!9059 modify timemonitor and ckpt info

From: @changzherui
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2020-11-30 16:04:28 +08:00 committed by Gitee
commit 0c153b586a
4 changed files with 189 additions and 140 deletions

View File

@ -302,13 +302,13 @@ def check_version_and_env_config():
def _set_pb_env():
"""Set env variable `PROTOCOL_BUFFERS` to prevent memory overflow."""
if os.getenv("PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION") == "cpp":
logger.warning("Current env variable `PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=cpp`. "
"When the checkpoint file is too large, "
"it may cause memory limit error durning load checkpoint file. "
"This can be solved by set env `PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python`.")
logger.info("Current env variable `PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=cpp`. "
"When the checkpoint file is too large, "
"it may cause memory limit error durning load checkpoint file. "
"This can be solved by set env `PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python`.")
elif os.getenv("PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION") is None:
logger.warning("Setting the env `PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python` to prevent memory overflow "
"during save or load checkpoint file.")
logger.info("Setting the env `PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python` to prevent memory overflow "
"during save or load checkpoint file.")
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"

View File

@ -49,4 +49,4 @@ class TimeMonitor(Callback):
return
step_seconds = epoch_seconds / step_size
print("Epoch time: {:5.3f}, per step time: {:5.3f}".format(epoch_seconds, step_seconds), flush=True)
print("epoch time: {:5.3f} ms, per step time: {:5.3f} ms".format(epoch_seconds, step_seconds), flush=True)

View File

@ -18,10 +18,11 @@
- [Description of Random Situation](#description-of-random-situation)
- [ModelZoo Homepage](#modelzoo-homepage)
# [DeepLabV3 Description](#contents)
## Description
DeepLab is a series of image semantic segmentation models, DeepLabV3 improves significantly over previous versions. Two keypoints of DeepLabV3: Its multi-grid atrous convolution makes it better to deal with segmenting objects at multiple scales, and augmented ASPP makes image-level features available to capture long range information.
DeepLab is a series of image semantic segmentation models, DeepLabV3 improves significantly over previous versions. Two keypoints of DeepLabV3: Its multi-grid atrous convolution makes it better to deal with segmenting objects at multiple scales, and augmented ASPP makes image-level features available to capture long range information.
This repository provides a script and recipe to DeepLabV3 model and achieve state-of-the-art performance.
Refer to [this paper][1] for network details.
@ -30,31 +31,34 @@ Refer to [this paper][1] for network details.
[1]: https://arxiv.org/abs/1706.05587
# [Model Architecture](#contents)
Resnet101 as backbone, atrous convolution for dense feature extraction.
# [Dataset](#contents)
Pascal VOC datasets and Semantic Boundaries Dataset
- Download segmentation dataset.
- Prepare the training data list file. The list file saves the relative path to image and annotation pairs. Lines are like:
- Download segmentation dataset.
```
JPEGImages/00001.jpg SegmentationClassGray/00001.png
JPEGImages/00002.jpg SegmentationClassGray/00002.png
JPEGImages/00003.jpg SegmentationClassGray/00003.png
JPEGImages/00004.jpg SegmentationClassGray/00004.png
......
```
- Prepare the training data list file. The list file saves the relative path to image and annotation pairs. Lines are like:
- Configure and run build_data.sh to convert dataset to mindrecords. Arguments in scripts/build_data.sh:
```shell
JPEGImages/00001.jpg SegmentationClassGray/00001.png
JPEGImages/00002.jpg SegmentationClassGray/00002.png
JPEGImages/00003.jpg SegmentationClassGray/00003.png
JPEGImages/00004.jpg SegmentationClassGray/00004.png
......
