors_.at(2)->data_c()), bias_ptr_, fc_param_->col_); } - if (out_tensors_[0]->data_type() == kNumberTypeFloat32) { + if (out_tensors_.at(0)->data_type() == kNumberTypeFloat32) { output_fp16_ = reinterpret_cast(ctx_->allocator->Malloc(fc_param_->row_ * fc_param_->col_ * sizeof(float16_t))); if (output_fp16_ == nullptr) { @@ -183,43 +183,43 @@ int FcFP16Run(void *cdata, int task_id) { } int FullconnectionFP16CPUKernel::Run() { - auto out_tensor = out_tensors_[0]; + auto out_tensor = out_tensors_.at(0); if (out_tensor->data_type() == kNumberTypeFloat32) { output_ptr_ = output_fp16_; } else { output_ptr_ = reinterpret_cast(out_tensor->data_c()); } - if (in_tensors_[0]->data_type() == kNumberTypeFloat32) { + if (in_tensors_.at(0)->data_type() == kNumberTypeFloat32) { if (is_vector_input_) { - Float32ToFloat16(reinterpret_cast(in_tensors_[0]->data_c()), a_pack_ptr_, fc_param_->deep_); + Float32ToFloat16(reinterpret_cast(in_tensors_.at(0)->data_c()), a_pack_ptr_, fc_param_->deep_); } else { - InitMatrixA(reinterpret_cast(in_tensors_[0]->data_c()), a_pack_ptr_); + InitMatrixA(reinterpret_cast(in_tensors_.at(0)->data_c()), a_pack_ptr_); } a_ptr_ = a_pack_ptr_; } else { if (is_vector_input_) { - a_ptr_ = reinterpret_cast(in_tensors_[0]->data_c()); + a_ptr_ = reinterpret_cast(in_tensors_.at(0)->data_c()); } else { - InitMatrixA(reinterpret_cast(in_tensors_[0]->data_c()), a_pack_ptr_); + InitMatrixA(reinterpret_cast(in_tensors_.at(0)->data_c()), a_pack_ptr_); a_ptr_ = a_pack_ptr_; } } if (!fc_param_->b_const_) { - if (in_tensors_[1]->data_type() == kNumberTypeFloat32) { + if (in_tensors_.at(1)->data_type() == kNumberTypeFloat32) { if (is_vector_input_) { - Float32ToFloat16(reinterpret_cast(in_tensors_[1]->data_c()), b_pack_ptr_, + Float32ToFloat16(reinterpret_cast(in_tensors_.at(1)->data_c()), b_pack_ptr_, fc_param_->col_ * fc_param_->deep_); } else { - InitMatrixB(reinterpret_cast(in_tensors_[1]->data_c()), b_pack_ptr_); + InitMatrixB(reinterpret_cast(in_tensors_.at(1)->data_c()), b_pack_ptr_); } b_ptr_ = b_pack_ptr_; } else { if (is_vector_input_) { - b_ptr_ = reinterpret_cast(in_tensors_[1]->data_c()); + b_ptr_ = reinterpret_cast(in_tensors_.at(1)->data_c()); } else { - InitMatrixB(reinterpret_cast(in_tensors_[1]->data_c()), b_pack_ptr_); + InitMatrixB(reinterpret_cast(in_tensors_.at(1)->data_c()), b_pack_ptr_); b_ptr_ = b_pack_ptr_; } } diff --git a/mindspore/lite/src/runtime/kernel/arm/fp16/group_convolution_fp16.cc b/mindspore/lite/src/runtime/kernel/arm/fp16/group_convolution_fp16.cc index a1ec3a827fc..90e696650dd 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp16/group_convolution_fp16.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp16/group_convolution_fp16.cc @@ -28,7 +28,7 @@ using mindspore::schema::PrimitiveType_Conv2D; namespace mindspore::kernel { int GroupConvolutionFP16CPUKernel::Init() { for (int i = 0; i < group_num_; ++i) { - auto ret = group_convs_[i]->Init(); + auto ret = group_convs_.at(i)->Init(); if (ret != RET_OK) { MS_LOG(ERROR) << "Sub kernel init failed."; return ret; @@ -40,7 +40,7 @@ int GroupConvolutionFP16CPUKernel::Init() { int GroupConvolutionFP16CPUKernel::ReSize() { for (int i = 0; i < group_num_; ++i) { - auto ret = group_convs_[i]->ReSize(); + auto ret = group_convs_.at(i)->ReSize(); if (ret != RET_OK) { MS_LOG(ERROR) << "Sub kernel resize failed."; return RET_ERROR; @@ -94,7 +94,7 @@ int GroupConvolutionFP16CPUKernel::PreProcess() { int in_w = conv_param_->input_w_; int in_c = conv_param_->input_channel_; in_shape = {in_batch, in_h, in_w, in_c}; - auto sub_kernel_in_tensor = group_convs_[i]->in_tensors().front(); + auto sub_kernel_in_tensor = group_convs_.at(i)->in_tensors().front(); sub_kernel_in_tensor->set_shape(in_shape); ret = sub_kernel_in_tensor->MallocData(); if (ret != RET_OK) { @@ -141,9 +141,9 @@ int GroupConvolutionFP16CPUKernel::SeparateInput(int group_id) { int in_plane = in_h * in_w; int sub_in_channel = conv_param_->input_channel_; int ori_in_channel = sub_in_channel * group_num_; - auto sub_in_data = group_convs_[group_id]->in_tensors().front()->data_c(); + auto sub_in_data = group_convs_.at(group_id)->in_tensors().front()->data_c(); auto in_data_type = in_tensors_.front()->data_type(); - auto sub_in_data_type = group_convs_[group_id]->in_tensors().front()->data_type(); + auto sub_in_data_type = group_convs_.at(group_id)->in_tensors().front()->data_type(); if (in_data_type != sub_in_data_type) { MS_LOG(ERROR) << "data type of sub conv kernel input should be the same as origin input's."; return RET_ERROR; @@ -183,7 +183,7 @@ void GroupConvolutionFP16CPUKernel::PostConcat(int group_id) { int out_plane = out_h * out_w; int sub_out_channel = conv_param_->output_channel_; int ori_out_channel = sub_out_channel * group_num_; - auto sub_out_data = reinterpret_cast(group_convs_[group_id]->out_tensors().front()->data_c()); + auto sub_out_data = reinterpret_cast(group_convs_.at(group_id)->out_tensors().front()->data_c()); MS_ASSERT(sub_out_data); float16_t *src_ptr = sub_out_data; float16_t *dst_ptr = ori_out_data_ + group_id * sub_out_channel; @@ -206,7 +206,7 @@ int GroupConvolutionFP16CPUKernel::Run() { return ret; } // sun kernels run - ret = group_convs_[i]->Run(); + ret = group_convs_.at(i)->Run(); if (ret != RET_OK) { MS_LOG(ERROR) << "sub kernel " << i << " execute failed."; return ret; diff --git a/mindspore/lite/src/runtime/kernel/arm/fp16/matmul_fp16.cc b/mindspore/lite/src/runtime/kernel/arm/fp16/matmul_fp16.cc index da44a9c5b75..d9c96b4e77b 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp16/matmul_fp16.