```
```
--data_root root path of training data
--data_lst list of training data(prepared above)
--dst_path where mindrecords are saved
--num_shards number of shards of the mindrecords
--shuffle shuffle or not
```
- Configure and run build_data.sh to convert dataset to mindrecords. Arguments in scripts/build_data.sh:
```shell
--data_root root path of training data
--data_lst list of training data(prepared above)
--dst_path where mindrecords are saved
--num_shards number of shards of the mindrecords
--shuffle shuffle or not
```
# [Features](#contents)
@ -66,15 +70,15 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
# [Environment Requirements](#contents)
- HardwareAscend
- Prepare hardware environment with Ascend. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/zh-CN/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/zh-CN/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/zh-CN/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/zh-CN/master/index.html)
- Install python packages in requirements.txt
- Generate config json file for 8pcs training
```
# From the root of this project
cd src/tools/
@ -85,47 +89,67 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
# [Quick Start](#contents)
After installing MindSpore via the official website, you can start training and evaluation as follows:
- Running on Ascend
Based on original DeepLabV3 paper, we reproduce two training experiments on vocaug (also as trainaug) dataset and evaluate on voc val dataset.
For single device training, please config parameters, training script is:
```
For single device training, please config parameters, training script is:
```shell
run_standalone_train.sh
```
For 8 devices training, training steps are as follows:
1. Train s16 with vocaug dataset, finetuning from resnet101 pretrained model, script is:
```
1. Train s16 with vocaug dataset, finetuning from resnet101 pretrained model, script is:
```shell
run_distribute_train_s16_r1.sh
```
2. Train s8 with vocaug dataset, finetuning from model in previous step, training script is:
```
```shell
run_distribute_train_s8_r1.sh
```
3. Train s8 with voctrain dataset, finetuning from model in pervious step, training script is:
```
```shell
run_distribute_train_s8_r2.sh
```
For evaluation, evaluating steps are as follows:
1. Eval s16 with voc val dataset, eval script is:
```
```shell
run_eval_s16.sh
```
2. Eval s8 with voc val dataset, eval script is:
```
```shell
run_eval_s8.sh
```
3. Eval s8 multiscale with voc val dataset, eval script is:
```
```shell
run_eval_s8_multiscale.sh
```
4. Eval s8 multiscale and flip with voc val dataset, eval script is:
```
```shell
run_eval_s8_multiscale_flip.sh
```
# [Script Description](#contents)
## [Script and Sample Code](#contents)
```shell
.
└──deeplabv3
@ -141,19 +165,19 @@ run_eval_s8_multiscale_flip.sh
├── run_eval_s8_multiscale_filp.sh # launch ascend evaluation with multiscale and filp in s8 structure
├── run_standalone_train.sh # launch ascend standalone training(1 pc)
├── src
├── data
├── data
├── dataset.py # mindrecord data generator
├── build_seg_data.py # data preprocessing
├── loss
├── loss.py # loss definition for deeplabv3
├── nets
├── loss.py # loss definition for deeplabv3
├── nets
├── deeplab_v3
├── deeplab_v3.py # DeepLabV3 network structure
├── net_factory.py # set S16 and S8 structures
├── tools
├── tools
├── get_multicards_json.py # get rank table file
└── utils
└── learning_rates.py # generate learning rate
└── utils
└── learning_rates.py # generate learning rate
├── eval.py # eval net
├── train.py # train net
└── requirements.txt # requirements file
@ -162,7 +186,8 @@ run_eval_s8_multiscale_flip.sh
## [Script Parameters](#contents)
Default configuration
```
```shell
"data_file":"/PATH/TO/MINDRECORD_NAME" # dataset path
"train_epochs":300 # total epochs
"batch_size":32 # batch size of input tensor
@ -183,11 +208,14 @@ Default configuration
## [Training Process](#contents)
### Usage
#### Running on Ascend
Based on original DeepLabV3 paper, we reproduce two training experiments on vocaug (also as trainaug) dataset and evaluate on voc val dataset.