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp16/matmul_fp16.cc @@ -262,7 +262,7 @@ int MatmulFP16Run(void *cdata, int task_id) { } int MatmulFP16CPUKernel::Run() { - auto out_tensor = out_tensors_[0]; + auto out_tensor = out_tensors_.at(0); auto ret = MallocFp16Output(); if (ret != RET_OK) { MS_LOG(ERROR) << "Matmul MallocFp16Output failed"; @@ -280,10 +280,10 @@ int MatmulFP16CPUKernel::Run() { MS_LOG(ERROR) << "Matmul fp16 malloc matrix A buffer failed"; return RET_ERROR; } - if (in_tensors_[0]->data_type() == kNumberTypeFloat32) { - InitMatrixA(reinterpret_cast(in_tensors_[0]->data_c()), a_pack_ptr_); + if (in_tensors_.at(0)->data_type() == kNumberTypeFloat32) { + InitMatrixA(reinterpret_cast(in_tensors_.at(0)->data_c()), a_pack_ptr_); } else { - InitMatrixA(reinterpret_cast(in_tensors_[0]->data_c()), a_pack_ptr_); + InitMatrixA(reinterpret_cast(in_tensors_.at(0)->data_c()), a_pack_ptr_); } } if (!params_->b_const_) { @@ -292,10 +292,10 @@ int MatmulFP16CPUKernel::Run() { MS_LOG(ERROR) << "Matmul fp16 malloc matrix B buffer failed"; return RET_ERROR; } - if (in_tensors_[1]->data_type() == kNumberTypeFloat32) { - InitMatrixB(reinterpret_cast(in_tensors_[1]->data_c()), b_pack_ptr_); + if (in_tensors_.at(1)->data_type() == kNumberTypeFloat32) { + InitMatrixB(reinterpret_cast(in_tensors_.at(1)->data_c()), b_pack_ptr_); } else { - InitMatrixB(reinterpret_cast(in_tensors_[1]->data_c()), b_pack_ptr_); + InitMatrixB(reinterpret_cast(in_tensors_.at(1)->data_c()), b_pack_ptr_); } } for (int i = 0; i < params_->batch; ++i) { diff --git a/mindspore/lite/src/runtime/kernel/arm/fp16/quant_dtype_cast_fp16.cc b/mindspore/lite/src/runtime/kernel/arm/fp16/quant_dtype_cast_fp16.cc index 0d16a96d9a8..8373ddee83e 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp16/quant_dtype_cast_fp16.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp16/quant_dtype_cast_fp16.cc @@ -115,14 +115,14 @@ int QuantDTypeCastFP16Run(void *cdata, int task_id) { } int QuantDTypeCastFp16CPUKernel::Run() { - if (in_tensors_[0]->data_type() == TypeId::kNumberTypeInt8 && - out_tensors_[0]->data_type() == TypeId::kNumberTypeFloat16) { - int8_ptr_ = reinterpret_cast(in_tensors_[0]->data_c()); - float16_ptr_ = reinterpret_cast(out_tensors_[0]->data_c()); - } else if (in_tensors_[0]->data_type() == TypeId::kNumberTypeFloat16 && - out_tensors_[0]->data_type() == TypeId::kNumberTypeInt8) { - float16_ptr_ = reinterpret_cast(in_tensors_[0]->data_c()); - int8_ptr_ = reinterpret_cast(out_tensors_[0]->data_c()); + if (in_tensors_.at(0)->data_type() == TypeId::kNumberTypeInt8 && + out_tensors_.at(0)->data_type() == TypeId::kNumberTypeFloat16) { + int8_ptr_ = reinterpret_cast(in_tensors_.at(0)->data_c()); + float16_ptr_ = reinterpret_cast(out_tensors_.at(0)->data_c()); + } else if (in_tensors_.at(0)->data_type() == TypeId::kNumberTypeFloat16 && + out_tensors_.at(0)->data_type() == TypeId::kNumberTypeInt8) { + float16_ptr_ = reinterpret_cast(in_tensors_.at(0)->data_c()); + int8_ptr_ = reinterpret_cast(out_tensors_.at(0)->data_c()); } else { MS_LOG(ERROR) << "QuantDTypeCastFp16 not support input or output type"; return RET_ERROR; diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/expandDims_fp32.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/expandDims_fp32.cc index 7d50357d929..3b8cac575c2 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/expandDims_fp32.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/expandDims_fp32.cc @@ -48,14 +48,14 @@ int ExpandDimsCPUKernel::DoExpandDims(int task_id) { return RET_OK; } int offset = task_id * thread_sz_stride_; - if (this->in_tensors_[0]->data_type() == kNumberTypeFloat32) { + if (this->in_tensors_.at(0)->data_type() == kNumberTypeFloat32) { int ret = ExpandDims(reinterpret_cast(in_ptr_) + offset, reinterpret_cast(out_ptr_) + offset, size * sizeof(float)); if (ret != RET_OK) { MS_LOG(ERROR) << "ExpandDimsRun error task_id[" << task_id << "] error_code[" << ret << "]"; return ret; } - } else if (this->in_tensors_[0]->data_type() == kNumberTypeInt8) { + } else if (this->in_tensors_.at(0)->data_type() == kNumberTypeInt8) { int ret = ExpandDims(reinterpret_cast(in_ptr_) + offset, reinterpret_cast(out_ptr_) + offset, size * sizeof(int8_t)); if (ret != RET_OK) { diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/flatten_fp32.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/flatten_fp32.cc index 7ed6d69c74e..5ac9e164bca 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/flatten_fp32.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/flatten_fp32.cc @@ -35,17 +35,17 @@ int FlattenCPUKernel::Init() { } int FlattenCPUKernel::ReSize() { - auto output_shape = out_tensors_[0]->shape(); + auto output_shape = out_tensors_.at(0)->shape(); flatten_param_->size = sizeof(float); for (size_t i = 0; i < output_shape.size(); i++) { - flatten_param_->size *= output_shape[i]; + flatten_param_->size *= output_shape.at(i); } return RET_OK; } int FlattenCPUKernel::Run() { - auto input = reinterpret_cast(in_tensors_[0]->MutableData()); - auto output = reinterpret_cast(out_tensors_[0]->MutableData()); + auto input = reinterpret_cast(in_tensors_.at(0)->MutableData()); + auto output = reinterpret_cast(out_tensors_.at(0)->MutableData()); Flatten(input, output, flatten_param_); return RET_OK; } diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/fullconnection_fp32.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/fullconnection_fp32.cc index cdb3e950779..04d02b1f1f9 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/fullconnection_fp32.