For single device training, please config parameters, training script is as follows:
```
For single device training, please config parameters, training script is as follows:
```shell
# run_standalone_train.sh
python ${train_code_path}/train.py --data_file=/PATH/TO/MINDRECORD_NAME \
--train_dir=${train_path}/ckpt \
@ -205,11 +233,12 @@ python ${train_code_path}/train.py --data_file=/PATH/TO/MINDRECORD_NAME \
--save_steps=1500 \
--keep_checkpoint_max=200 >log 2>&1 &
```
For 8 devices training, training steps are as follows:
1. Train s16 with vocaug dataset, finetuning from resnet101 pretrained model, script is as follows:
1. Train s16 with vocaug dataset, finetuning from resnet101 pretrained model, script is as follows:
```
```python
# run_distribute_train_s16_r1.sh
for((i=0;i<=$RANK_SIZE-1;i++));
do
@ -236,8 +265,10 @@ do
--keep_checkpoint_max=200 >log 2>&1 &
done
```
2. Train s8 with vocaug dataset, finetuning from model in previous step, training script is as follows:
```
```shell
# run_distribute_train_s8_r1.sh
for((i=0;i<=$RANK_SIZE-1;i++));
do
@ -265,8 +296,10 @@ do
--keep_checkpoint_max=200 >log 2>&1 &
done
```
3. Train s8 with voctrain dataset, finetuning from model in pervious step, training script is as follows:
```
```shell
# run_distribute_train_s8_r2.sh
for((i=0;i<=$RANK_SIZE-1;i++));
do
@ -294,73 +327,83 @@ do
--keep_checkpoint_max=200 >log 2>&1 &
done
```
### Result
- Training vocaug in s16 structure
```
```shell
# distribute training result(8p)
epoch: 1 step: 41, loss is 0.8319108
Epoch time: 213856.477, per step time: 5216.012
epoch time: 213856.477 ms, per step time: 5216.012 ms
epoch: 2 step: 41, loss is 0.46052963
Epoch time: 21233.183, per step time: 517.883
epoch time: 21233.183 ms, per step time: 517.883 ms
epoch: 3 step: 41, loss is 0.45012417
Epoch time: 21231.951, per step time: 517.852
epoch time: 21231.951 ms, per step time: 517.852 ms
epoch: 4 step: 41, loss is 0.30687785
Epoch time: 21199.911, per step time: 517.071
epoch time: 21199.911 ms, per step time: 517.071 ms
epoch: 5 step: 41, loss is 0.22769661
Epoch time: 21240.281, per step time: 518.056
epoch time: 21240.281 ms, per step time: 518.056 ms
epoch: 6 step: 41, loss is 0.25470978
...
```
- Training vocaug in s8 structure
```
```shell
# distribute training result(8p)
epoch: 1 step: 82, loss is 0.024167
Epoch time: 322663.456, per step time: 3934.920
epoch time: 322663.456 ms, per step time: 3934.920 ms
epoch: 2 step: 82, loss is 0.019832281
Epoch time: 43107.238, per step time: 525.698
epoch time: 43107.238 ms, per step time: 525.698 ms
epoch: 3 step: 82, loss is 0.021008959
Epoch time: 43109.519, per step time: 525.726
epoch time: 43109.519 ms, per step time: 525.726 ms
epoch: 4 step: 82, loss is 0.01912349
Epoch time: 43177.287, per step time: 526.552
epoch time: 43177.287 ms, per step time: 526.552 ms
epoch: 5 step: 82, loss is 0.022886964
Epoch time: 43095.915, per step time: 525.560
epoch time: 43095.915 ms, per step time: 525.560 ms
epoch: 6 step: 82, loss is 0.018708453
Epoch time: 43107.458, per step time: 525.701
epoch time: 43107.458 ms per step time: 525.701 ms
...
```
- Training voctrain in s8 structure
```
```shell
# distribute training result(8p)
epoch: 1 step: 11, loss is 0.00554624
Epoch time: 199412.913, per step time: 18128.447
epoch time: 199412.913 ms, per step time: 18128.447 ms
epoch: 2 step: 11, loss is 0.007181881
Epoch time: 6119.375, per step time: 556.307
epoch time: 6119.375 ms, per step time: 556.307 ms
epoch: 3 step: 11, loss is 0.004980865
Epoch time: 5996.978, per step time: 545.180
epoch time: 5996.978 ms, per step time: 545.180 ms
epoch: 4 step: 11, loss is 0.0047651967
Epoch time: 5987.412, per step time: 544.310
epoch time: 5987.412 ms, per step time: 544.310 ms
epoch: 5 step: 11, loss is 0.006262637
Epoch time: 5956.682, per step time: 541.517
epoch time: 5956.682 ms, per step time: 541.517 ms
epoch: 6 step: 11, loss is 0.0060750707
Epoch time: 5962.164, per step time: 542.015
epoch time: 5962.164 ms, per step time: 542.015 ms
...
```
## [Evaluation Process](#contents)
### Usage
#### Running on Ascend
Configure checkpoint with --ckpt_path and dataset path. Then run script, mIOU will be printed in eval_path/eval_log.
```
```shell
./run_eval_s16.sh # test s16
./run_eval_s8.sh # test s8
./run_eval_s8_multiscale.sh # test s8 + multiscale
./run_eval_s8_multiscale_flip.sh # test s8 + multiscale + flip
```
Example of test script is as follows:
```
```shell
python ${train_code_path}/eval.py --data_root=/PATH/TO/DATA \
--data_lst=/PATH/TO/DATA_lst.txt \
--batch_size=16 \
@ -383,6 +426,7 @@ python ${train_code_path}/eval.py --data_root=/PATH/TO/DATA \
Our result were obtained by running the applicable training script. To achieve the same results, follow the steps in the Quick Start Guide.
#### Training accuracy
| **Network** | OS=16 | OS=8 | MS | Flip | mIOU | mIOU in paper |
| :----------: | :-----: | :----: | :----: | :-----: | :-----: | :-------------: |
| deeplab_v3 | √ | | | | 77.37 | 77.21 |
@ -393,29 +437,31 @@ Our result were obtained by running the applicable training script. To achieve t
Note: There OS is output stride, and MS is multiscale.
# [Model Description](#contents)
## [Performance](#contents)
### Evaluation Performance
| Parameters | Ascend 910
## [Performance](#contents
### Evaluation Performance
| Parameters | Ascend 910
| -------------------------- | -------------------------------------- |
| Model Version | DeepLabV3
| Resource | Ascend 910 |
| Uploaded Date | 09/04/2020 (month/day/year) |
| MindSpore Version | 0.7.0-alpha |
| Dataset | PASCAL VOC2012 + SBD |
| Training Parameters | epoch = 300, batch_size = 32 (s16_r1) <br> epoch = 800, batch_size = 16 (s8_r1) <br> epoch = 300, batch_size = 16 (s8_r2) |
| Model Version | DeepLabV3
| Resource | Ascend 910 |
| Uploaded Date | 09/04/2020 (month/day/year) |
| MindSpore Version | 0.7.0-alpha |
| Dataset | PASCAL VOC2012 + SBD |
| Training Parameters | epoch = 300, batch_size = 32 (s16_r1) <br> epoch = 800, batch_size = 16 (s8_r1) <br> epoch = 300, batch_size = 16 (s8_r2) |
| Optimizer | Momentum |
| Loss Function | Softmax Cross Entropy |
| Outputs | probability |
| Loss | 0.0065883575 |
| Loss Function | Softmax Cross Entropy |
| Outputs | probability |
| Loss | 0.0065883575 |
| Speed | 60 ms/step1pc, s16<br> 480 ms/step8pcs, s16 <br> 244 ms/step (8pcs, s8) |
| Total time | 8pcs: 706 mins |
| Parameters (M) | 58.2 |
| Checkpoint for Fine tuning | 443M (.ckpt file) |
| Model for inference | 223M (.air file) |
| Scripts | [Link](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/deeplabv3) |
| Scripts | [Link](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/deeplabv3) |
### Inference Performance
## Inference Performance
| Parameters | Ascend |
| ------------------- | --------------------------- |
@ -429,10 +475,10 @@ Note: There OS is output stride, and MS is multiscale.
| Accuracy | 8pcs: <br> s16: 77.37 <br> s8: 78.84% <br> s8_multiscale: 79.70% <br> s8_Flip: 79.89% |
| Model for inference | 443M (.ckpt file) |
# [Description of Random Situation](#contents)
In dataset.py, we set the seed inside "create_dataset" function. We also use random seed in train.py.