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/fullconnection_fp32.cc @@ -44,12 +44,12 @@ void FullconnectionCPUKernel::FreeBuf() { int FullconnectionCPUKernel::ReSize() { FreeBuf(); int row = 1; - for (size_t i = 0; i < out_tensors_[0]->shape().size() - 1; ++i) { - row *= (out_tensors_[0]->shape())[i]; + for (size_t i = 0; i < out_tensors_.at(0)->shape().size() - 1; ++i) { + row *= (out_tensors_.at(0)->shape())[i]; } fc_param_->row_ = row; - fc_param_->col_ = out_tensors_[0]->shape().back(); - fc_param_->deep_ = (in_tensors_[1]->shape())[1]; + fc_param_->col_ = out_tensors_.at(0)->shape().back(); + fc_param_->deep_ = (in_tensors_.at(1)->shape()).at(1); fc_param_->row_12_ = UP_ROUND(fc_param_->row_, C12NUM); fc_param_->col_8_ = UP_ROUND(fc_param_->col_, C8NUM); @@ -98,14 +98,14 @@ int FullconnectionCPUKernel::ReSize() { } memset(b_pack_ptr_, 0, col_tmp * fc_param_->deep_ * sizeof(float)); - fc_param_->a_const_ = (in_tensors_[0]->data_c() != nullptr); - fc_param_->b_const_ = (in_tensors_[1]->data_c() != nullptr); + fc_param_->a_const_ = (in_tensors_.at(0)->data_c() != nullptr); + fc_param_->b_const_ = (in_tensors_.at(1)->data_c() != nullptr); if (fc_param_->a_const_) { - InitMatrixA(reinterpret_cast(in_tensors_[0]->MutableData()), a_pack_ptr_); + InitMatrixA(reinterpret_cast(in_tensors_.at(0)->MutableData()), a_pack_ptr_); a_ptr_ = a_pack_ptr_; } if (fc_param_->b_const_) { - InitMatrixB(reinterpret_cast(in_tensors_[1]->MutableData()), b_pack_ptr_); + InitMatrixB(reinterpret_cast(in_tensors_.at(1)->MutableData()), b_pack_ptr_); b_ptr_ = b_pack_ptr_; } return RET_OK; diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/fused_batchnorm_fp32.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/fused_batchnorm_fp32.cc index 156cc41adec..9dcd0b792ae 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/fused_batchnorm_fp32.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/fused_batchnorm_fp32.cc @@ -42,10 +42,10 @@ void FusedBatchnormCPUKernel::FreeScaleAndOffset() { } int FusedBatchnormCPUKernel::InitConstTensor() { - auto scale = in_tensors_[1]; - auto offset = in_tensors_[2]; - auto mean = in_tensors_[3]; - auto variance = in_tensors_[4]; + auto scale = in_tensors_.at(1); + auto offset = in_tensors_.at(2); + auto mean = in_tensors_.at(3); + auto variance = in_tensors_.at(4); scale_ = malloc(scale->Size()); offset_ = malloc(offset->Size()); @@ -82,10 +82,10 @@ int FusedBatchnormCPUKernel::Run() { FusedBatchNormFp32MeanVar(in, current_mean, current_var, param, static_cast(save_mean), static_cast(save_variance)); - memcpy(out_tensors_[1]->MutableData(), scale, out_tensors_[1]->Size()); - memcpy(out_tensors_[2]->MutableData(), offset, out_tensors_[2]->Size()); - memcpy(out_tensors_[3]->MutableData(), current_mean, out_tensors_[3]->Size()); - memcpy(out_tensors_[4]->MutableData(), current_var, out_tensors_[4]->Size()); + memcpy(out_tensors_.at(1)->MutableData(), scale, out_tensors_.at(1)->Size()); + memcpy(out_tensors_.at(2)->MutableData(), offset, out_tensors_.at(2)->Size()); + memcpy(out_tensors_.at(3)->MutableData(), current_mean, out_tensors_.at(3)->Size()); + memcpy(out_tensors_.at(4)->MutableData(), current_var, out_tensors_.at(4)->Size()); // Copy to local variables memcpy(scale_, scale, in_tensors_[1]->Size()); @@ -108,16 +108,16 @@ int FusedBatchnormCPUKernel::Run() { int FusedBatchnormCPUKernel::Eval() { LiteKernel::Eval(); if (trained_) { - float *save_mean = static_cast(in_tensors_[3]->MutableData()); - float *save_var = static_cast(in_tensors_[4]->MutableData()); - float *scale = static_cast(in_tensors_[1]->MutableData()); - float *bias = static_cast(in_tensors_[2]->MutableData()); + float *save_mean = static_cast(in_tensors_.at(3)->MutableData()); + float *save_var = static_cast(in_tensors_.at(4)->MutableData()); + float *scale = static_cast(in_tensors_.at(1)->MutableData()); + float *bias = static_cast(in_tensors_.at(2)->MutableData()); // Copy to local variables - memcpy(scale_, scale, in_tensors_[1]->Size()); - memcpy(offset_, bias, in_tensors_[2]->Size()); - memcpy(mean_, save_mean, in_tensors_[3]->Size()); - memcpy(variance_, save_var, in_tensors_[4]->Size()); + memcpy(scale_, scale, in_tensors_.at(1)->Size()); + memcpy(offset_, bias, in_tensors_.at(2)->Size()); + memcpy(mean_, save_mean, in_tensors_.at(3)->Size()); + memcpy(variance_, save_var, in_tensors_.at(4)->Size()); } return RET_OK; } diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/gatherNd_fp32.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/gatherNd_fp32.cc index 3c857bd2185..8834aa7dc4e 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/gatherNd_fp32.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/gatherNd_fp32.cc @@ -84,7 +84,7 @@ int GatherNdCPUKernel::ReSize() { int idx_stride = idx_lastshape; for (int j = 0; j < count_; ++j) { for (int k = 0; k < idx_lastshape; ++k) { - in_offset_[j] += indices_ptr[j * idx_stride + k] * in_stride[k]; + in_offset_[j] += indices_ptr[j * idx_stride + k] * in_stride.at(k); } } diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/gather_fp32.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/gather_fp32.cc index caea551a702..2e23dddd833 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/gather_fp32.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/gather_fp32.cc @@ -55,14 +55,14 @@ int GatherCPUKernel::DoGather(int task_id) { int indices_element_size = indices_tensor->ElementsNum(); auto axis = (reinterpret_cast(op_parameter_))->axis_; - const int limit = in_shape[axis]; + const int limit = in_shape.at(axis); int outer_size = 1, inner_size = 1; for (int i = 0; i < axis; ++i) { - outer_size *= in_shape[i]; + outer_size *= in_shape.at(i); } for (int i = axis + 1; i < in_rank; ++i) { - inner_size *= in_shape[i]; + inner_size *= in_shape.at(i); } int stride = UP_DIV(outer_size, op_parameter_->thread_num_); int count = MSMIN(stride, outer_size - stride * task_id); diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/group_convolution_fp32.