In dataset.py, we set the seed inside "create_dataset" function. We also use random seed in train.py.
# [ModelZoo Homepage](#contents)
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).

View File

@ -30,34 +30,33 @@ The overall network architecture of InceptionV3 is show below:
[Link](https://arxiv.org/pdf/1512.00567.pdf)
# [Dataset](#contents)
Dataset used can refer to paper.
- Dataset size: 125G, 1250k colorful images in 1000 classes
- Train: 120G, 1200k images
- Test: 5G, 50k images
- Train: 120G, 1200k images
- Test: 5G, 50k images
- Data format: RGB images.
- Note: Data will be processed in src/dataset.py
- Note: Data will be processed in src/dataset.py
# [Features](#contents)
## [Mixed Precision(Ascend)](#contents)
The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching reduce precision.
# [Environment Requirements](#contents)
- HardwareAscend/GPU
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
# [Script description](#contents)
@ -65,14 +64,14 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
```shell
.
└─Inception-v3
└─Inception-v3
├─README.md
├─scripts
├─run_standalone_train.sh # launch standalone training with ascend platform(1p)
├─scripts
├─run_standalone_train.sh # launch standalone training with ascend platform(1p)
├─run_standalone_train_gpu.sh # launch standalone training with gpu platform(1p)
├─run_distribute_train.sh # launch distributed training with ascend platform(8p)
├─run_distribute_train.sh # launch distributed training with ascend platform(8p)
├─run_distribute_train_gpu.sh # launch distributed training with gpu platform(8p)
├─run_eval.sh # launch evaluating with ascend platform
├─run_eval.sh # launch evaluating with ascend platform
└─run_eval_gpu.sh # launch evaluating with gpu platform
├─src
├─config.py # parameter configuration
@ -83,12 +82,13 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
├─eval.py # eval net
├─export.py # convert checkpoint
└─train.py # train net
```
## [Script Parameters](#contents)
```python
Major parameters in train.py and config.py are:
Major parameters in train.py and config.py are:
'random_seed' # fix random seed
'rank' # local rank of distributed
'group_size' # world size of distributed
@ -111,8 +111,8 @@ Major parameters in train.py and config.py are:
'ckpt_path' # save checkpoint path
'is_save_on_master' # save checkpoint on rank0, distributed parameters
'dropout_keep_prob' # the keep rate, between 0 and 1, e.g. keep_prob = 0.9, means dropping out 10% of input units
'has_bias' # specifies whether the layer uses a bias vector.
'amp_level' # option for argument `level` in `mindspore.amp.build_train_network`, level for mixed
'has_bias' # specifies whether the layer uses a bias vector.
'amp_level' # option for argument `level` in `mindspore.amp.build_train_network`, level for mixed
# precision training. Supports [O0, O2, O3].
```
@ -121,33 +121,33 @@ Major parameters in train.py and config.py are:
### Usage
You can start training using python or shell scripts. The usage of shell scripts as follows:
- Ascend:
```
- Ascend:
```shell
# distribute training example(8p)
sh scripts/run_distribute_train.sh RANK_TABLE_FILE DATA_PATH
# standalone training
sh scripts/run_standalone_train.sh DEVICE_ID DATA_PATH
```
> Notes:
RANK_TABLE_FILE can refer to [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/distributed_training_ascend.html) , and the device_ip can be got as [Link]https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools.
For large models like InceptionV3, it's better to export an external environment variable `export HCCL_CONNECT_TIMEOUT=600` to extend hccl connection checking time from the default 120 seconds to 600 seconds. Otherwise, the connection could be timeout since compiling time increases with the growth of model size.
> Notes: RANK_TABLE_FILE can refer to [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/distributed_training_ascend.html), and the device_ip can be got as [Link](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools). For large models like InceptionV3, it's better to export an external environment variable `export HCCL_CONNECT_TIMEOUT=600` to extend hccl connection checking time from the default 120 seconds to 600 seconds. Otherwise, the connection could be timeout since compiling time increases with the growth of model size.