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/group_convolution_fp32.cc index 043596bde98..c4ff456a100 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/group_convolution_fp32.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/group_convolution_fp32.cc @@ -28,7 +28,7 @@ using mindspore::schema::PrimitiveType_Conv2D; namespace mindspore::kernel { int GroupConvolutionCPUKernel::Init() { for (int i = 0; i < group_num_; ++i) { - auto ret = group_convs_[i]->Init(); + auto ret = group_convs_.at(i)->Init(); if (ret != RET_OK) { MS_LOG(ERROR) << "Sub kernel init failed."; return ret; @@ -40,7 +40,7 @@ int GroupConvolutionCPUKernel::Init() { int GroupConvolutionCPUKernel::ReSize() { for (int i = 0; i < group_num_; ++i) { - auto ret = group_convs_[i]->ReSize(); + auto ret = group_convs_.at(i)->ReSize(); if (ret != RET_OK) { MS_LOG(ERROR) << "Sub kernel resize failed."; return RET_ERROR; @@ -94,7 +94,7 @@ int GroupConvolutionCPUKernel::PreProcess() { int in_w = conv_param_->input_w_; int in_c = conv_param_->input_channel_; in_shape = {in_batch, in_h, in_w, in_c}; - auto sub_kernel_in_tensor = group_convs_[i]->in_tensors().front(); + auto sub_kernel_in_tensor = group_convs_.at(i)->in_tensors().front(); sub_kernel_in_tensor->set_shape(in_shape); ret = sub_kernel_in_tensor->MallocData(); if (ret != RET_OK) { @@ -108,7 +108,7 @@ int GroupConvolutionCPUKernel::PreProcess() { int out_w = conv_param_->output_w_; int out_c = conv_param_->output_channel_; out_shape = {out_batch, out_h, out_w, out_c}; - auto sub_kernel_out_tensors = group_convs_[i]->out_tensors(); + auto sub_kernel_out_tensors = group_convs_.at(i)->out_tensors(); for (auto tensor : sub_kernel_out_tensors) { tensor->set_shape(out_shape); ret = tensor->MallocData(); @@ -140,7 +140,7 @@ void GroupConvolutionCPUKernel::SeparateInput(int group_id) { int in_plane = in_h * in_w; int sub_in_channel = conv_param_->input_channel_; int ori_in_channel = sub_in_channel * group_num_; - auto sub_in_data = reinterpret_cast(group_convs_[group_id]->in_tensors().front()->data_c()); + auto sub_in_data = reinterpret_cast(group_convs_.at(group_id)->in_tensors().front()->data_c()); float *src_ptr = ori_in_data_ + group_id * sub_in_channel; float *dst_ptr = sub_in_data; for (int i = 0; i < in_plane; ++i) { @@ -156,7 +156,7 @@ void GroupConvolutionCPUKernel::PostConcat(int group_id) { int out_plane = out_h * out_w; int sub_out_channel = conv_param_->output_channel_; int ori_out_channel = sub_out_channel * group_num_; - auto sub_out_data = reinterpret_cast(group_convs_[group_id]->out_tensors().front()->data_c()); + auto sub_out_data = reinterpret_cast(group_convs_.at(group_id)->out_tensors().front()->data_c()); float *src_ptr = sub_out_data; float *dst_ptr = ori_out_data_ + group_id * sub_out_channel; for (int i = 0; i < out_plane; ++i) { @@ -173,7 +173,7 @@ int GroupConvolutionCPUKernel::Run() { // first, separate group conv input into several parts. This step must be in runtime stage. SeparateInput(i); // sun kernels run - auto ret = group_convs_[i]->Run(); + auto ret = group_convs_.at(i)->Run(); if (ret != RET_OK) { MS_LOG(ERROR) << "sub kernel " << i << " execute failed."; return ret; diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/instance_norm_fp32.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/instance_norm_fp32.cc index 60d48f8b302..a98142e0e14 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/instance_norm_fp32.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/instance_norm_fp32.cc @@ -36,12 +36,12 @@ int InstanceNormCPUKernel::Init() { int InstanceNormCPUKernel::ReSize() { auto input_shapes = in_tensors_.front()->shape(); auto n_dim = input_shapes.size(); - outer_size_ = input_shapes[0] * input_shapes[n_dim - 1]; + outer_size_ = input_shapes.at(0) * input_shapes.at(n_dim - 1); inner_size_ = 1; for (size_t i = 0; i < n_dim - 1; ++i) { - inner_size_ *= input_shapes[i]; + inner_size_ *= input_shapes.at(i); } - param_->channel_ = input_shapes[n_dim - 1]; + param_->channel_ = input_shapes.at(n_dim - 1); return RET_OK; } diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/layer_norm_fp32.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/layer_norm_fp32.cc index 9492c7951a9..2ab1ddd326c 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/layer_norm_fp32.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/layer_norm_fp32.cc @@ -39,9 +39,9 @@ int LayerNormCPUKernel::ReSize() { inner_size_ = 1; for (size_t i = 0; i < shape.size(); ++i) { if (i + param_->normalized_dims_ < shape.size()) { - outer_size_ *= shape[i]; + outer_size_ *= shape.at(i); } else { - inner_size_ *= shape[i]; + inner_size_ *= shape.at(i); } } return RET_OK; diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/local_response_norm_fp32.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/local_response_norm_fp32.cc index 12e20499a1e..94d5dced9bf 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/local_response_norm_fp32.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/local_response_norm_fp32.cc @@ -42,10 +42,10 @@ int LocalResponseNormCPUKernel::DoLocalResponseNorm(int task_id) { auto in_shape = input_tensor->shape(); MS_ASSERT(in_shape.size() == 4); - int batch = in_shape[0]; - int height = in_shape[1]; - int width = in_shape[2]; - int channel = in_shape[3]; + int batch = in_shape.at(0); + int height = in_shape.at(1); + int width = in_shape.at(2); + int channel = in_shape.at(3); int outer_size = batch * width * height; int stride = UP_DIV(outer_size, thread_count_); diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/lstm_fp32.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/lstm_fp32.cc index cfd72a2991f..39d13719845 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/lstm_fp32.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/lstm_fp32.cc @@ -50,14 +50,14 @@ int LstmCPUKernel::InitParam() { auto input = in_tensors_.front(); MS_ASSERT(input != nullptr); std::vector in_shape = input->shape(); - lstm_parm_->seq_len_ = in_shape[0]; - lstm_parm_->batch_ = in_shape[1]; - lstm_parm_->input_size_ = in_shape[2]; + lstm_parm_->seq_len_ = in_shape.at(0); + lstm_parm_->batch_ = in_shape.at(1); + lstm_parm_->input_size_ = in_shape.at(2); - auto weight_i = in_tensors_[1]; + auto weight_i = in_tensors_.at(1); MS_ASSERT(weight_i != nullptr); std::vector w_shape = weight_i->shape(); - lstm_parm_->hidden_size_ = w_shape[1] / 4; + lstm_parm_->hidden_size_ = w_shape.at(1) / 4; lstm_parm_->input_step_ = lstm_parm_->batch_ * lstm_parm_->input_size_; lstm_parm_->output_step_ = lstm_parm_->bidirectional_ ? 2 * lstm_parm_->batch_ * lstm_parm_->hidden_size_ diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/matmul_fp32.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/matmul_fp32.cc index e38a0b3eb00..6796d2133b2 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/matmul_fp32.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/matmul_fp32.cc @@ -58,8 +58,9 @@ void MatmulCPUKernel::FreeTmpBuffer() { } int MatmulCPUKernel::MallocMatrixABuffer() { - auto a_shape = in_tensors_[0]->shape(); + auto a_shape = in_tensors_.at(0)->shape(); int batch = 1; + MS_ASSERT(a_shape.size() >= 2); for (size_t i = 0; i < a_shape.size() - 2; ++i) { batch *= a_shape[i]; } @@ -102,11 +103,12 @@ int MatmulCPUKernel::MallocMatrixABuffer() { } int MatmulCPUKernel::MallocMatrixBBuffer() { - auto b_shape = in_tensors_[1]->shape(); + auto b_shape = in_tensors_.at(1)->shape(); if (b_shape.empty()) { return RET_OK; } int batch = 1; + MS_ASSERT(b_shape.size() >= 2); for (size_t i = 0; i < b_shape.size() - 2; ++i) { batch *= b_shape[i]; } @@ -133,11 +135,11 @@ int MatmulCPUKernel::MallocMatrixBBuffer() { } int MatmulCPUKernel::InitBias() { - auto b_shape = in_tensors_[1]->shape(); - auto c_shape = out_tensors_[0]->shape(); + auto b_shape = in_tensors_.at(1)->shape(); + auto c_shape = out_tensors_.at(0)->shape(); params_->col_ = params_->b_const_ - ? (params_->b_transpose_ ? b_shape[b_shape.size() - 2] : b_shape[b_shape.size() - 1]) - : (c_shape[c_shape.size() - 1]); + ? (params_->b_transpose_ ? b_shape.at(b_shape.size() - 2) : b_shape.at(b_shape.size() - 1)) + : (c_shape.at(c_shape.size() - 1)); params_->col_8_ = UP_ROUND(params_->col_, 8); auto col_tmp = is_vector_a_ ? params_->col_ : params_->col_8_; if (bias_ptr_ == nullptr) { @@ -221,15 +223,15 @@ void MatmulCPUKernel::InitMatrixB(const float *src_ptr, float *dst_ptr) { } int MatmulCPUKernel::Init() { - params_->a_const_ = (in_tensors_[0]->data_c() != nullptr); - params_->b_const_ = (in_tensors_[1]->data_c() != nullptr); + params_->a_const_ = (in_tensors_.at(0)->data_c() != nullptr); + params_->b_const_ = (in_tensors_.at(1)->data_c() != nullptr); if (params_->a_const_) { auto ret = MallocMatrixABuffer(); if (ret != RET_OK) { MS_LOG(ERROR) << "Matmul fp32 malloc matrix A buffer failed"; return RET_ERROR; } - InitMatrixA(reinterpret_cast(in_tensors_[0]->data_c()), a_pack_ptr_); + InitMatrixA(reinterpret_cast(in_tensors_.at(0)->data_c()), a_pack_ptr_); a_ptr_ = a_pack_ptr_; } if (params_->b_const_) { @@ -238,7 +240,7 @@ int MatmulCPUKernel::Init() { MS_LOG(ERROR) << "Matmul fp32 malloc matrix B buffer failed"; return RET_ERROR; } - InitMatrixB(reinterpret_cast(in_tensors_[1]->data_c()), b_pack_ptr_); + InitMatrixB(reinterpret_cast(in_tensors_.at(1)->data_c()), b_pack_ptr_); b_ptr_ = b_pack_ptr_; // init bias ret = InitBias(); @@ -281,9 +283,9 @@ int MatmulFloatRun(void *cdata, int task_id) { } int MatmulCPUKernel::Run() { - auto a_src = reinterpret_cast(in_tensors_[0]->data_c()); - auto b_src = reinterpret_cast(in_tensors_[1]->data_c()); - auto c_src = reinterpret_cast(out_tensors_[0]->data_c()); + auto a_src = reinterpret_cast(in_tensors_.at(0)->data_c()); + auto b_src = reinterpret_cast(in_tensors_.at(1)->data_c()); + auto c_src = reinterpret_cast(out_tensors_.at(0)->data_c()); if (!params_->a_const_ || IsTrain()) { if (a_pack_ptr_ != nullptr) { @@ -356,8 +358,8 @@ int MatmulCPUKernel::Run() { int MatmulCPUKernel::Eval() { // Copy weights after training - auto a_src = reinterpret_cast(in_tensors_[0]->data_c()); - auto b_src = reinterpret_cast(in_tensors_[1]->data_c()); + auto a_src = reinterpret_cast(in_tensors_.at(0)->data_c()); + auto b_src = reinterpret_cast(in_tensors_.at(1)->data_c()); LiteKernel::Eval(); if (params_->a_const_) { if (a_pack_ptr_ == nullptr) { diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/nchw2nhwc_fp32.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/nchw2nhwc_fp32.cc index 2b8b3e33d6e..6c1acf79827 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/nchw2nhwc_fp32.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/nchw2nhwc_fp32.cc @@ -28,8 +28,8 @@ int Nchw2NhwcCPUKernel::Init() { return RET_OK; } int Nchw2NhwcCPUKernel::ReSize() { return RET_OK; } int Nchw2NhwcCPUKernel::Run() { - auto input = in_tensors_[0]; - auto output = out_tensors_[0]; + auto input = in_tensors_.at(0); + auto output = out_tensors_.at(0); if (input->shape().size() == 4) { if (input->data_type() == kNumberTypeFloat32) { diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/nhwc2nchw_fp32.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/nhwc2nchw_fp32.cc index 49112ed8eda..0bcc47fb96b 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/nhwc2nchw_fp32.