>
> This is processor cores binding operation regarding the `device_num` and total processor numbers. If you are not expect to do it, remove the operations `taskset` in `scripts/run_distribute_train.sh`
- GPU:
```
```python
# distribute training example(8p)
sh scripts/run_distribute_train_gpu.sh DATA_DIR
sh scripts/run_distribute_train_gpu.sh DATA_DIR
# standalone training
sh scripts/run_standalone_train_gpu.sh DEVICE_ID DATA_DIR
```
### Launch
```
```python
# training example
python:
Ascend: python train.py --dataset_path /dataset/train --platform Ascend
@ -159,23 +159,24 @@ sh scripts/run_standalone_train_gpu.sh DEVICE_ID DATA_DIR
sh scripts/run_distribute_train.sh RANK_TABLE_FILE DATA_PATH
# standalone training
sh scripts/run_standalone_train.sh DEVICE_ID DATA_PATH
GPU:
GPU:
# distributed training example(8p)
sh scripts/run_distribute_train_gpu.sh /dataset/train
# standalone training example
sh scripts/run_distribute_train_gpu.sh /dataset/train
# standalone training example
sh scripts/run_standalone_train_gpu.sh 0 /dataset/train
```
### Result
Training result will be stored in the example path. Checkpoints will be stored at `. /checkpoint` by default, and training log will be redirected to `./log.txt` like followings.
Training result will be stored in the example path. Checkpoints will be stored at `. /checkpoint` by default, and training log will be redirected to `./log.txt` like followings.
```
```python
epoch: 0 step: 1251, loss is 5.7787247
Epoch time: 360760.985, per step time: 288.378
epoch time: 360760.985 ms, per step time: 288.378 ms
epoch: 1 step: 1251, loss is 4.392868
Epoch time: 160917.911, per step time: 128.631
epoch time: 160917.911 ms, per step time: 128.631 ms
```
## [Eval process](#contents)
### Usage
@ -183,17 +184,20 @@ Epoch time: 160917.911, per step time: 128.631
You can start training using python or shell scripts. The usage of shell scripts as follows:
- Ascend:
```python
sh scripts/run_eval.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
```
sh scripts/run_eval.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
```
- GPU:
```
sh scripts/run_eval_gpu.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
```python
sh scripts/run_eval_gpu.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
```
### Launch
```
```python
# eval example
python:
Ascend: python eval.py --dataset_path DATA_DIR --checkpoint PATH_CHECKPOINT --platform Ascend
@ -204,13 +208,13 @@ You can start training using python or shell scripts. The usage of shell scripts
GPU: sh scripts/run_eval_gpu.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
```
> checkpoint can be produced in training process.
> checkpoint can be produced in training process.
### Result
Evaluation result will be stored in the example path, you can find result like the followings in `eval.log`.
Evaluation result will be stored in the example path, you can find result like the followings in `eval.log`.
```
```python
metric: {'Loss': 1.778, 'Top1-Acc':0.788, 'Top5-Acc':0.942}
```
@ -239,12 +243,11 @@ metric: {'Loss': 1.778, 'Top1-Acc':0.788, 'Top5-Acc':0.942}
| Checkpoint for Fine tuning | 313M | 312M |
| Scripts | [inceptionv3 script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/inceptionv3) | [inceptionv3 script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/inceptionv3) |
#### Inference Performance
| Parameters | Ascend |
| ------------------- | --------------------------- |
| Model Version | InceptionV3 |
| Model Version | InceptionV3 |
| Resource | Ascend 910, cpu:2.60GHz 192cores, memory:755G |
| Uploaded Date | 08/22/2020 |
| MindSpore Version | 0.6.0-beta |
@ -260,5 +263,5 @@ metric: {'Loss': 1.778, 'Top1-Acc':0.788, 'Top5-Acc':0.942}
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
# [ModelZoo Homepage](#contents)
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).