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/nhwc2nchw_fp32.cc @@ -28,8 +28,8 @@ int Nhwc2NchwCPUKernel::Init() { return RET_OK; } int Nhwc2NchwCPUKernel::ReSize() { return RET_OK; } int Nhwc2NchwCPUKernel::Run() { - auto input = in_tensors_[0]; - auto output = out_tensors_[0]; + auto input = in_tensors_.at(0); + auto output = out_tensors_.at(0); if (input->shape().size() == 4) { if (input->data_type() == kNumberTypeFloat32) { diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/non_max_suppression_fp32.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/non_max_suppression_fp32.cc index 738b3cf46e3..c8fc2abd412 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/non_max_suppression_fp32.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/non_max_suppression_fp32.cc @@ -122,13 +122,13 @@ int NonMaxSuppressionCPUKernel::Run() { return RET_ERROR; } constexpr size_t kBatchIndex = 0; - if (score_dims[kBatchIndex] != box_dims[kBatchIndex]) { + if (score_dims.at(kBatchIndex) != box_dims.at(kBatchIndex)) { MS_LOG(ERROR) << "Boxes tensor batch num should be equal to scores tensor's batch num."; return RET_ERROR; } constexpr size_t kScoreDimsBoxNumIndex = 2; constexpr size_t kBoxDimsBoxNumIndex = 1; - if (score_dims[kScoreDimsBoxNumIndex] != box_dims[kBoxDimsBoxNumIndex]) { + if (score_dims.at(kScoreDimsBoxNumIndex) != box_dims.at(kBoxDimsBoxNumIndex)) { MS_LOG(ERROR) << "Boxes tensor spatial dimension should be equal to scores tensor's spatial dimension."; return RET_ERROR; } @@ -138,10 +138,10 @@ int NonMaxSuppressionCPUKernel::Run() { return RET_ERROR; } - int batch_num = score_dims[kBatchIndex]; + int batch_num = score_dims.at(kBatchIndex); constexpr size_t kClassIndex = 1; - int class_num = score_dims[kClassIndex]; - int box_num = score_dims[kScoreDimsBoxNumIndex]; + int class_num = score_dims.at(kClassIndex); + int box_num = score_dims.at(kScoreDimsBoxNumIndex); float *scores_data = reinterpret_cast(score_tensor->data_c()); if (scores_data == nullptr) { MS_LOG(ERROR) << "score tensor data nullptr"; diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/power_fp32.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/power_fp32.cc index 3920b0e9dcc..ad65a8accb0 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/power_fp32.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/power_fp32.cc @@ -50,11 +50,11 @@ int PowerCPUKernel::Run() { } int PowerCPUKernel::RunImpl(int task_id) { - auto x_addr = reinterpret_cast(in_tensors_[0]->MutableData()); + auto x_addr = reinterpret_cast(in_tensors_.at(0)->MutableData()); MS_ASSERT(x_addr); - auto output_addr = reinterpret_cast(out_tensors_[0]->MutableData()); + auto output_addr = reinterpret_cast(out_tensors_.at(0)->MutableData()); MS_ASSERT(output_addr); - auto size = in_tensors_[0]->ElementsNum(); + auto size = in_tensors_.at(0)->ElementsNum(); int stride = UP_DIV(size, thread_count_); int len = MSMIN(stride, size - stride * task_id); float *exp_addr = nullptr; diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/prelu_fp32.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/prelu_fp32.cc index 7f487cf2f9f..545fede2059 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/prelu_fp32.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/prelu_fp32.cc @@ -52,13 +52,13 @@ int PReluCPUKernel::DoExcute(int task_id) { int PReluCPUKernel::ProcessInput() { // input tensor - auto input_tensor = in_tensors_[0]; + auto input_tensor = in_tensors_.at(0); auto in_shape = input_tensor->shape(); auto n_dim = in_shape.size(); auto channel_num = in_shape.at(n_dim - 1); int input_plane = 1; for (size_t i = 0; i < n_dim - 1; ++i) { - input_plane *= in_shape[i]; + input_plane *= in_shape.at(i); } int tile_block = UP_DIV(input_plane, TILE_NUM); prelu_param_->input_num_ = input_tensor->ElementsNum(); @@ -76,7 +76,7 @@ int PReluCPUKernel::ProcessInput() { int PReluCPUKernel::ProcessShareChannelInput() { // input tensor - auto input_tensor = in_tensors_[0]; + auto input_tensor = in_tensors_.at(0); prelu_param_->input_num_ = input_tensor->ElementsNum(); #ifdef ENABLE_ARM64 prelu_param_->tile_block_ = UP_DIV(prelu_param_->input_num_, 64); diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32/rank_fp32.cc b/mindspore/lite/src/runtime/kernel/arm/fp32/rank_fp32.cc index 2c0b87d48bf..39dba85a287 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32/rank_fp32.cc +++ b/mindspore/lite/src/runtime/kernel/arm/fp32/rank_fp32.cc @@ -34,7 +34,7 @@ int RankCPUKernel::ReSize() { return RET_OK; } int RankCPUKernel::Run() { auto output_ptr = reinterpret_cast(out_tensors_.at(0)->MutableData()); MS_ASSERT(output_ptr); - auto in_shape = in_tensors_[0]->shape(); + auto in_shape = in_tensors_.at(0)->shape(); auto rank = in_shape.size(); Rank(output_ptr, rank); return RET_OK; diff --git a/mindspore/lite/src/runtime/kernel/arm/int8/fullconnection_int8.cc b/mindspore/lite/src/runtime/kernel/arm/int8/fullconnection_int8.cc index 57f3b0f1fe6..5949d894f86 100644 --- a/mindspore/lite/src/runtime/kernel/arm/int8/fullconnection_int8.cc +++ b/mindspore/lite/src/runtime/kernel/arm/int8/fullconnection_int8.cc @@ -74,7 +74,7 @@ void FullconnectionInt8CPUKernel::FreeTmpBuffer() { } int FullconnectionInt8CPUKernel::MallocQuantParam() { - auto weight_tensor = in_tensors_[1]; + auto weight_tensor = in_tensors_.at(1); auto weight_quant_params = weight_tensor->quant_params(); int col = weight_tensor->shape().front(); filter_per_channel_ = (weight_quant_params.size() > 1); @@ -111,15 +111,15 @@ int FullconnectionInt8CPUKernel::Init() { return ret; } - auto in_quant_params = in_tensors_[0]->quant_params(); + auto in_quant_params = in_tensors_.at(0)->quant_params(); quant_.input_.zp_ = in_quant_params.front().zeroPoint; quant_.input_.scale_ = in_quant_params.front().scale; - auto out_quant_params = out_tensors_[0]->quant_params(); + auto out_quant_params = out_tensors_.at(0)->quant_params(); quant_.output_.zp_ = out_quant_params.front().zeroPoint; quant_.output_.scale_ = out_quant_params.front().scale; - auto weight_tensor = in_tensors_[1]; + auto weight_tensor = in_tensors_.at(1); fc_param_->b_const_ = (weight_tensor->data_c() != nullptr); int weight_quant_num = filter_per_channel_ ? weight_tensor->shape().front() : 1; auto weight_quant_params = weight_tensor->quant_params(); @@ -148,12 +148,12 @@ int FullconnectionInt8CPUKernel::Init() { void FullconnectionInt8CPUKernel::InitParam() { int row = 1; - for (size_t i = 0; i < out_tensors_[0]->shape().size() - 1; ++i) { - row *= (out_tensors_[0]->shape())[i]; + for (size_t i = 0; i < out_tensors_.at(0)->shape().size() - 1; ++i) { + row *= (out_tensors_.at(0)->shape()).at(i); } fc_param_->row_ = row; - fc_param_->col_ = out_tensors_[0]->shape().back(); - fc_param_->deep_ = (in_tensors_[1]->shape())[1]; + fc_param_->col_ = out_tensors_.at(0)->shape().back(); + fc_param_->deep_ = (in_tensors_.at(1)->shape()).at(1); fc_param_->row_4_ = UP_ROUND(fc_param_->row_, C4NUM); fc_param_->row_8_ = UP_ROUND(fc_param_->row_, C8NUM); @@ -207,13 +207,13 @@ int FullconnectionInt8CPUKernel::ReSize() { FreeTmpBuffer(); return RET_MEMORY_FAILED; } - memcpy(bias_ptr_, in_tensors_[2]->data_c(), fc_param_->col_ * sizeof(int)); + memcpy(bias_ptr_, in_tensors_.at(2)->data_c(), fc_param_->col_ * sizeof(int)); } else { bias_ptr_ = nullptr; } if (fc_param_->b_const_) { - auto weight_data = reinterpret_cast(in_tensors_[1]->data_c()); + auto weight_data = reinterpret_cast(in_tensors_.at(1)->data_c()); RowMajor2Row16x4MajorInt8(weight_data, pack_b_ptr_, fc_param_->col_, fc_param_->deep_); CalcWeightBiasSums(weight_data, fc_param_->deep_, fc_param_->col_, quant_.input_.zp_, quant_.filter_zp_, bias_ptr_, weight_bias_sums_, ColMajor, filter_per_channel_); @@ -254,20 +254,20 @@ int FcInt8Run(void *cdata, int task_id) { } int FullconnectionInt8CPUKernel::Run() { - auto input_ptr = reinterpret_cast(in_tensors_[0]->data_c()); + auto input_ptr = reinterpret_cast(in_tensors_.at(0)->data_c()); RowMajor2Row16x4MajorInt8(input_ptr, pack_a_ptr_, fc_param_->row_, fc_param_->deep_); int32_t tmp_weight_zp = filter_per_channel_ ? 1 : quant_.filter_zp_[0]; CalcInputSums(input_ptr, fc_param_->row_, fc_param_->deep_, tmp_weight_zp, input_sums_, RowMajor); if (!fc_param_->b_const_) { - auto weight_data = reinterpret_cast(in_tensors_[1]->data_c()); + auto weight_data = reinterpret_cast(in_tensors_.at(1)->data_c()); RowMajor2Row16x4MajorInt8(weight_data, pack_b_ptr_, fc_param_->col_, fc_param_->deep_); CalcWeightBiasSums(weight_data, fc_param_->deep_, fc_param_->col_, quant_.input_.zp_, quant_.filter_zp_, bias_ptr_, weight_bias_sums_, ColMajor, filter_per_channel_); } - c_ptr_ = reinterpret_cast(out_tensors_[0]->data_c()); + c_ptr_ = reinterpret_cast(out_tensors_.at(0)->data_c()); auto ret = ParallelLaunch(this->context_->thread_pool_, FcInt8Run, this, thread_count_); if (ret != RET_OK) { MS_LOG(ERROR) << "ParallelLaunch failed"; diff --git a/mindspore/lite/src/runtime/kernel/arm/int8/gatherNd_int8.cc b/mindspore/lite/src/runtime/kernel/arm/int8/gatherNd_int8.cc index e1224c6c2a7..f898886148b 100644 --- a/mindspore/lite/src/runtime/kernel/arm/int8/gatherNd_int8.cc +++ b/mindspore/lite/src/runtime/kernel/arm/int8/gatherNd_int8.cc @@ -77,11 +77,11 @@ int GatherNdInt8CPUKernel::ReSize() { auto in_shape = in_tensors_.front()->shape(); int in_rank = in_shape.size(); - int idx_lastshape = indices_shape[indices_rank - 1]; + int idx_lastshape = indices_shape.at(indices_rank - 1); auto indices_ptr = reinterpret_cast(indices_tensor->MutableData()); area_ = 1; for (int i = idx_lastshape; i < in_rank; ++i) { - area_ *= in_shape[i]; + area_ *= in_shape.at(i); } std::vector in_stride(in_rank); in_stride[in_rank - 1] = 1; diff --git a/mindspore/lite/src/runtime/kernel/arm/int8/gather_int8.cc b/mindspore/lite/src/runtime/kernel/arm/int8/gather_int8.cc index 182b15a1a20..4bee9ced53a 100644 --- a/mindspore/lite/src/runtime/kernel/arm/int8/gather_int8.cc +++ b/mindspore/lite/src/runtime/kernel/arm/int8/gather_int8.cc @@ -61,7 +61,7 @@ int GatherInt8CPUKernel::DoGather(int task_id) { int in_rank = in_shape.size(); int indices_element_size = indices_tensor->ElementsNum(); - const int limit = in_shape[axis_]; + const int limit = in_shape.at(axis_); for (int i = 0; i < indices_element_size; ++i) { if (indices_ptr[i] >= limit) { MS_LOG(ERROR) << " indice data: " << indices_ptr[i] << " is not in [ 0, " << limit - 1 << " ]"; @@ -71,12 +71,12 @@ int GatherInt8CPUKernel::DoGather(int task_id) { int outer_size = 1; for (int i = 0; i < axis_; ++i) { - outer_size *= in_shape[i]; + outer_size *= in_shape.at(i); } int inner_size = 1; for (int i = axis_ + 1; i < in_rank; ++i) { - inner_size *= in_shape[i]; + inner_size *= in_shape.at(i); } int stride = UP_DIV(outer_size, thread_count_); diff --git a/mindspore/lite/src/runtime/kernel/arm/int8/layer_norm_int8.cc b/mindspore/lite/src/runtime/kernel/arm/int8/layer_norm_int8.cc index 4e996b3617d..19c5b611c5a 100644 --- a/mindspore/lite/src/runtime/kernel/arm/int8/layer_norm_int8.cc +++ b/mindspore/lite/src/runtime/kernel/arm/int8/layer_norm_int8.cc @@ -89,9 +89,9 @@ int LayerNormInt8CPUKernel::ReSize() { inner_size_ = 1; for (size_t i = 0; i < shape.size(); ++i) { if (i + param_->normalized_dims_ < shape.size()) { - outer_size_ *= shape[i]; + outer_size_ *= shape.at(i); } else { - inner_size_ *= shape[i]; + inner_size_ *= shape.at(i); } } diff --git a/mindspore/lite/src/runtime/kernel/arm/int8/leaky_relu_int8.cc b/mindspore/lite/src/runtime/kernel/arm/int8/leaky_relu_int8.cc index 4723c96d87d..4dfb5eae694 100644 --- a/mindspore/lite/src/runtime/kernel/arm/int8/leaky_relu_int8.cc +++ b/mindspore/lite/src/runtime/kernel/arm/int8/leaky_relu_int8.cc @@ -85,7 +85,7 @@ int LeakyReluInt8CPUKernel::ReSize() { auto *out_tensor = out_tensors_.at(kOutputIndex); auto input_dim = input_tensor->shape().size(); quant_prelu_parm_.input_dim_ = input_dim; - quant_prelu_parm_.element_num = in_tensors_[0]->Size(); + quant_prelu_parm_.element_num = in_tensors_.at(0)->Size(); auto input_shape = input_tensor->shape(); if (quant_prelu_parm_.in_shape_ != nullptr) { free(quant_prelu_parm_.in_shape_); diff --git a/mindspore/lite/src/runtime/kernel/arm/int8/matmul_int8.cc b/mindspore/lite/src/runtime/kernel/arm/int8/matmul_int8.cc index 649858958a3..3ea136c7feb 100644 --- a/mindspore/lite/src/runtime/kernel/arm/int8/matmul_int8.cc +++ b/mindspore/lite/src/runtime/kernel/arm/int8/matmul_int8.cc @@ -39,12 +39,14 @@ int MatmulInt8CPUKernel::Init() { int MatmulInt8CPUKernel::ReSize() { FreeTmpBuffer(); int batch = 1; - auto x_shape = in_tensors_[0]->shape(); - auto o_shape = out_tensors_[0]->shape(); + auto x_shape = in_tensors_.at(0)->shape(); + auto o_shape = out_tensors_.at(0)->shape(); + MS_ASSERT(x_shape.size() >= 2); for (size_t i = 0; i < x_shape.size() - 2; ++i) { batch *= x_shape[i]; } params_->batch = batch; + MS_ASSERT(o_shape.size() >= 2); params_->row_ = o_shape[o_shape.size() - 2]; params_->col_ = o_shape[o_shape.size() - 1]; params_->deep_ = params_->a_transpose_ ? x_shape[x_shape.size() - 2] : x_shape[x_shape.size() - 1]; @@ -77,25 +79,25 @@ int MatmulInt8CPUKernel::ReSize() { thread_count_ = MSMIN(thread_count_, UP_DIV(params_->col_4_, 4)); thread_stride_ = UP_DIV(UP_DIV(params_->col_4_, 4), thread_count_); - auto input_tensor = in_tensors_[0]; + auto input_tensor = in_tensors_.at(0); auto params = input_tensor->quant_params(); MS_ASSERT(params.size() == 1); quant_params_.input.zp_ = params.front().zeroPoint; quant_params_.input.scale_ = params.front().scale; - auto weight_tensor = in_tensors_[1]; + auto weight_tensor = in_tensors_.at(1); params = weight_tensor->quant_params(); MS_ASSERT(params.size() == 1); quant_params_.weight.zp_ = params.front().zeroPoint; quant_params_.weight.scale_ = params.front().scale; - auto output_tensor = out_tensors_[0]; + auto output_tensor = out_tensors_.at(0); params = output_tensor->quant_params(); MS_ASSERT(params.size() == 1); quant_params_.output.zp_ = params.front().zeroPoint; quant_params_.output.scale_ = params.front().scale; - params_->b_const_ = (in_tensors_[1]->data_c() != nullptr); + params_->b_const_ = (in_tensors_.at(1)->data_c() != nullptr); if (params_->b_const_) { - auto b_ptr = reinterpret_cast(in_tensors_[1]->data_c()); + auto b_ptr = reinterpret_cast(in_tensors_.at(1)->data_c()); for (int i = 0; i < params_->batch; ++i) { auto cur_b = b_ptr + i * params_->deep_ * params_->col_; auto cur_b_pack = b_c16x4_batch_ + i * params_->col_4_ * params_->deep_16_; @@ -152,14 +154,14 @@ int MatmulInt8Run(void *cdata, int task_id) { } int MatmulInt8CPUKernel::Run() { - auto a_ptr = reinterpret_cast(in_tensors_[0]->data_c()); - auto c_ptr = reinterpret_cast(out_tensors_[0]->data_c()); + auto a_ptr = reinterpret_cast(in_tensors_.at(0)->data_c()); + auto c_ptr = reinterpret_cast(out_tensors_.at(0)->data_c()); auto a_stride = params_->row_ * params_->deep_; auto b_stride = params_->deep_ * params_->col_; auto c_stride = params_->row_ * params_->col_; if (!params_->b_const_) { - auto b_ptr = reinterpret_cast(in_tensors_[1]->data_c()); + auto b_ptr = reinterpret_cast(in_tensors_.at(1)->data_c()); for (int i = 0; i < params_->batch; ++i) { auto cur_b = b_ptr + i * b_stride; auto cur_b_pack = b_c16x4_batch_ + i * params_->col_4_ * params_->deep_16_; diff --git a/mindspore/lite/src/runtime/kernel/arm/int8/pad_int8.cc b/mindspore/lite/src/runtime/kernel/arm/int8/pad_int8.cc index fa9ae52eb02..eb779cad2c2 100644 --- a/mindspore/lite/src/runtime/kernel/arm/int8/pad_int8.cc +++ b/mindspore/lite/src/runtime/kernel/arm/int8/pad_int8.cc @@ -87,8 +87,8 @@ int PadInt8CPUKernel::SetQuantParam() { } int PadInt8CPUKernel::InitPadParam() { - auto in_dims = in_tensors_[0]->shape(); - auto out_dims = out_tensors_[0]->shape(); + auto in_dims = in_tensors_.at(0)->shape(); + auto out_dims = out_tensors_.at(0)->shape(); int ndims = in_dims.size(); int in[] = {1, 1, 1, 1}; @@ -265,8 +265,8 @@ int PadInt8CPUKernel::CopyPaddingFromInput() { } int PadInt8CPUKernel::Run() { - in_data_ = reinterpret_cast(in_tensors_[0]->MutableData()); - out_data_ = reinterpret_cast(out_tensors_[0]->MutableData()); + in_data_ = reinterpret_cast(in_tensors_.at(0)->MutableData()); + out_data_ = reinterpret_cast(out_tensors_.at(0)->MutableData()); int error_code; if (pad_param_->pad_mode_ == static_cast(schema::PaddingMode_CONSTANT)) { diff --git a/mindspore/lite/src/runtime/kernel/arm/int8/power_int8.cc b/mindspore/lite/src/runtime/kernel/arm/int8/power_int8.cc index 56ecf17493a..59a9fe33ff6 100644 --- a/mindspore/lite/src/runtime/kernel/arm/int8/power_int8.cc +++ b/mindspore/lite/src/runtime/kernel/arm/int8/power_int8.cc @@ -66,7 +66,7 @@ int PowerInt8CPUKernel::DoPower(int task_id) { int8_t *output_data = reinterpret_cast(out_tensors_[0]->MutableData()); MS_ASSERT(output_data); - auto size = in_tensors_[0]->ElementsNum(); + auto size = in_tensors_.at(0)->ElementsNum(); int stride = UP_DIV(size, op_parameter_->thread_num_); int count = MSMIN(stride, size - stride * task_id); int8_t *exp_ptr = nullptr;